IEICE TRANS. INE. & SYST., VOL.E96-D, NO.1 JANUARY 2013

19

[PAPER

An Asynchronous Striping-Aware Readahead Framework for Disk

Arrays in Linux

SUMMARY Disk arrays and prefetching schemes are used to mitigate
the performance gap between main memory and disks. This paper presents
a new problem that arises if prefetching schemes that are widely used in
operation systems are applied to disk arrays. The key point of the problem
is that block address space from the viewpoint of the host is contiguous but
from that of the disk array it is discontiguous and thus more disk accesses
than expected are required. This paper presents two ways to resolve the
problem that arises from the Linux readahead framework. The proposed
scheme prevents a readahead window from being split into multiple re-
quests from the viewpoint of the disk array but not from the viewpoint of the
host thereby reducing disk head movements. In addition, it outperforms the
prior work by adopting an asynchronous solution, improving performance
for fragmented files, eliminating readahead size restriction, and improving
disk parallelism. We implemented the proposed scheme and integrated it
with Linux. Our experiment shows that the solution significantly improved
the original Linux readahead framework when a storage server processes
multiple concurrent requests.

key words: storage, parallel I/O, prefetching, disk array

1. Introduction

The latency gap between main memory and spinning disks
has widened to 5-order-of magnitude [1]. To reduce the gap,
prefetching is widely used; disk prefetching (1) makes data
available in a cache before an application requests the data,
thereby overlapping processors and disk activities; and (2)
aggregates many small sequential requests into a larger one,
thereby reducing costly disk rotations and seeks.

Disk arrays are also used to mitigate the gap with
parallelism of multiple disks[2]. Many researchers have
designed prefetching schemes combined with disk arrays.
These schemes focus on disk parallelism and cache utiliza-
tion [3]-[6]. The present paper describes an unknown prob-
lem that arises if widely used prefetching schemes in prac-
tical operating systems are applied to disk arrays. The key
point of the problem is that block address space from the
viewpoint of the host is contiguous but from that of the disk
array is discontiguous. Due to this property, a single read
request that is laid across disks splits into multiple disk ac-
cesses. This gives disk parallelism for a single I/O but many
request splits for multiple concurrent I/Os degrade perfor-
mance by causing many disk accesses. File servers that pro-
cess concurrent file services are severely affected by request
splits if the prefetching ignores the striped data layout. This

Manuscript received June 5, 2012.
Manuscript revised August 20, 2012.
"The author is with the Dept. of Computer System Engineer-
ing, Jungwon University, Goesan-eup, 367-805 Korea.
a) E-mail: shbaek@jwu.ac.kr
DOI: 10.1587/transinf. E96.D.19

Sung Hoon BAEK'®, Member

is described in detail in Sect. 3.1.

Our prior article unveiled the aforementioned problem
for the first time but it has several weak points [7]. This
paper illustrates how the asynchronous sequential reada-
head scheme of Linux gets read requests laid across mul-
tiple disks and makes more disk accesses. In comparison
with our prior solution, the new scheme presented in this
paper was greatly improved with the following advantages:
It (1) prevents I/O requests by an asynchronous sequential
prefetching, namely, the latest Linux readahead, from mak-
ing more disk accesses in disk arrays; (2) has no negative
effect on file fragmentation; (3) eliminates the restriction of
the readahead size; and (4) includes an integrated solution to
prevent parallelism loss. We implemented the solutions and
integrated them in Linux 2.6.35. Our experiment shows that
the proposed approach significantly outperforms the prior
works.

2. Prior Works
2.1 Prefetching (readahead)

Many researchers have proposed various forms of history-
based prefetching, which analyze the past access history to
predict future accesses. Some of them preload data from
disks to flash memories or solid state disks (SSD) using the
usage pattern over time [8], [9]. Preloaded data in a flash
or a SSD can be served promptly with low latency, as op-
posed to disks. Mining and analyzing past history requires
high computing and memory resources, and thus some re-
searchers have proposed interfaces for applications to pro-
vide future access hints to kernel [10]. Some schemes load a
large amount of data to memory at once anticipating spatial
locality and then find and evict uselessly prefetched data at
a later time [4].

The most practical prefetching approach is sequential
prefetching, which is widely implemented in various op-
erating systems. The basic form of sequential prefetch-
ing is the one block lookahead (OBL) method, which initi-
ates a read for block b+1 when block b is requested from
an application. Many variations of OBL have been pro-
posed. Among these, p-block lookahead reads in advance
additional p blocks followed by the requested block. Other
schemes adaptively increase or decrease the prefetching size
p [31, [4], [11]-[14].

Recent sequential prefetching schemes are categorized
as synchronous sequential prefetching and asynchronous

Copyright © 2013 The Institute of Electronics, Information and Communication Engineers

20

prefetching. Synchronous methods double the prefetching
size p for every subsequent cache miss up to a predetermined
value as an application requests a file sequentially. Asyn-
chronous methods conduct prefetching from block b+p+1
before a cache miss (Prefetching blocks b to b+p is con-
ducted in the previous prefetching) when an application
hits block b+g, which is a preset fraction of the previous
prefetching group, where g is less than p.

2.2 Readahead in Linux

Prefetching provides numerous benefits to many applica-
tions because sequential accesses are frequent in general us-
ages. Sequential prefetching, known as readahead in Linux,
is designed to achieve two goals. (1) One goal is to improve
the efficiency of storage devices by converting lots of tiny
sequential reads into a large access, which significantly re-
duces costly disk rotations and seeks. As the request size
becomes larger, the costly disk head movement over the
total I/O time becomes accordingly smaller. (2) The other
goal is to overlap disk operations with processors by means
of asynchronous reads that request sequential blocks in ad-
vance before they are requested from an application. Hence
it hides I/O latency for applications [15], [16].

2.2.1 Basic Operations

The new readahead policy in Linux 2.6.23 is a kind of asyn-
chronous sequential prefetching. Figure 1 shows an example
of the Linux readahead framework. The variable size indi-
cates the read size for the current readahead. The variable
start indicates the currently requested page. The variable
async_size denotes the number of pages that are included
in the readahead operation except for the pages requested
from the application. Linux marks the page at start + size -
async_size with PG_readahead, which is used to trigger the
next asynchronous read when an application requests it in
the near future.

