
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013
2039

PAPER

Reconfigurable Multi-Resolution Performance Profiling in Android
Applications

Ying-Dar LIN†, Member, Kuei-Chung CHANG††a), Yuan-Cheng LAI†††, and Yu-Sheng LAI†, Nonmembers

SUMMARY The computing of applications in embedded devices suf-
fers tight constraints on computation and energy resources. Thus, it is im-
portant that applications running on these resource-constrained devices are
aware of the energy constraint and are able to execute efficiently. The exist-
ing execution time and energy profiling tools could help developers to iden-
tify the bottlenecks of applications. However, the profiling tools need large
space to store detailed profiling data at runtime, which is a hard demand
upon embedded devices. In this article, a reconfigurable multi-resolution
profiling (RMP) approach is proposed to handle this issue on embedded
devices. It first instruments all profiling points into source code of the tar-
get application and framework. Developers can narrow down the causes
of bottleneck by adjusting the profiling scope using the configuration tool
step by step without recompiling the profiled targets. RMP has been im-
plemented as an open source tool on Android systems. Experiment results
show that the required log space using RMP for a web browser application
is 25 times smaller than that of Android debug class, and the profiling error
rate of execution time is proven 24 times lower than that of debug class.
Besides, the CPU and memory overheads of RMP are only 5% and 6.53%
for the browsing scenario, respectively.
key words: time profiling, multi-resolution profiling, android, reconfig-
urable profiling

1. Introduction

In designing efficient embedded applications, two key de-
sign issues should be considered. First, the execution time
of embedded applications should be optimized because they
have to run on embedded devices with limited computing
capability. Second, the energy consumption should be min-
imized because the battery power is a crucial resource for
embedded devices. Therefore, developers need to identify
the hotspots in the program and optimize their applications
according to the analyzed results.

There are many existing profiling tools which can help
developers to identify bottlenecks, such as PowerScope [1]
and Gprof [2]. Some of them can only profile applications
at a single resolution. For example, the PowerScope can
only provide a coarse-grained profiling resolution (e.g. pro-
cess level) to analyze the energy consumption of a process.

Manuscript received June 25, 2012.
Manuscript revised March 17, 2013.
†The authors are with the Department of Computer Science,

National Chiao Tung University, Hsinchu, Taiwan.
††The author is with the Department of Information Engineer-

ing and Computer Science, Feng Chia University, Taichung, Tai-
wan.
†††The author is with the Department of Information Manage-

ment, National Taiwan University of Science and Technology,
Taipei, Taiwan.

a) E-mail: changkc@fcu.edu.tw (Corresponding author)
DOI: 10.1587/transinf.E96.D.2039

Thus, developers using PowerScope have the difficulty to
identify precise bottlenecks within a process. On the other
hand, Gprof provides a fine-grained profiling resolution (e.g.
function level), and thus the developers can analyze the time
information of a process in more details. However, they
need to spend a lot of time to analyze logs of the detailed
profiling information to identify performance bottlenecks.

In this article, we propose a new multi-resolution pro-
filing scheme, named reconfigurable multi-resolution profil-
ing (RMP), to help developers to profile the embedded ap-
plications flexibly. It can profile the execution time at vari-
ous profiling resolutions, such as process level, thread level,
function level (method level), and loop level. RMP can ef-
ficiently profile execution time for different profiling scopes
with limited log space. The profiling scope can be defined
and controlled by user configurations, such as profiling reso-
lution and user-specific filtering rules. Figure 1 gives an ex-
ample of profiling; the profiling can be started at any specific
coarse-grained resolution (e.g. process level). Developers
can zoom into next fine-grained resolution (e.g. thread level)
when the hotspot of the application at the coarse-grained

Fig. 1 The concepts of RMP.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



2040
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

Table 1 Comparisons of profiling tools.

resolution is identified, such as process x in Fig. 1 (a). When
the hotspot of process x is identified as thread i, the same
zoom-in process can be used again. By RMP, the exact bot-
tleneck can be identified with small log space because it only
stores and analyzes the necessary profiling logs at a specific
scope during profiling, as shown in Fig. 1 (b).

For measuring the execution time in RMP, we use the
similar approach proposed by LTTng [3] which instruments
some probes in the source code to be activated at runtime
to record execution information about a program. The ma-
jor difference between LTTng and RMP is that the probes
in RMP can be configured to change the profiling scope.
The RMP has been mounted onto SourceForge website as
an open source tool (http://sourceforge.net/p/rmptool/).

