
2036
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

LETTER Special Section on Dependable Computing

Improving Robustness via Disjunctive Statements in Imperative
Programming

Keehang KWON†, Sungwoo HUR†a), Nonmembers, and Mi-Young PARK†, Member

SUMMARY To deal with failures as simply as possible, we propose
a new foundation for the core (untyped) C++, which is based on a new
logic called task logic or imperative logic. We then introduce a sequential-
disjunctive statement of the form S : R. This statement has the following
semantics: execute S and R sequentially. It is considered a success if at
least one of S , R is a success. This statement is useful for dealing with
inessential errors without explicitly catching them.
key words: imperative programming, exceptions, task logic, failures

1. Introduction

Imperative programming is an important modern program-
ming paradigm. Successful languages in this paradigm in-
cludes C++ and Java. Despite much attractiveness, imper-
ative languages have traditionally lacked fundamental no-
tion of success/failure for indicating whether a statement can
be successfully completed or not. Lacking such a notion,
imperative programming relies on nonlogical, awkward de-
vices such as exception handling to deal with failures. One
major problem with exception handling is that the resulting
language becomes complicated and not easy to use.

To deal with failures as simply as possible, we propose
a new foundation for the core (untyped) C++, which is based
on a new logic called task logic [1], [2] or imperative logic.
The task logic expands the traditional t/f (true/false) so as to
include T/F (success/failure). The task logic interprets each
statement as T/F, depending on whether it can be success-
fully completed or not. All the operators of the core C++

can be interpreted in this way. For example, S ; R can be in-
terpreted as sequential conjunction of S and R, as shown in
Definition 1. Furthermore, an exception can be interpreted
as failure.

The premature exit of a statement due to failures can
be problematic. To avoid this, we adopt “all-or-nothing”
semantics discussed in [3] to guarantee atomicity. Thus, if
a failure occurs in the couse of executing a statement, we
assume that the machine rolls back partial updates.

The use of task logic makes it possible to extend this
“logic-based” C++ with other new and useful logical oper-
ations, thus allowing versatile executions of programs. To
improve robustness, it is useful to divide errors into essential
errors and inessential errors. Essential errors are required to
be caught by an exception handler, while inessential errors

Manuscript received December 28, 2012.
Manuscript revised April 11, 2013.
†The authors are with Computer Eng., DongA Univ., Korea.

a) E-mail: swhur@dau.ac.kr (Corresponding author)
DOI: 10.1587/transinf.E96.D.2036

are non-serious errors that can be ignored.
We list some basic design guidelines for handling

inessential errors.

• It is desirable to spend no time and no efforts dealing
with inessential errors.
• It is desirable to erase all the inessential errors raised

so that none of these exceptions can have further inter-
actions with the environment.

To deal with inessential errors, we introduce a
sequential-disjunctive statement of the form S : R. Here, to
avoid complications, we assume that S and R are indepen-
dent of each other, i.e., no variables appear in both S and R.
This statement has the following semantics: execute S and
R sequentially. It is considered a success if at least one of
S , R is a success. This statement generates less exceptions,
is easier to succeed, and hence is more robust than other
statements such as S ; R. This statement has the effect of re-
ducing the number of exceptions to be dealt with without
catching them. It is useful for dealing with inessential errors
that can be ignored. For example, the statement S : true has
the effect of both ignoring and erasing all the possible ex-
ceptions raised in the course of executing S so that none of
these exceptions can have further interactions with the en-
vironment. Thus, the statement S : true satisfies the above
design guidelines. There is another advantage: this state-
ment can make expressions (and, hence, executions) more
versatile and often simpler via logical equivalence. For ex-
ample, the execution S ; (R : true) can be converted to a
simpler S : R, assuming executing S is a success and S , R
are independent of each other.

To deal with essential errors, we introduce a choice-
disjunctive statement of the form S else R which is a logical
version of the try S catch R statement. This statement has
the following semantics: execute S . If it is a success, then
do nothing. If it fails, execute its exception handler R.

The remainder of this paper is structured as follows.
We describe the new language C++L in the next section. In
Sect. 3, we present some examples. Section 4 concludes the
paper.

2. The Language

The language is a subset of the core (untyped) C++ with
some extensions. It is described by G- and D-formulas given
by the syntax rules below:

G ::= t | f | A | x = E | G; G | G : G | G else G

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

LETTER
2037

D ::= A = G | ∀x D

In the rules above, A represents an atomic procedure def-
inition of the form p(t1, . . . , tn). A D-formula is called a
procedure definition. f denotes f alse which correponds to
a user-thrown exception.

