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Sensor-Pattern-Noise Map Reconstruction in Source Camera
Identification for Size-Reduced Images

Joji WATANABE†a), Nonmember, Tadaaki HOSAKA††, and Takayuki HAMAMOTO†, Members

SUMMARY For source camera identification, we propose a method to
reconstruct the sensor pattern noise map from a size-reduced query image
by minimizing an objective function derived from the observation model.
Our method can be applied to multiple queries, and can thus be further im-
proved. Experiments demonstrate the superiority of the proposed method
over conventional interpolation-based magnification algorithms.
key words: digital forensics, source camera identification, sensor pattern
noise, size-reduced image, reconstruction

1. Introduction

Interest in digital image forensics has grown sharply since
the emergence of digital photography and internet photo dis-
tribution. One of the hot topics in this area is source cam-
era identification (SCI), in which the unique device used
to capture a given query image is determined [1]–[5]. Gol-
jan et al. [1], [2] proposed a powerful method for SCI based
on sensor pattern noise (SPN) which is inherent and time-
invariant in each pixel. Due to SPNs, some pixels always
indicate brighter/darker intensities for the constant amount
of incident light. The main component of SPNs is, in many
cases, photo-response non-uniformity, which is the per-pixel
discrepancies in light sensitivity that result from imperfec-
tions and inhomogeneity in fabricated wafers. Although this
method offers a high degree of accuracy (even when identi-
fying one among several same-model cameras), it requires
that size-reduced query images be enlarged to their original
size. This is a task for which traditional interpolation-based
magnification algorithms, such as the nearest-neighbor and
bilinear methods, are ill-suited, as they tend to degrade
identification precision. This tendency becomes more pro-
nounced as the degree of magnification increases.

In this letter, we attempt to overcome this difficulty.
Based on an image observation model, we derive the cost
function that the desirable SPN map should minimize. Then,
the SPN map is reconstructed from size-reduced query im-
ages by solving this optimization problem. A particular ad-
vantage of our method is that it can be naturally extended
for use on a set of query images, and can thus be made more
accurate. Experiments demonstrate the effectiveness of the
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proposed method, even when query images are greatly re-
duced in size.

2. SPN-Based Source Camera Identification

In this section, we describe the method of SCI proposed
in [1]. This approach also forms the fundamental framework
for our method.

Goljan et al. extracted an approximate SPN component
by simply subtracting the denoised image from the raw im-
age. Thus, the SPN component n ∈ RN (RN represents the
N-dimensional Euclidean space) referred to as the SPN map
in this letter, can be expressed as

n(u) = u − g(u), (1)

where the vector u ∈ RN is the array for pixel values of a raw
image (grayscale, in this study), and the vector g(u) ∈ RN

represents the denoised version of u that can be generated by
using a simple Gaussian filter, the wavelet-based filter [6] as
used in [1], and so on.

The aim of SCI is to decide whether the query image
q ∈ RN has been captured by a specific camera c. To solve
this problem, the SPN map of the target camera c needs to be
learnt in advance for reference. Given multiple images cap-
tured with camera c, Goljan et al. defined the reference pat-
tern rc ∈ RN as the average of SPN maps derived by Eq. (1)
for all learning images. The averaging operation suppresses
the influence of specific scene-contents and random noises.
Discrimination of a query image q is performed based on
the normalized cross-correlation (NCC) between the refer-
ence pattern rc and the SPN map n(q), defined as

ρ(q, rc) =
n(q) · rc

‖n(q)‖ ‖rc‖ , (2)

where || · || represents the l2-norm. If the value ρ is higher
than a predefined threshold, the query image q is determined
to have been captured by the target camera c.

This method assumes that the reference pattern rc and a
query image q have identical dimensions. For an artificially
size-reduced query image (a common situation in actual SCI
usage), Goljan and Fridrich insisted [2] that the query im-
age needs to be interpolated to match the dimensions of the
reference data. However, well-known interpolation meth-
ods tend to degrade identification accuracy, particularly for
greatly size-reduced query images, as will be shown later in
our experiments.
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3. Proposed Method

In our method, we reconstruct the SPN map from size-
reduced images by solving an inverse problem derived from
the observation model. Our observation model is similar to
that of reconstruction-based super-resolution [7]. An arti-
ficially size-reduced (low-resolution) query image l ∈ RM

(M < N) is assumed to be a down-sampled version of the
original (high-resolution) image h ∈ RN . This model is ex-
pressed as

l = Dh, (3)

where the matrix D ∈ RM×N is a linear representation of the
algorithm used to down-sample the image.