The remainder of this article is organized as follows.
Section 2 discusses related work of performance profiling.
We describe the architecture of RMP for Android system in
Sect. 3. Section 4 presents the experimental environment
and discusses evaluation results. Conclusions and future
work are given in Sect. 5.

2. Related Work

Existing time profiling techniques can be divided into two
main categories: instrumentation and sampling. Instrument-
based profiling tools instrument some profiling points into a
program, and log events will be recorded when these instru-
mentation points are triggered. Gprof [2] and Kernel Func-
tion Trace (KFT) use the compiler-assisted capabilities to
automatically instrument profiling points at entry and exit
of every function. However, these tools can only provide
the function-level profiling results because they just instru-
ment profiling points at the entry and exit of functions.

Linux Trace Toolkit Next Generation (LTTng) [3] pro-
vides a programming interface to instrument the source
code. The instrumentation points are managed with probes
and every probe can be configured to be “on” or “off” state
at runtime.

Debug class, an Android built-in java class, provides a
way to create log and trace the execution of an Android ap-
plication. The application can be profiled without any spe-
cific instrumented profiling code. However, the collected

profiling information will be very huge and complex. The
users can use debug class to specific the profiling range for
gathering the interested profiling results. After profiling,
TraceView can analyze the log and show the execution in-
formation from process level to method level.

Sampling-based profiling tools utilize hardware perfor-
mance counters, embedded in most modern CPUs, to record
program execution information, such as program counter
(PC) and cache misses. Then the results can be correlated
with the structure of source code. Representative tools in-
clude Oprofile, HPCToolkit [5], and Intel VTune. Most of
them can analyze the fine-grained profiling traces and show
results from a coarse-grained resolution to a fine-grained
resolution of details by a GUI tool or a formatted text.

Existing energy profiling can be divided into three cat-
egories: simulation approach, measurement approach, and
estimation approach. Simulation approaches create virtual
hardware platforms to simulate energy consumption behav-
ior for energy profiling [6], [7]. Measurement approaches
measure energy consumption with digital power meters di-
rectly [1], [8]. The power meter is connected to a platform
which uses the time-driven sampling approach to periodi-
cally trigger the power meter to record the energy consump-
tion. Estimation approach counts the requests of hardware
components for each process [9], [10]. The amount of re-
quests can be translated into energy consumption using the
energy estimation model which includes the estimation for-
mula and the power table.

Battery Use has been embedded in Android systems
from version 1.6. It can provide the information of energy
consumption for each process. An enhancement of Battery
Use [4] uses a two-phase calibrating approach to create new
estimation formulas and a more correct power table. It im-
proves the accuracy of estimating energy consumption with
the error rate below 10%.

Table 1 summarizes the above discussed profiling tools.
Gprof, Kernel Function Trace (KFT), and all energy profil-
ing tools are based on single-resolution profiling technique,
and others support multi-resolution profiling to help users
easily analyze the bottlenecks by GUI. However, all multi-
resolution profiling tools normally log all the fine-grained
profiling traces at runtime and show multi-resolution profil-



LIN et al.: RECONFIGURABLE MULTI-RESOLUTION PERFORMANCE PROFILING IN ANDROID APPLICATIONS
2041

ing results on GUI at the post-analysis phase. However, the
large amount of logging information cannot be accommo-
dated by the resource-constrained embedded systems, such
as Android. In this article, we propose an approach to solve
this limitation.

3. Reconfigurable Multi-Resolution Profiling for An-
droid

This section first describes the architecture and the detailed
methodology of the reconfigurable multi-resolution profil-
ing approach (RMP). Afterwards, the profiling flow of RMP
is presented.

3.1 RMP Architecture

Figure 2 depicts the architecture of RMP which consists of
five components: instrumentation component, control and
display component, time profiling component, and logs col-
lection and correlation component. For changing profiling
scope without recompiling, the instrumentation component
is designed to analyze and instrument all necessary profil-
ing points in the source code. The control and display com-
ponent displays the profiling point configurations and the
profiling results for developers. The time profiling com-
ponent can record the time information of profiling scope
based on the configurations of the control and display com-
ponent. Finally, the logs collection and correlation compo-
nent can store time logs and correlate them at fine-grained
resolutions.