The read size, size, is incremented by four times if the
previous size is 1/16 or less of the maximum prefetching
size; otherwise, size doubles up to the maximum prefetching
size. If this request is the first for the file or the current
request is considered as random, an initial window is given
for the current readahead.

The significantly improved memory capacity and band-
width makes prefetching misses less relevant to the overall
performance. Hence, the new sequentiality detection policy
in Linux 2.6.23 or later versions changed from strict page-
after-page pattern matching to a more aggressive policy. In-
stead of the former policy, Linux allows sequential reads
mixed with random reads and concurrent multiple streams
in a single file descriptor [16].

To detect sequentiality with a small overhead, Linux
uses a readahead window, which is contained in each file de-
scriptor and consists of start, size, and async_size as shown
in Fig. 1. A single sequential read can be simply detected
by the readahead window. In most cases, if the current re-

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

Step 1 : A read request for the page offset 0 a read 4 pages

size = get_init_ra_size(size, max)
async_size = size — req_size

size D page already read
— - rea size (request size)
— re—async_size D page to be read
o[13
PG_readahead page
T—starl‘ %

Step 2 : A read request for the page offset 2
a read ahead 8 pages from offset 4 to 11

size = async_size = next_ra_size(size, max)
size, async_size

—» -—
Lo 1 34 5] o 7] 8] o011

1 start
offset (request position)

Step 3 : A read request for the page offset 4
a read ahead 16 pages from offset 12 to 27
size = async_size = next_ra_size(size, max)
size, async_size

3M s] o[7] 8] o[to[a1 dis[i171gfiopof122p3l4Rspel7

start
offset (request position)

Fig.1 The figure shows a general example of the Linux readahead
framework. The variable, size, indicates the read size for each readahead
operation. The variable, async_size, denotes the number of pages that are
included in the read operation except for the pages requested from an ap-
plication.

quest offset is the next page of the previous window (current
request offset = start + size), the request is treated as sequen-
tial. If a random seek is mixed with a sequential read, the
readahead window can be spoiled by the random seek, How-
ever, if a random seek intervenes between sequential reads,
Linux can quickly recover a sequential readahead window
by scanning forward in the page cache from the current page
to the first missing page.

2.2.2 An Operation Example

Figure 1 shows an example when an application sequen-
tially reads a file. In the first step, a Linux kernel function
get_init_ra_size() determines the initial window as 4 pages
if the request size is 2 pages and the maximum readahead
size, max, is 32 pages. The first page (page 2) that is not
requested by the application but included in this readahead
window is marked as PG_readahead. PG_readahead marks
are maintained in the page cache so they need no additional
memory. In the second step, when the application requests
the PG_readahead page (Page 2) that is already loaded in the
memory by the previous readahead, the readahead size dou-
bles as 8 pages, and 8 pages from offset 4 to 11 are read in
advance, where Page 4 is marked as PG_readahead. In the
third step, Linux asynchronously reads 16 pages from offset
12 to 27 with twice the size of the previous one when the
application hits the latest PG_readahead page (Page 4).

If the storage device is congested, readahead is trig-

BAEK: AN ASYNCHRONOUS STRIPING-AWARE READAHEAD FRAMEWORK

gered only by a cache miss but not by a cache hit on a
PG_readahead page. In other words, asynchronous reads are
not permitted if the storage device is congested. The Linux
kernel considers the storage device as congested when the
number of I/O requests that are waiting to be delivered to
the device in the request queue exceeds 7/8 of the maximum
number of requests that are allowed in the request queue.
The maximum number is 128 in general.

3. Prefetching Problem in Striped Arrays

Other studies on disk arrays have focused on reliabil-
ity [17]-[19] of redundant disk arrays of independent disks
(RAID), performance by devising variants [20]-[22] of
RAID, cache[6],[14],[23],[24], data deduplication [25],
[26], and storage virtualization [27]. The present paper
deals with the very significant problem that performance
degradation occurs if sequential prefetching is incorporated
with striped disk arrays such as RAID-0, RAID-5, RAID-6,
RAID-10, and RAID-50 that exploit striped data placement.

3.1 Request Split in Disk Arrays

The disk array is composed of multiple disks and serves
as a single virtual disk with a logical address space from
the viewpoint of the host. Data blocks are striped across
the member disks for requests to be evenly distributed over
disks. Figure 2 shows strips and stripes in a RAID-0 array
consisting of two disks. The minimum contiguous blocks in
each disk is called a strip, which is called a chunk in the soft-
ware RAID module of Linux (Multi-device). Strips from
each disk comprise a stripe.

Figure 2 shows that contiguous logical block addresses
are not contiguous in the physical components. In the phys-
ical layout, the logical block address 3 is adjacent to the
logical block address 8 but not to the logical block address
4, which is in the other member disk.

This characteristic can split a single request from the
host into multiple requests in the disk arrays. We call this re-
quest split. Request splits result in performance degradation
when the system serves many concurrent I/Os. Figure 2 (a)
shows an example of this problem. If the host requests two
concurrent read commands ranging from logical block ad-
dress 3 to 6 and 14 to 17, respectively, the blocks are divided
into four discontiguous regions and thus the disk array han-
dles four independent operations (two operations per disk).
Meanwhile, in Fig. 2 (b), there are only two discontiguous
regions for the two host requests because each request is
within a strip boundary.

In other words, even though the two different cases
shown in Fig.2 (a) and Fig. 2 (b) transfer the same number
of blocks, the case of Fig. 2 (a) requires four disk accesses
(rotations and seeks) but the case of Fig.2 (b) requires half
of that because each request is aligned in strips. Therefore,
aligned requests can reduce mechanical operations, which
are the major cause of disk latency.