Substituting Eq. (1) into l and h in Eq. (3) yields

nl + gl(l) = D
{
nh + gh(h)

}
, (4)

where nh is the raw SPN map to be estimated and nl is re-
garded as its low-dimensional version. Because desirable
denoising filters generally depend on the resolution, the two
filters are expressed by the separate indices. Here, we as-
sume that gl(l)(= gl(Dh), i.e., a denoised version of the
down-sampled image) and Dgh(h) (i.e., a down-sampled
version of the denoised image) are approximately equal.
This assumption is validated for most real images by tun-
ing the kernel settings of the denoising filters, as illustrated
by Fig. 1, in which the distribution of differences (Fig. 1 (b))
between gl(l) and Dgh(h) for a given image (Fig. 1 (a)) is
shown, and the difference is less than 0.2 for 94.5% of pix-
els. This approximation leads to

nl = Dnh + ε, (5)

where the vector ε ∈ RM represents the approximation error.
Our goal is to find the vector nh that satisfies Eq. (5) as

precisely as possible among natural SPN maps. To achieve
this task, we define the following objective function to min-
imize with respect to nh:

f (nh) = {w · (nl − Dnh)}2 + λ ‖nh‖2 , (6)

where the vector w ∈ RM represents the weight for each
pixel, the second term of Eq. (6) regularizes the solution, and
the parameter λ balances both the terms. Because the SPN
map obtained using Eq. (1) extracts not only true SPN com-
ponents but also scene-dependent textures, we try to sup-
press the influence of textured regions by defining each ele-
ment of w as

wi = exp

⎛⎜⎜⎜⎜⎝− v2
i

2β2

⎞⎟⎟⎟⎟⎠ , (i = 1, 2, . . . ,M) (7)

where vi expresses the variance of intensities within the
small region centered at pixel i in the query image l, and
parameter β controls the sensitivity. From the viewpoint of
Bayesian inference, the regularization term of Eq. (6) corre-
sponds to the prior distribution defined as

(a) test image (b) histogram of the differences

Fig. 1 Distribution of differences between gl(l) and Dgh(h).

Fig. 2 Distribution of each element of a reference pattern and its Gaus-
sian approximation.

p(nh) ∝ exp

(
−‖nh‖2

2σ2

)
, (8)

where the parameter σ is the variance. The validity of this
regularization can be empirically confirmed for most real
images, as illustrated in Fig. 2, in which the distribution of
each element of a reference pattern rc (SPN map averaged
over 50 images) for a certain camera is shown, and it is well
approximated by a Gaussian distribution.

We can apply this method to cases in which multiple
query images are simultaneously identified. In this study,
such multiple query images are assumed to be captured by
the same camera, and we can simply rewrite the objective
function as

f ′(nh) =
K∑

k=1

{wk · (nlk − Dk nh)}2 + λ ‖nh‖2 , (9)

where K represents the number of query images. We can
easily minimize the above function with respect to nh by
using the conjugate gradient method. Once the SPN map
nh is obtained, we identify whether the query images have
been captured by the target camera according to the NCC
criterion given in Eq. (2).

4. Experiments

Evaluation experiments were conducted using images cap-
tured by five cameras of varying maker and model (Nikon
D70, Canon EOS 400D DIGITAL, Canon EOS DIGITAL
REBEL XSi, Pentax K20D, and Leica M9 Digital Cam-
era) which are published in the BOSS Web page [8]. This
database includes images for a variety of subjects such as
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Fig. 3 Examples of images used in the experiments.

scenery, animals, and buildings, as shown in Fig. 3. To sup-
press the influence of the number of pixels, all images were
cropped to a size of 3000× 2000 pixels.

The reference SPN maps were computed using 50 im-
ages for each camera. In this process, we utilized the usual
Gaussian filter as a denoising filter g(·).