3.2 Instrumentation Component

In RMP, the instrumentation component instruments profil-
ing points to the whole necessary locations of the applica-
tion and the framework at first. However, only parts of the
framework API will be called by the profiled application;
if all profiling points are instrumented to the whole frame-
work, the useless profiling points may cause extra unnec-
essary overhead for other applications. Therefore, the in-

Fig. 2 Profiling architecture of RMP.

strumentation range of the application should be analyzed
by the instrumentation range analyzer before the profiling
points are instrumented in the framework. The all meth-
ods of the profiled application and the framework methods
called by the application are defined as the instrumentation
range.

When the instrumentation range is identified, the
probes inserter can start to instrument profiling points into
the application and framework source code. The pair of pro-
filing points of a method or a loop map to a probe which is
a control unit using by developers to control the profiling
scope. Each probe is recorded in a probe list with its probe
name, resolution definition, and on/off status. The profiling
resolution also can be recognized by specific functionality
of the method (ex. the run() method in Java can be regarded
as thread level). After instrumentation, the application and
framework source code can be compiled and installed on the
target system to do multi-resolution profiling.

There are four profiling resolutions for Android appli-
cations in this implementation. First, process level includes
all profiling results of components in an application because
the application components are essential building blocks of
an Android application. Therefore, the process level is used
to analyze the bottlenecks of components in an application.
The execution period of Android activity is from onCreate()
state to onDestroy() state, but the activity may be switched
to other activities between onCreate() state and onDestroy()
state when users change to other UIs of the application.
Therefore, the actual execution time of an activity can be
estimated by the periods of onCreate(), onDestroy(), and
each part of the visible phase. The execution time of a An-
droid service can be estimated by the period from onCreate()
state to onDestroy() state, and the execution time of a An-
droid broadcast receiver can be estimated by the time of on-
Receive(). However, the Android content provider doesn’t
have the independent execution time because it is always
called by other components in general. Therefore, the ex-
ecution time of the content provider has been included in
other components.

The second resolution is thread level which includes
the profiling results of run() method implemented in a thread
class. This resolution is used to analyze the bottlenecks of
threads in a process. The third resolution is the method level
which includes the profiling results of each normal method.
This resolution is used to analyze the bottlenecks of meth-
ods in a thread. The last resolution is the loop level which
includes the profiling results of each loop in a method. This
resolution is used to analyze the bottlenecks of loops in the
method.

3.3 Control and Display Component

The control and display component gets the probe list from
the instrumentation component and shows the probe control
information for users with GUI. The user can turn on or
turn off the probes to control the profiling scope by the con-
figuration module. In addition, the profiling display module



2042
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

shows the energy and time profiling results of the applica-
tion. The profiling scope can be identified by the configura-
tions of the profiling resolution and the profiling area. The
profiling resolution is defined by the language-based level,
such as process, thread, function (method) and loop. The
developer can zoom a coarse-grained resolution into a fine-
grained resolution to analyze bottlenecks by the resolution
filter, and the filter will turn the probes on or off according
to the user resolution configurations. The profiling area is
defined by the set of all active probes which will be profiled.
For example, when the profiling is working at the method
level of thread i, the profiling area includes all method-level
probes in thread i. Also when the profiling resolution zooms
into the method k of thread i, the profiling area includes all
loop-level probes in method k.

3.4 Time Profiling Components

The time profiling component checks the probes status (on/
off) and manages the caller list based on the user configura-
tions before it records the time data. When the application
executes on the target system, the probes will be triggered
and send log events to the time profiling component. If the
status of a probe is off, the events related to the probe will
be skipped; if the status of a probe is on and the caller of the
probe has been recorded in the caller filter, the log events
will be recorded into log space. The size of the log space
can be set by developers. When the log space of time pro-
filing component is out of bound or the profiling is finished,
the logs will be removed from memory to other large stor-
ages.

A method may be executed by either profiled threads
or other non-profiled threads. Therefore, a caller filter is
designed in the time profiling component to solve this prob-
lem. The user can set some root processes or methods as
interested profiling targets in the caller filter, and then only
the methods that are called by the methods in the caller filter
can be profiled. The callers of the methods recorded in the
caller filer will also be dynamically recorded into the caller
filter at runtime to identify all methods needed to be profiled.