If a request is placed across strip boundaries, it is di-

21

(a) Requests unaligned in strip
Concurrent two requests for blocks 3~6 and blocks 14~17
— four discontiguous 1/Os in the physical disks

virtual disk (RAID-0)

Opgiysjjcgl DNBZ 0000

— stripe
hysical :
lktilzzznen

strip

:8‘19‘

120 [21]22] 23]

(b) Requests aligned in strip
Concurrent two requests for blocks 4~7 and blocks 16~19
— two discontiguous I/Os in the physical disks

virtual disk (RAID-0)
WM‘IZ‘B‘M‘IS‘ZO‘Z] ‘22‘23‘)
L ‘

OphySical ‘0‘]‘2‘3‘8‘9‘10‘11 1
strip

disk 0

physical
disk 1

— stripe

Fig.2 (a) Two concurrent read requests ranging from logical block ad-
dress 3 to 6 and 14 to 17 are divided into four discontiguous regions and
thus the disk array handles four independent operations. (b) There are two
discontiguous regions for two host requests because each request is aligned
in strips

vided into two or more disk accesses. We call this a re-
quest split, which degrades performance with more disk ac-
cesses for concurrent I/Os that have many requests pending
in disks. However, current operating systems ignore request
splits.

A request split has no negative effects on a single
stream, for which a request split utilizes disk parallelism.
However, because many concurrent I/Os cause every disk
to be busy, barring the request split has a positive effect on
performance by reducing the total number of requests.

3.2 Request Split in the Linux Readahead

Figure 3 shows request splits caused by the Linux reada-
head. This example assumes as the following: without file
fragmentation, a file is sequentially stored from the logical
address 0 in a RAID-0 array with two disks, both the max-
imum readahead size, max, and the strip size are 16 pages,
and an application sequentially reads the file with the Linux
readahead framework.

Figure 3 omits Steps 1 and 2 because they are the same
as those in Fig. 1. In Step 3, the application requested Page
4 that is marked as PG _readahead, and then the request trig-
gers an asynchronous readahead for 16 pages from offset 12
to 27, which are split into two member disks. In Step 4, if
an application requests the latest PG_readahead page (Page
12), the next readahead for pages 28 to 43 is issued, but it is
also divided into two disks. The next of the next readahead

22

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

Step 3 : A read request for the page offset 4 > read-ahead 16 pages
from offset 12 to 27 = two physical requests for pages 12~15 in the
physical disk 0 and pages 16~27 in the physical disk 1
size = async_size = next_ra_size(size, max)

physical disk 0
O [o] 1[G 5] 6] 7] 8] o[to[1 1112 33 343536 3738 39,4041 42 4344 45 4647

—

physical disk 1 T offset (request pusition)ﬁs fart
O L)1 is]1ofofarp2p3pasae2r]28 20 30 31ja8 49 50 51 5253 5455 56 575859 6061 62 63

—

k— strip boundary

Step 4 : A read request for the page offset 12 > read-ahead 16 pages
from offset 28 to 43 > two physical requests for pages 28~31 in the
physical disk 1 and pages 32~43 in the physical disk 0
size = async_size = next_ra_size(size, max)
physical disk 0
O Lo 1D{GDA 5] 6] 7] 8] ofto[1 11314 1s[32[33[34spep7pspofuofaifazfasfaa as a6 47
T

——

physical disk 1 L offseq (request position)

O ‘16‘17‘18‘19‘20|2I‘22‘23‘24‘25‘26‘27%29‘30‘31 48 49/50 51152:53:54/55 56 57,58 59:60 61162 63
7

Sstart L strip boundary

Step 3 : A read request for the page offset 4 > read-ahead 4 pages
from offset 12 to 15
intact_size = next_ra_size(intact_size, max)
size = async_size = fragment_size
fragment_size—=
physical disk 0

intact_size

O ‘ o‘ 1&{3% s[o] 7[s ofto[u]ydiaf14153233 343536 37 383940414243 44145 4647
~

Sstart : s
physical disk 1 I offset (request %osmon)

16:1718{192021122123 242526 27:2829:303148 4950 51 5215354 5556:57 58:59:60:61 6263}

k— strip boundary

Step 4: A read request for the page offset 12 - read-ahead 16 pages
from offset 16 to 31

size = async_size = intact_size =next _ra_size(intact_size, max)
physical disk 0

)‘ 0‘ 1&{3% s[o] 7] s o[uo[u]ydi3141s3233 3435 36,3738 3940414243 4445 4647
7~

—

physical disk 1

Eoffset|(request position)
17)18[19po]1f2223[a4pslael7psaof3o3 48 49 50 51 5253 54 5556575859 6061 6263
&

S
f(—
—

start size strip boundary

Step 5: A read request for the page offset 28 - read-ahead 16 pages
from offset 44 to 59 = two physical requests for pages 44~47 in the
physical disk 0 and pages 48~59 in the physical disk 1

size = async_size = next_ra_size(size, max)

physical disk 0
O ‘ o‘ 1%3% s[o] 7] 8] oto]u]y13]141s 32‘33‘34‘35‘36|37‘38‘39‘40‘41‘42‘43%45‘46‘47)
\
physical disk 1 L start

o
O (1718 15]01p2p3paoslad2rpdfao]so]s 1 fasasfsofs [s2[safs4lss]ses7ssfsslso 61 62 63
Za

—

offset (request position) —/ k— strip boundary

Fig.3 Readahead windows are unaligned in the original Linux reada-
head framework. Every readahead window is split into two disks.

will also be split into two disk operations as shown in Step
5.

The Linux readahead framework treats a disk array as
a single disk ignoring that contiguous logical address space
is discontiguous from the viewpoint of the physical address
space. Hence, the Linux readahead framework causes re-
quest splits and degrades the performance of disk arrays.

4. Solution: Striping-Aware Readahead
4.1 Basic SARA: Asynchronous Approach

The new readahead policies in Linux 2.6.23 adopted an
asynchronous approach instead of the synchronous one of
the previous version. Hence, we newly designed and im-
plemented SARA as an asynchronous readahead to be inte-
grated with the new Linux readahead framework. Figure 4
shows how to align prefetching requests in strips by shrink-
ing a prefetching request. SARA inspects the physical loca-
tions for readahead pages for every readahead to investigate
whether a readahead lies across two or more strips,. For ev-
ery readahead that is unaligned in a strip, SARA modifies
the readahead size to prevent request splits.