In the transition system to be considered, G-formulas
will function as the main program (or statements), and a
set of D-formulas enhanced with the machine state (a set
of variable-value bindings) will constitute a program.

We will present an operational semantics for this lan-
guage via a proof theory. The rules are formalized by means
of what it means to execute the main task G from a program
P. These rules in fact depend on the top-level constructor
in the expression, a property known as uniform provabil-
ity [5]. Below the notation D;P denotes {D}∪P but with the
D formula being distinguished (marked for backchaining).
Note that execution alternates between two phases: the goal-
reduction phase (one without a distinguished clause) and the
backchaining phase (one with a distinguished clause). The
notation S sand R denotes the following: execute S and
execute R sequentially. It is considered a success if both
executions succeed. The notation not() denotes a failure.

Definition 1. Let G be a main task and let P be a program.
Then the notion of executing 〈P,G〉 successfully and pro-
ducing a new program P′– ex(P,G,P′) – is defined as fol-
lows:

(1) ex(P, t,P). % True is always a success.

(2) ex((A = G1);P, A) if ex(P,G1) and ex(D;P, A).

(3) ex(∀xD;P, A) if ex([t/x]D;P, A). % argument pass-
ing

(4) ex(P, A) if D ∈ P and ex(D;P, A). % a procedure
call

(5) ex(P, x = E,P 	 {〈x, E′〉}) if eval(P, E, E′). % 	 de-
notes a set union but 〈x,V〉 in P will be replaced by
〈x, E′〉.

(6) ex(P,G1; G2,P2) if ex(P,G1,P1) sand
ex(P1,G2,P2).

(7) ex(P,G1 : G2,P2) if ex(P,G1,P1) sand
ex(P,G2,P2). % both G1 and G2 succeed.

(8) ex(P,G1 : G2,P2) if not(ex(P,G1,P1)) sand
ex(P,G2,P2). % only G2 succeeds.

(9) ex(P,G1 : G2,P1) if ex(P,G1,P1) sand
not(ex(P,G2,P2)). % only G1 succeeds.

(10) ex(P,G1 else G2,P1) if ex(P,G1,P1)

(11) ex(P,G1 else G2,P2) if not(ex(P,G1,P1)) sand
ex(P,G2,P2)).

If ex(P,G,P1) has no derivation, then the machine returns

F, the failure. For example, ex(P, f ,P1) is a failure because
it has no derivation.

3. Examples

So far, we have considered only one kind of failures. In
reality, there are many kinds of failures in imperative pro-
gramming. Thus, we need to expand f to include f (e) for
a user-thrown exception e. The notion of exception trees [4]
is then useful to organize failures, similar to a file system
in Unix and similar to an exception class in Java. Below
we assume that the machine returns an exception tree stored
in Failtree rather than just F. We also assume that /F is
the root directory of Failtree and /F/usr is the directory for
user-thrown failures. An exception can be derived from the
parent exception. Exception trees allow the programmer to
select to deal with failures at varying degrees of specificity.
An example of the use of this construct is provided by the
following program which contains some basic file-handling
rules.

main
open f ile(); read f ile()
else

case Failtree o f
/F/sys : . . .
/F/usr/EOF : . . .;

x = f actorial(4)
read f ile() = (read() � −1); . . . else f (EOF)

Our language makes it possible to simplify the program
if some statements are inessential. For example, the follow-
ing program explicitly tells the machine that the statement
open f ile(); read f ile() is inessential and optional and thus it
is OK not to perform the statement if it fails.

main
(open f ile(); read f ile()) :
x = f actorial(4)
read f ile() = (read() � −1); . . . else f (EOF)

4. Conclusion

In this paper, we have considered an extension to the core
C++ with disjunctive statements. This extension allows
statements of the form S : R where S , R are statements.
These statements are particularly useful for dealing with
inessential errors.

Acknowledgements

This work was supported by Dong-A University Research
Fund.

References

[1] G. Japaridze, “Introduction to computability logic,” Annals of Pure

2038
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

and Applied Logic, vol.123, pp.1–99, 2003.
[2] G. Japaridze, “Sequential operators in computability logic,” Informa-

tion and Computation, vol.206, no.12, pp.1443–1475, 2008.
[3] C. Fetzer and P. Felber, “Improving program correctness with atomic

exception handling,” J. Universal Computer Science, vol.13, no.8,
pp.1047–1072, 2007.

[4] P. Buhr and W. Bok, “Advanced exception handling mechanisms,”
IEEE Trans. Softw. Eng., vol.26, no.9, pp.1–15, 2000.

[5] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, “Uniform proofs
as a foundation for logic programming,” Annals of Pure and Applied
Logic, vol.51, pp.125–157, 1991.