Figure 3 shows an example of the caller filtering. We
assume methods ‘M1’ and ‘M2’ are called by threads ‘Ta’
and ‘Tb’, as shown in Fig. 3 (a). ‘Ta’ is the interested profil-
ing thread and is stored in the caller filter before execution
shown as Fig. 3 (b1). In Fig. 3 (b2), ‘M1’ will be recorded
into the caller filter when it is called by ‘Ta’ because the
caller of ‘M1’ is ‘Ta’ which has been recorded in the filter.
‘M2’ will be recorded into the caller filter as well as ‘M1’
shown as Fig. 3 (b3). When the method is finished, it will
be removed from the filter. By this way, the methods will
be correctly profiled according to the caller filtering. Fig-
ure 3 (c1) shows a counterexample; ‘Tb’ is not our interested
profiling thread and it will not be recorded into the caller fil-
ter when it is executed. Thus methods ‘M1’ and ‘M2’ will
not be recorded into the caller filter and not be profiled too,
as shown in Fig. 3 (c2) and Fig. 3 (c3).

In addition, the caller filter also controls profiling area

Fig. 3 Examples of the caller filtering.

when zooming in other resolutions. For example, when the
developer zooms into the loop level in method k, the profil-
ing area can be limited in the method k by the caller filter.
It can avoid recording loop-level events of other methods.
Also the setting of specific filtering rules according to user
preference can help the developer to narrow down profiling
area during the step-by-step profiling process, such as exe-
cution time over than one sec and executing times over than
five. These specific filtering rules can also help developers
to exclude uninterested log events and to further reduce the
log size.

When the profiling points in the application and frame-
work are triggered, the time profiling component receives
log events, checks probes status, and manages caller filter
based on the user configurations before it logs the time data
into the log memory. These actions need to be implemented
efficiently because they may influence the accuracy of the
profiled time results and the profiling performance if they
spend too much time.

The time profiling component was written in C lan-
guage which has higher performance than java language.
We use java native interface (JNI), an efficient approach to
call C program from Java program on Android [11], for pro-
filing points to call the time profiling component. The time
profiling component is implemented as JNI native library
which will be loaded when the application starts to execute.

Figure 4 shows an example of calling the time pro-
filing component using JNI. The profiling point calls the
time profiling component through JNI and sends its probe
name, caller name, and attribute for checking. The API,
Thread.currentThread.getStackTrace(), is used to collect the
stack information and select out the caller name. However,
it spends too much execution time. Since only the caller
name in the stack is required, we implemented a new API,
Thead.currentThread.getCaller(), to only returns the caller



LIN et al.: RECONFIGURABLE MULTI-RESOLUTION PERFORMANCE PROFILING IN ANDROID APPLICATIONS
2043

Fig. 4 Example of calling the time profiling component.

name to save execution time.

3.5 Logs Collection and Correlation Component

The time profiling component generates performance results
to users. The logs can be stored for off-line analysis to get
more detailed profiling results. In addition, we can try to
correlate the process-level energy consumption with fine-
grained time profiling results to get the fine-grained energy
consumption using Battery Use [4] energy information in
the future.

4. Evaluation Studies

4.1 Evaluation Environment and Scenarios

The version of Android platform is Android open source
project (ASOP) 1.6. Most evaluation experiments are based
on the web browsing because the Android default browser
spends a lot of time when it loads and shows web pages. The
browsing scenario starts from the user touching the screen to
start the browser until the default page have been loaded and
shown on the screen.

4.2 Experimental Results

4.2.1 Execution and Memory Overheads

Figure 5 shows that the execution time of the browser is ex-
tended 19.08% when all probes are turned off (not record
any log events); and the execution time is extended 43.76%
when all probes are turned on (record all log events). The
extended time is composed of three parts. First, the time
profiling component needs to spend time to check probe
on/off status, to filter caller, and to store time results for
each probe. Second, the VM spends time to initiate the time
profiling component (JNI shared library) when it loads and
initiates classes which have been instrumented with probes.
Third, the time profiling component stores time results in
the memory and removes it from the log memory to other

Fig. 5 The overhead of execution time for RMP.

Fig. 6 CPU loading during profiling.

large storages when the log space is full. Therefore, the time
profiling component will allocate and free memory several
times. These actions will trigger the VM to do garbage col-
lections.

Figure 6 depicts the CPU loading of the browsing sce-
nario. CPU loading variations of all situations are similar
because the computation of the time profiling component
does not take much CPU resource. The average extra CPU
loading is 5% when all probes are turned on. Although the
execution time of the instrumented browser extended rang-
ing from 19.08% up to 43.76% shown in Fig. 5, it does not
cause too much CPU loading because the additional profil-
ing tasks do not take too much computation resource.