Steps 1 and 2 are omitted in Fig.4 because they are

Step 5: A read request for the page offset 16 > read-ahead 16 pages
from offset 32 to 47

size = async_size = intact_size =next _ra_size(intact_size, max)
size

physical disk 0 n
O ‘ o‘ 1%3% s[o 7[s[ofuo[ui]pd13[141 33‘34‘35‘36‘37‘38‘39‘40‘11‘42‘43‘44‘45‘46‘47)
physical disk 1 N = start

Ii7is]19pof21]22p3bas]ae27as]2ofs03 1f48.40 50 515253 54 55 5657 5859 60 61 6263
s

—

L offset (request position) k— strip boundary

Fig.4 The basic SARA prevents request splits by shrinking the reada-
head window.

the same as those in Fig. 1. In Step 3, when an application
requests Page 4 marked as PG_readahead, SARA performs
the original readahead framework to make an original reada-
head window (Pages 12~27) when an application requests
the latest PG_readahead page (Page 4). SARA (i) asks the
file system where the physical blocks corresponding to the
readahead window are, (ii) detects if the original readahead
window (Pages 12~27) is fragmented across two disks (see
Step 3 of Fig.3), (iii) inspects which part of the physical
blocks for the readahead window are in a single strip, and
(iv) shrinks the readahead window as Pages 12~15 to be
dedicated to a single strip. Namely, the original readahead
window size, intact_size, was 16 in Step 3, and SARA re-
duces the readahead window size, size, to 4, where size does
not shrink below the request size, req_size.

In Step 4, when the application requests Page 12
marked as PG_readahead, a readahead for Pages 16 to 31
is issued, where the readahead size, size, is calculated from
intact_size of the previous step instead of the previous size.
This readahead window is automatically aligned in a strip,
thanks to the modification of the previous step. Variable
async_size is the amount of asynchronous prefetching. It is
equal to size in most cases.

The current prefetching size doubles or quadruples

BAEK: AN ASYNCHRONOUS STRIPING-AWARE READAHEAD FRAMEWORK

Step 3 : A read request for the page offset 4 > read-ahead 20 pages
from offset 12 to 31

intact_size = next_ra_size(intact_size, max)

size = async_size = fragment_size + intact_size

physical disk 0 - fragment_size
O‘ of 1D{3M 5‘ 6‘ 7‘ x‘ 9‘10‘11 13]14]153233 3435363738394041424344454647)
tstart

physical disk 1 offset (request position)

16[1718[19pof122f23[242slea7psasf3031]48 40 50 51 52 53 5455 56 5758 59 6061 62 63)

™
(~—

re—intact_size———>

Step 4 : A read request for the page offset 12 > read-ahead 16 pages
from offset 32 to 47

size = async_size = intact_size = next_ra_size(intact_size, max)

physical disk 0 « s1z¢ .

O‘ o 1[G 5] o] 7] 8] of1o11)di3 141 [5aa[sapspeprpszoaofarfazfufuafaslacler
%N 7

= —
[Estart groet (request position)

Na—

physical disk 1

O (1718192021 p2lo3palasfaelrseosos1fas 4950 51 5253 5455 56 575859 6061 62 63)

Fig.5 The extended SARA prevents request splits by extending the
readahead size, but the end of the readahead window is aligned in a strip.

from the previous prefetching up to the maximum size
(max). If the previous prefetching had been shrunk to be
aligned in strips, then the current one should not be calcu-
lated from the previous reduced one but from the unchanged
one (intact_size). The variable intact_size is the unmodified
readahead size before being shrunk.

In SARA, the current intact_size is calculated from
the previous intact_size that was determined in the previ-
ous step. The current readahead size, size, becomes equal to
the current intact_size if there is no request split. Otherwise,
size shrink from the current intact_size to fit the readahead
window to a single strip.

4.2 Extended SARA

4.2.1 File Fragmentation

The basic SARA shrinking the readahead size degrades the
performance when files are too fragmented in the file system
level. In the worst case where all blocks of a file are frag-
mented at the file system level, size never becomes greater
than req_size in the basic SARA even though an application
sequentially reads the file.

The basic SARA restricts the window size within the
file-fragmented region because fragmented blocks are not
aligned in strips, thereby producing many small readaheads.
The readahead window that is shrunk by file fragmentation
can be resolved by extending the readahead size rather than
shrink it for the next readahead to be aligned in strips as
shown in Fig. 5. The extending method prevents the reada-
head size, size, from being smaller than the unmodified
readahead size, intact_size.

Figure 5 exemplifies the extending method, where a file
is not fragmented. In Step 3 of Fig. 5, first, SARA asks the
file system where the physical blocks corresponding to the

23

readahead window are located. Second, it inspects whether
all of the physical blocks for the readahead window are in a
single strip. If there is a discontinuous point in the phys-
ical blocks, it finds, fragment_size, which is the greatest
readahead size that lies only in a single strip. The resolved
readahead size, size, is then extended from intact_size to (in-
tact_size + fragment_size). After this resolved readahead,
we can expect that the next readahead will be aligned in a
strip without changing size, as shown in Step 4 of Fig. 5.

The extending method works well even if a file is
severely fragmented. It bars size from being smaller than
intact_size, because size is determined as ‘intact_size + frag-
ment_size’; hence it prevents not only request splits but also
small readahead regions caused by file fragmentations.

The Linux readahead framework is in the memory
manager at the file system level, where we can inspect which
block the logical offset in a file corresponds to using the
argument mapping that represents the address space of the
file. A function, mapping->a_pos->bmap(mapping, logi-
cal_sector_in_file), returns the physical sector address for the
logical sector of the file.