The down-sampling procedure to generate size-
reduced query images was as follows:

(i) We consider a 2-dimensional space on which pixels of
the original (high-resolution) image correspond to grid
points.

(ii) We set the sampling points on this space in accordance
with the reduction ratios. Note that these sampling
points are not necessarily on the grid points.

(iii) The intensity at each sampling point is interpolated by
the weighted average over the surrounding pixels. The
weights are calculated by using the Gaussian kernel
whose center is located at each sampling point.

(iv) Extracting these interpolated intensities at the sampling
points gives us the size-reduced image.

Assuming that the matrix D characterizing the above re-
duction process is known, the reconstruction was performed
with parameters λ = 0.01, β2 = 3. We evaluated the perfor-
mance of our proposed method using equal error rate (EER),
which is the value at which the false acceptance rate and the
false rejection rate are made equal by varying the identifica-
tion threshold.

4.1 Experiments with a Single Query Image

For each camera, 100 query images were prepared. The av-
erage EER with respect to reduction ratios

√
M/N (={0.25,

0.29, 0.33, 0.4, 0.5}) is shown in Fig. 4 along with the results
when nearest-neighbor and bilinear algorithms were used
for magnifying a query image. Due to properties suitable
for reconstructing the SPN map (i.e., suppression of scene-
dependent textures by the weight w and of over-fitting by
the regularization), the identification accuracy of the pro-
posed method represents an improvement over conventional
methods at every reduction ratio. However, when the reduc-
tion ratio falls below 0.3, the accuracy deteriorates remark-

Fig. 4 Average EER with respect to the reduction ratio when using a
single query image.

Fig. 5 Average EER with respect to the number of query images.

ably because the number of sampling points is insufficient
to reconstruct the desirable SPN map. We hope that the
identification accuracy at these lower reduction ratios can
be improved by using multiple query images.

4.2 Experiments with Multiple Query Images

For each camera, 100 greatly size-reduced images, whose
reduction ratios are in the range of [0.16, 0.25], were col-
lected. These images were divided into 20 sets of five im-
ages. For a given K(≤ 5), we used every combination of
images within each set as queries, yielding a number of tri-
als totaling 205CK .

Figure 5 shows the average EER with respect to the
number of query images identified at one time. For the
two kinds of conventional methods, SPN maps were sep-
arately derived for each query image and averaged. We
see that by increasing the number of query images, we can
achieve more drastic improvements over conventional meth-
ods. This implies that an increase in sampling points helps
to reconstruct a better SPN map. Examples of the SPN maps
reconstructed with one, three, and five query images, are
shown in Fig. 6 where SPN values are shifted and ampli-
fied so that they are expressed in the range of [0, 255]. It
can be confirmed that the resolutions of SPN maps are en-
hanced and more pixels of high/low light-sensitivity are re-
constructed as the number of query images increases.
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(a) one query image (b) three query images (c) five query images

Fig. 6 Reconstructed SPN maps with respect to the number of query im-
ages: A part of the SPN map is clipped in size of 25× 25.

4.3 Discussion on Estimation of the Matrix D

In real situations, it is necessary to estimate the matrix D
from the given query images. When the matrix D is not pre-
cise, the quality of reconstruction degrades as is the case
with the super-resolution, and consequently, the value of
NCC decreases. Given that the down-sampling process is
modeled with some parameters (in our case, the variance of
the Gaussian kernel), it is possible to estimate the matrix D
by exploring the model parameters that maximize the value
of NCC. This task can be performed by using a variety of
optimization algorithms.

5. Conclusions and Future Works

We proposed a method to reconstruct the SPN map from
size-reduced images for SCI. Our reconstruction method is
based on the image observation model and can be applied to
the case of multiple query images. In the evaluation exper-
iments, our proposed method showed higher identification

accuracy than conventional interpolation-based magnifica-
tion algorithms, and was further improved by using multiple
query images.

In future work, we will address a variety of common
image-processing transformations, including trimming, ro-
tation, and paint insertion. Another direction is to inves-
tigate the robustness of the proposed method to nonlinear
processing such as JPEG compression.
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