Figure 7 depicts the log memory usages during profil-
ing. We use libpagemap function to periodically measure
the memory usage of the corresponding linux-level process
(com.android.browser) for the profiled Android application
in Linux level. We sample the memory usage of the process
every two seconds. The used memory of the instrumented
browser is more than that of the origin browser in general
because the time profiling component stores the time re-
sults in the memory. The extra overhead of log memory
can be controlled below 6.53% when all probes are turned
on. This is because RMP can change profiling scope to
save the log space. The used memory of the instrumented
browser is sometimes less than that of the origin browser
during the profiling because the actions of allocating and re-
leasing memory triggers the VM to do garbage collections
(GC). Figure 7 shows the situation during sample 3 and sam-



2044
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

Fig. 7 The overhead of memory usage.

ple 5.

4.2.2 Time Profiling Accuracy

Methods getCaller() and Probe() are instrumented in each
method to get the caller name and trigger the time profiling
component to record time data, respectively. Both of them
take extra execution time during profiling that will be in-
cluded in the time results of RMP; therefore, the extra time
needs to be deducted for accuracy of time profiling results.

We select a method which has been instrumented with
probe statements, and it invokes a child method which has
been instrumented too. Another case is that the instrumen-
tation statements are removed from the child method. The
extra time of a probe can be calculated by the difference be-
tween these two test cases, and the measured execution time
of a probe is 0.488 ms. Therefore, this consumed time of
probes is deducted from the profiled time results of RMP
according to the number of probes in methods. The time
0.488 ms is estimated for an application probe, but the ex-
tra execution time of a framework probe is different. The
framework probe has one more stage in the time profiling
component to check whether the caller is from the target
profiling application. Therefore, the extra execution time of
a framework probe is 0.631 ms got from the similar experi-
ment for framework probes.

In Table 2, some methods with stabler execution time
are selected to evaluate the error rate of time profiling
results. The reference time is got from the API Sys-
tem.nanotime(). This API is instrumented into the entry
point and exit point of these methods to get the execu-
tion time in nanosecond. According to the above mention,
the time results of RMP minus the extra execution time of
probes are as the final profiling results. The table shows that
the error rate of RMP is below 10.21%. On the contrary,
the error rate of debug class is over than 43.17% because
the execution time of a method is estimated by the period
between the entry of the method and the entry of next exe-
cuted method in debug class. When the time results include
the execution time of calling the next method, the results
could be interfered with other miscellaneous factors. From
Table 2, the average profiling error rate of execution time of

Table 2 Error rate comparisons of time profiling.

Table 3 Functional comparisons with debug class.

Table 4 Overhead comparisons with debug class.

RMP is 24 times lower than that of debug class.

4.2.3 Overhead Comparisons with “Debug Class + Trace-
view”

The debug class with Traceview is a default time profiling
tool working on most Android product devices, and thus se-
lected to be compared with RMP. The debug class collects
all time results of methods and stores the results in the mem-
ory at runtime. It will transfer time results from memory to
the SD card after the profiling is finished. Therefore, the
debug class requires large memory space to store the time
results. Traceview only provides the round times and total
execution time for a method. Also the execution time of
each round for a method is the average result. However, a
method may spend different execution time in different task
by parameters. Therefore, Traceview cannot help us to ana-
lyze the execution time of each round for a method, named
integral profiling problem. Table 3 shows the comparisons
between debug class + Traceview and RMP.

Table 4 shows the overhead comparisons of debug class
and RMP. The debug class extends 39.72% overhead of ex-
ecution time, 4% CPU loading, and 76.3% memory over-
head. The overhead of memory is very large because debug
class collects time results of all methods and stores them in
the memory. The execution time overhead and CPU load-
ing of debug class and RMP are close. However, the mem-
ory overhead of RMP is much smaller than that of debug
class because RMP is a reconfigurable multi-resolution pro-
filing solution which can save the log space. The total log
size of the debug class is 2.99 MB for this experiment. The



LIN et al.: RECONFIGURABLE MULTI-RESOLUTION PERFORMANCE PROFILING IN ANDROID APPLICATIONS
2045

Fig. 8 The execution time distributions of the browsing scenario.

same experiment using RMP takes eight rounds to identify
the same bottleneck, and the average log size of each round
is 15 KB. It is easily observed that the required memory
space using RMP for a web browser application is 25 times
(2.99 MB/15 KB x 8) smaller than that of Android debug
class.