4.2.2 To Prevent Readahead Size Restriction

If the main memory is large enough to avoid thrashing, a
large max improves performance. However, the basic SARA
prevents the readahead size, size, from exceeding the strip
size even though we increase the maximum readahead size,
max. Meanwhile, the extended approach shown in Fig. 5 al-
lows size to be extended up to ‘max + strip size’, because
the readahead size is determined by “fragmented_size + in-
tact_size”, where intact_size is the unmodified readahead
size that can increase up to max and fragmented_size is less
than or equal to the strip size.

If max is much greater than the stripe size and the main
memory is large enough, the performance can be improved.
The basic SARA restricts the readahead size within the strip
size, thus limiting the performance even though the suffi-
cient main memory are provided, meanwhile the extended
operation allows administrators to increase max above the
strip size.

4.2.3 Disk Parallelism for a Low Degree of Concurrency

SARA solves the problem caused by request splits when
there are many concurrent reads. However, if the degree of
concurrency is very low (the number of concurrent I/Os is
less than a predetermined threshold), small readahead win-
dows aligned in strips make most of the member disks in a
disk array idle. For example, if there is only a single read,
only one of the member disks serves but the others become
idle.

Because a low degree of concurrent I/O does not suffer
from lack of memory, a large readahead size that covers all
member disks of a disk array utilizes disk parallelism and
provides better performance than the strip-bounded reada-
head.

24

max (the maximum

readahead size)

striping_aware_read_ahead_strip_kb x A

striping_aware_read_ahead_factor
(>stripe size)

read_ahead kb —— T the degree of

. concurrency
striping_aware_read
_ahead_threshold

Fig.6 For a low degree of concurrency, the extended SARA changes
max to a greater value for disk parallelism. If the degree of concurrency
measured by the number of pending I/O per disk is smaller than the thresh-
old value (striping_aware_read_ahead_-threshold), max is chosen as a large
value that is much greater than the stripe size in general.

We need a consolidated solution in the readahead
framework without relying on the unrelated layer. We pro-
pose a solution that detects the exact degree of concurrency
and solves the dilemma in the SARA framework without
an unrelated layer. Figure 6 shows the proposed solution,
SARA, dynamically changes max based on the degree of
concurrency, which is measured by the number of pending
I/Os that are waiting to be requested to disks or being served
in disks.

At the moment when the number of pending I/Os per
disk is greater than the concurrency threshold value, the
degree of concurrency is considered to be high. Other-
wise, we consider it as low. The concurrency threshold
value is exposed to the sys file system as /sys/block/(device
name)/queue/striping_-aware_read_ahead_threshold.

When a high degree of concurrency is detected in real
time, SARA selects a small max, which is chosen as the
strip size in general cases. For a low degree of concurrency,
SARA selects a large max that is greater than the stripe size.
The large max is twice the number of member disks in de-
fault.

SARA uses a large max when the number of pending
1/Os drops down for a very short time. When the number of
I/Os soars and then goes down abruptly, SARA uses a small
max for a short time, but this is an undesired operation. To
prevent frequent changes of max depending on the fluctuat-
ing number of pending I/Os, we use an exponential moving
average of the degree of concurrency by the following oper-
ation that is executed whenever a prefetching is demanded.

D—CxD+(1-C)xN

where, D is the smoothed degree of concurrency, N is the
current number of pending I/Os, and C is a constant that is
greater than zero and less than one. We chose C as 0.90 in
our experiment.

5. Experimental Results

We implemented SARA in Linux kernel 2.6.35. The sys-
tem in the experiments uses three SATA-II disks (the model
name is WD10EVVS), which are configured as a RAID-
0 array using the software RAID in Linux, namely Multi-

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

=
o
[}

—&— RA (max=strip)
—F— SARA Ext. (thr.=4)

eestes RA (max=stripe*2)
= (= SARA basic
— X SARA Ext. (thr.=32)

Bandwidth [MB/s]

10

T T T T
1 2 4 8 16 32 64 128 256 512
(a) The number of streams

-
o
S

—5— SARAEXL. (thr.=4) +++Ae+ SARA Ext. (thr.=8)
—>=— SARA Ext. (thr.=16) —*— SARA Ext. (thr.=32)

- © - SARAExt. (thr.=64)
10 : , " - - : : : - ,
1 2 4 8 16 32 64 128 256 512

(b) The number of streams

Bandwidth [MB/s]

Fig.7 The figure shows the performance for multiple streams with 2 GiB
of main memory and 256 KiB strip size. (a) ‘SARA basic’ and ‘RA
(max=strip)’ consume the same memory but ‘SARA basic’ outperforms
‘RA (max=strip)’. ‘RA (max=stripe*2)’ experiences thrashing at 512
streams but ‘SARA ext. (thr.=32)’ outperforms the others in a wide range
of concurrency. (b) Whether the degree of concurrency is high or low de-
pends on the concurrency threshold value. A high degree of concurrency
uses the small max that is assigned by striping_aware_read_ahead kb in the
sys file system.

device. The kernel was compiled for an x86_64 architecture
and hosted an ext4 file system and a completely-fair-queuing
disk scheduler.

Our scheme, SARA, is integrated with Linux. Using
sys file system, we can turned on or off SARA. SARA can
be manually turn off by assigning 0 to ‘/sys/block/(device
name)/queue/striping_aware_read_ahead_strip_kb’, which in-
dicates the strip size of the device. The sys fs interface,
‘read_ahead kb’ and ‘striping_aware_read_ahead_strip_kb X
striping_aware _read_ahead_factor’, specify max and a large
max for a high degree of concurrency, respectively.

Throughout the experiments, we compare the orig-
inal readahead (RA) feature of Linux with the striping-
aware readahead (SARA). ‘RA (max=stripe*2)’ and ‘RA
(max=strip)’ in the figures indicate RA with the maximum
readahead size max of twice the stripe size and with max
of the strip size, respectively. ‘SARA basic’ corresponds to
the basic SARA. ‘SARA Ext. (thr.=4)’ and ‘SARA Ext.
(thr.=32)’ denotes for the extended SARA with the con-
currency threshold of 4 and 32, respectively. The maxi-
mum readahead size max is equal to the strip size if there
is no explicit indication. The software RAID (Multi-device)
uses twice the stripe size of max in default but the extended
SARA prefers a strip size of max for a high degree of con-
currency.

Figure 7 compares the performance when multiple se-
quential streams are requested to a single disk array. This
experiment evaluates a video-on-demand server. ‘SARA
basic’ outperforms ‘RA (max=strip)’; both have the same

BAEK: AN ASYNCHRONOUS STRIPING-AWARE READAHEAD FRAMEWORK

ww: 512MiB
b N o
N oo

—_
=)
S

eotee RA (max=stripe*2)
+++As+ RA (max=strip)
== SARA basic
—>— SARA Ext. (thr=4)
IFE‘_ SARA Ext. (thr=16) ..
1 2 4 8 16 32 64 128 256

(a) The number of streams

Bandwidth [MB/s|

Memory: 1GiB

o
S

Bandwidth [MB/s]

eeeee RA (max=stripe*2) +++As+ RA (max=strip)

= = SARA basic —>— SARA Ext. (thr=4)
=== SARA Ext. (thr=16)

10 T T T T T T T r T)
1 2 4 8 16 32 64 128 256 512

(b) The number of streams

Fig.8 Performance for multiple streaming with various memory sizes.
‘RA (max=stripe*2)’ causes thrashing because it requires tremendous
memory in comparison with the others. ‘SARA basic’ outperforms ‘RA
(max=strip)’ even though they consume the same amount of memory.
‘SARA ext(thr.=16)" shows the best performance in a wide range of mem-
ory sizes.

max, but SARA prevents request splits. ‘SARA ext.(thr.=4)’
outperforms ‘SARA basic’ at 2 to 8 streams because, with
a low degree of concurrency, small max by SARA basic
and RA does not utilizes all disks in parallel as explained
in Sect.4.2.3. SARA ext. increases max to twice the stripe
size for a small number of streams. ‘RA (max=stripe*2)’
has nearly the same curve as ‘SARA ext.(thr.=32)’ but its
performance drops at 512 streams due to a lack of memory
unlike SARA ext. Figure 7 shows that SARA ext. is superior
to the others for various cases.

Figure 7 (b) shows the performance by varying the con-
currency threshold value, which determines how many con-
currency I/Os are required to decrease max to a small value
from a large value. In this experiment, the large max is
1.5MiB, which is twice the stripe size and the small max
is 256 KiB, which is equal to the strip size. A greater max
could retain high performance until suffering from lack of
memory but it might cause thrashing, because more streams
consume much readahead memory. For example, 1024
streams need 256 MiB of readahead memory with 256 KiB
of max and 1.5 GiB of readahead memory with 1.5 MiB of
max, respectively.

A large max could lend a good performance as long as
sufficient memory is provided. However, with a small mem-
ory, prefetched data could be evicted before they are used
in the near future due to a lack of memory, and they then
must be read from disks again. Such performance degrada-
tion is called thrashing. Figure 8 shows how the memory
size influences each scheme.

As shown in Fig. 8 (a), ‘RA(max=stripe*2)’, which
has the largest max shows significantly poor performance

25
max=32KiB +eede e+ RA (max=32KiB)
- % strip=128KiB ==+ SARA basic
% 100
DEQ \ —©— SARA ext. (tlr=8)
= \‘
=
z \
: \
g PR EL St
= R D i L T T T S o
). O \% B e T A
10 : A
1 2 4 8 16 32 64 128 256 512
(a) The number of streams
malosiip e RA (max=128KiB)
—_ \‘ strip=128KiB = %=+SARA basic
=
m 100 % —6— SARA ext. (thr=8)
= Y
= Y
k= 3
= ¥-RG STTTTRRST
z e A A PP I ¢
g ..‘X’.
&2 oS
10 ! | | ! : : .
1 2 4 8 16 32 64 128 256 512
(b) The number of streams
max=512KiB
g 100 strip=128KiB
=)
PR VS — TR D0 =
= Yee=k T Tk
=
=
S
aa] sespeesRA (max=512KiB) =<k= SARA basic
—6— SARA ext. (thr=8)
10 . : : . . . : : : :
1 2 4 8 16 32 64 128 256 512
(c) The number of streams
Fig.9 Streaming performance by varying the maximum readahead size

max. The maximum readahead size in ‘SARA basic’ cannot exceed the
strip size but SARA ext. can; thus ‘SARA ext.’ can benefit from a large
max that is greater than the strip size given that enough memory is provided.
The large max in ‘SARA ext.” was set to twice the stripe size. The small
max in ‘SARA ext.” is equal to the indicated max for each subfigure. This
experiment was performed with a strip size of 128 KiB and main memory
of 1 GiB.

due to thrashing with 512 MiB of main memory. It ex-
periences thrashing for 256 or more streams with 1 GiB
of memory. ‘SARA ext.(thr.=16)" experiences thrashing
for 32 and 64 streams in Fig. 8 (a) because it uses a large
max (twice stripe size) for 64 or less streams. ‘SARA
ext.(thr.=4)’ does not experience thrashing because it uses
the large max for a smaller number of streams than ‘SARA
ext.(thr.=16)’. ‘SARA basic’ and ‘RA (max=strip)’ con-
sume the same memory but ‘SARA basic’ always outper-
forms ‘RA (max=strip)’ in a wide range of memory.