Figure 8 shows the detailed information about the pro-
filed execution time for the browsing scenario. It was mod-
eled as a pie chart according to the module’s functionality.
The “A” part takes 5.02% of the browsing time for initiat-
ing the Android resource (Ex. SGL) and the framework of
view. The “B” part takes 4.46% of the browsing time for up-
dating browser settings (Ex. plugins status) and data to the
database. The “C” part takes 82.97% of the browsing time
for receiving network data and drawing web view. The ac-
tions of receiving network data and drawing web view are
implemented in C/C++ library, so we cannot know the de-
tailed time distributions for these actions. But the bottle-
neck is at the web view drawing by analyzing the library
source code manually. The view of 3D is drawn by OpenGL
which uses the graphic processing unit (GPU) for hardware
acceleration, but the view of 2D is drawn by SGL without
any hardware acceleration. It is slow when the web page is
drawn by the embedded CPU. Therefore, if SGL can sup-
port hardware acceleration of 2D drawing, the performance
of the embedded web browser can be raised.

For the browsing application, the size of the original
Android framework source code is 149.8 MB, and the size
of the compiled image file is 55.49 MB. The size of the
instrumented framework source code is 150.2 MB, and the
size of the compiled image file is 55.56 MB. The overhead
of the instrumented framework source code is 0.27%, and
the overhead of the instrumented image file is 0.13%.

4.3 Implementation Issues

In order to implement the proposed RMP on Android, the
application and the framework source codes have to be pre-
processed for profiling. RMP has to analyze the instrumen-
tation range to identify what framework methods are called
by the application. Then, we can instrument all necessary
profiling points into the application and the framework at
once. When all probes are inserted into the framework and
the application, the whole framework and application have
to be recompiled and restarted.

We also added some tools to assist the profiling pro-
cess. First, we use Jindent, a source code formatter tool,
to unify the source code format of the application and the
framework. The unification format of the source code can
minimize the complexity of the instrumentation algorithm.
Second, we use ctags to get the location of the application
methods and the framework methods. The results of ctags
include the name of method, file name of the method, and
line number of the method in the file. We implement an
automatic script to scan out what framework methods are
called by the application according to the results of ctags.
Then, users can run the script in different operating systems
directly. The automatic script is written in the python lan-
guage because the python language is easy and it can work
on most popular operating systems, such as Windows and
Linux. Finally, we implement another automatic script to in-
strument entry and exit profiling points into the application
and the framework methods with the resolution definition.

5. Conclusion and Future Work

This work proposes the reconfigurable multi-resolution pro-
filing approach to profile execution time of applications with
limited log space to identify the bottlenecks of applica-
tions on the resource-constrained embedded system. We
have shared the implemented RMP tool on the SourceForge
website. The evaluation studies have proven that our im-
plementation has minor CPU loading overhead (5%) and
memory overhead (below 6.53%). Although the execution
time of the instrumented application is increased ranging
from 19.08% to 43.76% depending on the number of ac-
tive probes, the overhead can be correctly deduced from the
profiled execution time to recover accurate profiling results.
The accuracy of execution time results is evaluated with the
average error rates below 10.21%, which is 24 times lower
than that of debug class. In the future, we shall investigate
energy consumption with the proposed RMP tool.

Acknowledgments

This work was supported in part by the NSC under Grant
No. NSC 101-2219-E-035-001, NSC 101-2219-E-011-003
and NSC 101-2219-E-009-013.

References

[1] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling
the energy usage of mobile applications,” 2nd IEEE Workshop on
Mobile Comp. Syst. and Apps, pp.2–10, Feb. 1999.

[2] S.L. Graham, P.B. Kessler, and M.K. Mckusick, “gprof: A call graph
execution profiler,” SIGPLAN Notices, vol.17, no.6, pp.120–126,
June 1982.

[3] M. Desnoyers and M. Dagenais, “LTTng: Tracing across execution
layers, from the Hypervisor to user-space,” Proc. Ottawa Linux
Symposium, pp.101–105, July 2008.

[4] Y.-C. Yu, Calibrating parameters and formulas for process-level en-
ergy consumption profiling, Master Thesis, National Chiao Tung
University, Taiwan, June 2010.

[5] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J.