The maximum readahead size in ‘SARA basic’ cannot
exceed the strip size but ‘SARA ext.’ can, thus ‘SARA ext.’
benefits from a large max that is greater than the strip size.
Figure 9 shows ‘SARA ext.’ is superior to ‘SARA basic’ for
a wide range of max. ‘SARA basic’ outperforms RA due to
request split removal if max is equal to or less than the strip
size as shown in Fig. 9 (a) and Fig. 9 (b). Otherwise, ‘SARA
basic’ is inferior to both ‘SARA ext.” and RA. A small max
that is restricted by ‘SARA basic’ can benefit when required
readahead memory exceeds the physical memory, as in the

26
100 - -
90 | request size: 32 KiB
g g0 - avg. file size: 4MiB /Q—_'@
g TR _--X
S o e
£ 5 iR
=
E 40 el
e 30 ?@ééi seAc RA -
S 20 1 =%= SARA basic -
10 —6—SARA ext. (thr=16) -~
0 T T T T T T T)
32 64 128 256 512 1024 2048 4096

—
o
=

The maximum readahead size, max [KiB]

[
=]

N
=]

()
=]

«eopee RA -
== SARA basic
—6—SARA ext. (thr=16)

| max: 256 KiB
+ avg. file size: 4MiB

Bandwidth [MB/s]

5

8 16 32 64 128 256 512 1024

(b) request size [KiB]
70 eeepee RA
7 0 —Q - %= SARA basic
§ 50 —6—SARA ext. (thr=16)
=40
=}
o
T 20 e D)
& o maxI28KB A

request size: 32KiB

=]

0.5 1 2 4 8 16 32
file size [MiB]

—
o
~

100

...... A" max: 256 KiB
avg. file size: 16MiB -
request size: 8KiB

=) ®
k= =]

Bandwidth [MB/s]
&
B
B

Breeen, &r' A «efee RA
20 ’,’ == SARA basic
X —e—SARA ext. (thr.= 16)

=]

64 128 256 512 1024 2048 4096 8192 16384
(d) strip size [KiB]

Fig.10 File benchmark simulates a file server by varying (a) the maxi-
mum readahead size max, (b) the request size, (c) the average file size, and
(d) the strip size. This experiment uses 256 KiB of strip size, 2 GiB of main
memory, 256 KiB of max and 32 threads by default. ‘SARA ext.” outper-
forms both ‘SARA basic’ and RA in a variety of configurations. The small
max of ‘SARA ext.” is the same as the specified max for each figure. The
marge max ‘SARA ext.” is twice the stripe size.

case of 512 streams in Fig. 9 (c). However, ‘SARA ext.’ is
superior to ‘SARA basic’ in a wide range of max.

Figure 10 shows a more realistic benchmark for file
servers using thea benchmark FileBench 1.4.8, which com-
pares RA, ‘SARA basic’, and ‘SARA ext” with a ‘file
server’ workload personality with 64 threads and 2000 files
of 4MiB on average. This experiment simulates a read-
intensive workload, high-performance computing workload,
and single-producer many consumer workload of cloud stor-
age servers [28], where we removed write operations from
the workload because we only need read operations to com-
pare them.

Figure 10(a) shows the bandwidth of the system by

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

27

25

23

21
19

Bandwidth [MB/s]

17

15

SARA basic SARA ext. (thr.=8)

Fig.11 The extended SARA is better than the basic SARA in an aged
file system. This experiment is performed with 64 threads using FileBench.
The strip size and max are 256 KiB.

varying the maximum prefetching size, max, from 32 KiB to
4 MiB with 256 KiB strip size. When max is greater than the
strip size, ‘SARA basic’ is inferior to the others. The perfor-
mance gap between RA and ‘SARA ext.” is noticeable when
max is 128 KiB or greater in Fig. 10 (a). SARA outperforms
RA by 32% when max is 128 KiB. Even though the actual
readahead size does not exceed the strip size (256 KiB) in
‘SARA basic’, the max of 1024 KiB shows better perfor-
mance than the max of 512KiB in ‘SARA basic’ because
max affects the initial readahead size.

Figure 10 (b) shows the effect on the request size. If the
request is equal to the strip size, RA rarely exhibits request
splits as long as files are aligned in strips. In Fig. 10 (b),
when the request size is 256 KiB, which is equal to the strip
size, RA shows the same performance as SARA. However,
SARA outperforms RA by about 20% with a smaller request
size than the strip size. If the request size is much greater
than the strip size, there is no difference between RA and
SARA. The greater the request size is, the less the request
splits appear.

Figure 10 (c) shows the performance by varying the av-
erage file size. Although SARA improves the performance
in a wide range of file size, larger files tend to give SARA
more benefits. When the average file size is 32 MiB and
0.5MiB, SARA improves performance by 70% and 20%,
respectively.

Figure 10(d) shows the performance by varying the
strip size. If the strip size is much greater than max, RA
employs less request splits. However, RA is never superior
to SARA ext. in a wide range of strip size. In addition, to
fully utilize all disks in parallel for a low degree of concur-
rency, a huge strip size requires a huge readahead size that
degrees performance for small I/Os.

Figure 11 shows that the extended SARA is better than
the basic SARA in an aged file system. To artificially age
a file system in this experiment, we repeated creation and
deletion of files. The average file size is 256 KB. After aging
the file system, we ran the benchmark so that prefetching
performs with fragmented files.

6. Conclusion

By integrating the proposed scheme with Linux, we ana-

BAEK: AN ASYNCHRONOUS STRIPING-AWARE READAHEAD FRAMEWORK

lyzed that a readahead region across multiple disks of a
disk array doubles disk accesses. We call this problem re-
quest split. The extended SARA changes the readahead re-
gions to be extended and aligned in strips so that request
splits are prevented. In addition, it controls the maximum
readahead size based on the number of pending I/Os to im-
prove disk parallelism for a low degree of concurrency. The
striping-aware readahead feature is beneficial for file servers
or streaming servers, where most I/Os are sequential with
concurrent I/Os.

The basic string-aware readahead scheme outperforms
the original readahead given that both consume the same
memory. The extended SARA is superior to the basic SARA
for various numbers of streams and a wide range of the max-
imum readahead sizes, file sizes, request size, and mem-
ory sizes. Also, the extended SARA outperforms the basic
SARA in an aged file system.

The proposed scheme was implemented in Linux 2.6
and the experiments were performed in a real system. The
suggested scheme can be easily configured or disabled for
compatibility by the sys file system interface, is applica-
ble to a variety of realistic scenarios, and provides signifi-
cant performance improvement in cloud storage servers and
streaming servers.

References

[1] J. He, J. Bennett, and A. Snavely, “Dash-io: an empirical study of
flash-based- io for HPC,” Proc. 2010 TeraGrid Conference, Aug.
2010.