2046
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

Mellor-Crummey, and N.R. Tallent, “HPCTOOLKIT: Tools for per-
formance analysis of optimized parallel programs,” Concurrency
and Computation: Practice and Experience, vol.22, pp.685–701,
2010.

[6] T.L. Cignetti, K. Komarov, and C.S. Ellis, “Energy estimation tools
for the palm,” Proc. 3rd ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, pp.96–
103, 2000.

[7] S. Gurumurthi, A. Sivasubramaniam, M.J. Irwin, N. Vijaykrishnan,
M. Kandemir, T. Li, and L.K. John, “Using complete machine simu-
lation for software power estimation: The softWatt approach,” Proc.
8th International Symposium on High-Performance Computer Ar-
chitecture, pp.141–150, 2002.

[8] W. Choi, H. Kim, W. Song, J. Song, and J. Kim, “ePRO-MP: A tool
for profiling and optimizing energy and performance of mobile mul-
tiprocessor applications,” Scientific Programming - Software Devel-
opment for Multi-core Computing Systems, vol.17, no.4, pp.285–
294, Dec. 2009.

[9] T. Do, S. Rawshdeh, and W. Shi, “pTop: A process-level power pro-
filing tool,” Proc. 2nd Workshop on Power Aware Computing and
Systems, 2009.

[10] K.S. Banerjee and E. Agu, “PowerSpy: Fine-grained software en-
ergy profiling for mobile devices,” Proc. Int. Conf. Wirel. Netw.,
Commun. and Mobile Comput., vol.2, pp.1136–1141, June 2005.

[11] L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, and S.
Albayrak, “Developing and benchmarking native linux applications
on android,” MobileWireless Middleware, Operating Systems, and
Applications, pp.381–392, 2009.

Ying-Dar Lin is Professor of Com-
puter Science at National Chiao Tung Univer-
sity (NCTU) in Taiwan and also an IEEE Fellow.
He received his Ph.D. in Computer Science from
UCLA in 1993. He served as the CEO of Tele-
com Technology Center during 2010–2011 and
a visiting scholar at Cisco Systems in San Jose
during 2007–2008. Since 2002, he has been the
founder and director of Network Benchmark-
ing Lab (NBL, www.nbl.org.tw), which reviews
network products with real traffic. He also co-

founded L7 Networks Inc. in 2002, which was later acquired by D-Link
Corp. He recently, in May 2011, founded Embedded Benchmarking Lab
(www.ebl.org.tw) to extend into the review of handheld devices. His re-
search interests include design, analysis, implementation, and benchmark-
ing of network protocols and algorithms, quality of services, network
security, deep packet inspection, P2P networking, and embedded hard-
ware/software co-design. His work on “multi-hop cellular” has been cited
over 600 times. He is currently on the editorial boards of IEEE Transac-
tions on Computers, IEEE Computer, IEEE Network, IEEE Communica-
tions Magazine - Network Testing Series, IEEE Communications Surveys
and Tutorials, IEEE Communications Letters, Computer Communications,
Computer Networks, and IEICE Transaction on Information and Systems.
He recently published a textbook “Computer Networks: An Open Source
Approach” (www.mhhe.com/lin), with Ren-Hung Hwang and Fred Baker
(McGraw-Hill, 2011). It is the first text that interleaves open source im-
plementation examples with protocol design descriptions to bridge the gap
between design and implementation.

Kuei-Chung Chang received the Ph.D. de-
gree in computer science from National Chung
Cheng University in 2008. He is Associate Pro-
fessor of Department of Information Engineer-
ing and Computer Science at Feng Chia Uni-
versity in Taiwan. His research interests in-
clude system-on-chip, network-on-chip, embed-
ded system, and multi-core system.

Yuan-Cheng Lai received the Ph.D. degree
in computer science from National Chiao Tung
University in 1997. He joined the faculty of the
Department of Information Management at Na-
tional Taiwan University of Science and Tech-
nology in 2001 and has been a professor since
2008. His research interests include wireless
networks, network performance evaluation, net-
work security, and content networking. He can
be reached at laiyc@cs.ntust.edu.tw.

Yu-Sheng Lai received the M.S. degree
in computer science from National Chiao Tung
University in 2011. He is now a project engineer
at the R&D division of software business unit of
Acer Inc. His research interests include the de-
velopment of bootloader and embedded operat-
ing systems, and performance evaluation of em-
bedded software.