[2] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson,
“RAID: High-performance, reliable secondary storage,” ACM Com-
puting Surveys, vol.26, no.2, pp.145-185, June 1994.

[3] B.S. Gill and L.A.D. Bathen, “AMP: Adaptive multi-stream
prefetching in a shared cache,” Proc. 5th USENIX Conf. on File and
Storage Technologies, pp.185-198, 2007.

[4] B.S. Gill and D.S. Modha, “SARC: Sequential prefetching in adap-
tive replacement cache,” Proc. USENIX Annual Technical Confer-
ence, pp.293-308, 2005.

[5] S.H. Lim, Y.W. Jeong, and K.H. Park, “Interactive media server
with media synchronized raid storage system (nossdav),” Proc. Int’l
Workshop on Network and Operating System Support for Digital
Audio Video, pp.177-182, June 2005.

[6] S.H. Baek and K.H. Park, “Prefetching with adaptive cache culling
for striped disk arrays,” Proc. 2008 USENIX Ann. Technical Conf.,
pp-363-376, June 2008.

[7]1 S.H. Baek and K.H. Park, “Striping-aware sequential prefetching
for independency and parallelism in disk arrays with concurrent ac-
cesses,” IEEE Trans. Comput., vol.58, no.8, pp.1146-1152, Aug.
2009.

[8] Microsoft, “Windows pc accelerators,” Oct. 2010. http://www.
microsoft.com/whdc/system/sysperf/perfaccel.mspx.

[9] Y. Joo, J. Ryu, S. Park, and K. Shin, “FAST: Quick application
launch on solid-state drives,” Proc. USENIX Conf. File and Storage
Technologies, Feb. 2011.

[10] S. Bhattacharya, J. Tran, M. Sullivan, and C. Mason, “Linux AIO
performance and robustness for enterprise workloads,” Proc. Linux
Symposium, pp.63-78, July 2004.

[11] A.J. Smith, “Cache memories,” ACM Computing Surveys, vol.14,
no.3, pp.473-530, 1982.

[12] M.K. Dahlgren, M. Dubois, and P. Stenstom, “Fixed and adaptive se-
quential prefetching in shared memory multiprocessors,” Proc. Int’l

27

Conf. on Parallel Processing, pp.56—63, 1993.

[13] M.K. Tcheum, H. Yoon, and S.R. Maeng, “An adaptive sequential
prefetching scheme in shared-memory multiprocessors,” Proc. Int’]
Conf. on Parallel Processing, pp.306-313, 1997.

[14] M. Li, E. Varki, S. Bhatia, and A. Merchant, “TaP: Table-based
prefetching for storage caches,” Proc. USENIX Conf. File and Stor-
age Technologies, pp.81-96, Feb. 2008.

[15] F. Wu, H. Xi, and C. Xu, “On the design of a new linux readahead
framework,” ACM SIGOPS Operating Systems Review, vol.42,
no.5, pp.75-84, July 2008.

[16] Y. Wiseman and S. Jiang, Advanced Operating Systems and Kernel
Applications, ch. Sequential File Prefetching in Linux, pp.218-261,
Hershey, 2010.

[17] J.S. Plank, “The raid-6 liberation codes,” Proc. USENIX Conf. File
and Storage Technologies, pp.97-110, Feb. 2008.

[18] A. Krioukpv, L.N. Bairavasundaram, G.R. Goodson, and K. Srini-
vasan, “Parity lost and parity regained,” Proc. USENIX Conf. File
and Storage Technologies, pp.127-141, Feb. 2008.

[19] A. Thomasian, G. Gu, and C. Han, “Performance of two-disk
failure-tolerant disk arrays,” IEEE Trans. Comput., vol.56, no.6,
pp-799-814, June 2007.

[20] S.H. Kim, H. Zhu, and R. Zimmermann, ‘“Zoned-RAID,” ACM
Trans. Storage, vol.3, no.1, pp.1-17, March 2007.

[21] J. Bonwick, “RAID-Z,” Nov. 2005. https://blogs.sun.com/bonwick/
entry/raid_z.

[22] W. Liu and J. Elerath, “Using netapp raid-dp in exchange server
2007 storage designs,” Tech. Rep. TR-3574, Network Appliance,
2007.

[23] S. Wan, Q. Cao, J. Huang, X.L.S. Li, S. Zhan, and L. Yu, “Victim
disk first: An asymmetric cache to boost the performance of disk
arrays under faulty condition,” Proc. 2011 USENIX Ann. Technical
Conf., June 2011.

[24] S.H. Baek and K.H. Park, “Maxtrix-stripe-cache-based contiguity
transform for fragmented writes in RAID-5,” IEEE Trans. Comput.,
vol.56, no.8, pp.1040-1054, Aug. 2007.

[25] F. Guo and P. Efstathopoulos, “Building a high performance dedu-
plication system,” Proc. 2011 USENIX Ann. Technical Conf., June
2011.

[26] D.T. Meyer and W.J. Bolosky, “A study of practical deduplication,”
Proc. USENIX Conf. File and Storage Technologies, Feb. 2011.

[27] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai, “The design
and evolution of live storage migration in VMware ESX,” Proc. 2011
USENIX Ann. Technical Conf., June 2011.

[28] M. Maxey, “Real-world use cases: Cloud storage workloads,” Cloud
Computing Journal, Jan. 2009.

Sung Hoon Baek received the BS de-
gree in electronics engineering from Kyung-
pook National University, Korea in 1997, the
MS degree in electrical engineering from the
Korea Advanced Institute of Science and Tech-

:_.. nology (KAIST) in 1999, and the PhD degree
(" \ from KAIST in 2008. He worked for Elec-

= tronics Telecommunication Research Institution

S\ ‘ (ETRI) as an R&D staff from 1999 to 2005 and
\ ! Samsung Eletronics as a senior engineer from

2008 to 2011. He is currently with Jungwon
University as an assistant professor. His research interests include storage
systems, operating system, nonvolatile memory, and embedded systems.

