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3D Face Recognition Based on MPU Implicits

Yuan HU† and Wei LIU††a), Members

SUMMARY In this paper, we present an approach for 3D face recog-
nition based on Multi-level Partition of Unity (MPU) Implicits under pose
and expression variations. The MPU Implicits are used for reconstructing
3D face surface in a hierarchical way. Three landmarks, nose, left eyehole
and right eyehole, can be automatically detected with the analysis of cur-
vature features at lower levels of reconstruted face. Thus, the 3D faces are
initially registered to a common coordinate system based on the three land-
marks. A variant of Iterative Closest Point (ICP) algorithm is proposed for
matching the point surface of a given probe face to the implicits face sur-
face in the gallery. To evaluate the performance of our approach for 3D face
recognition, we perform an experiment on GavabDB face database. The re-
sults of the experiment show that our method based on MPU Implicits and
Adaptive ICP has great capability for 3D face recognition under pose and
expression variations.
key words: 3D face recognition, MPU Implicits, Adaptive ICP

1. Introduction

Face recognition has been one of the most active research ar-
eas in pattern recognition and computer vision. Most of the
studies have focused on 2D intensity image, but the perfor-
mance of 2D face recognition [1] still suffers from pose and
illumination variations. As a robust face recognition sys-
tem to overcome these limitations, 3D face recognition [2]
is attracting attention. But there still exist some difficulties
in 3D face recognition, such as expression variations and
large computational costs. In this paper, we present an ap-
proach for 3D face recognition based on Multi-level Parti-
tion of Unity (MPU) Implicits [3] under pose and expression
variations. The idea of using MPU Implicits in a hierar-
chical way is proposed for reconstruction of face surface.
Landmarks are automatically extracted from lower levels of
reconstructed faces. The 3D faces are initially registered
to a common coordinate system based on the landmarks.
We extract expression insensitive regions of the face and use
Adaptive ICP, a variant of ICP [4] algorithm, for matching.
Adaptive ICP avoids the most time consuming process of
ICP. This proposed method is invariant to holes and noise.
The experimental results using GavabDB database [5] show
the great performance for 3D face recognition.
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2. 3D Recognition Based on MPU Implicits

2.1 MPU Implicits

The multi-level partition of unity implicits surface
(MPU) [3] allows us to construct surface models from very
large sets of points. There are three key ingredients to
MPU: 1) piecewise quadratic functions that capture the local
shape of the surface, 2) weighting functions (the partitions
of unity) that blend together these local shape functions, and
3) an octree subdivision method that adapts to variations in
the complexity of the local shape.

For a bounded domain Ω in a Euclidean space, given
a set of nonnegative compactly supported functions {wi(x)},
an approximation of a function f (x) defined on Ω is given
by:

f (x) =
∑
wi(x)Qi(x)∑
wi(x)

(1)

where, Qi is the local approximation set of functions with
each subdomain.

For approximation purposes we use the quadratic B-
spline b(t) to generate weight functions

wi(x) = b(
3|x − ci|

2Ri
) (2)

Given a set of scattered points P equipped with normals
N, we approximate the signed distance function f (x) from
P.

wi(x) =

[
(Ri − |x − ci|)+

Ri|x − ci|
]2

(3)

where (a)+ =

{
a i f a > 0

0 otherwise
, ci is the center of a cubic

cell that was generated during the subdivision process, and
Ri is a spherical support of radius.

First, we use an octree-based adaptive space subdivi-
sion of Ω to control the error of the approximation while
adapting the complexity of the representation to the com-
plexity of the shape.

Second, we use piecewise quadratic functions resulting
from Boolean operations for the accurate representation of
sharp features. One of three local approximations is used:

(a) A general 3D quadric, which is used to approximate
larger parts of the surface. A local shape function is given
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Fig. 1 Processing steps of face registration.

by:

Q(x) = xT Ax + bT x + c (4)

(b) A bivariate quadratic polynomial in local coordi-
nates, which is used to approximate larger parts of the sur-
face. A local shape function is given by:

Q(x) = w − (Au2 + 2Buv +Cv2 + Du + Ev + F) (5)

(c) A piecewise quadric surface that fits an edge or a
corner. For the surface P with an edge, we subdivide P into
two clusters P1 and P2 according to normals. The quadratic
fit procedure is applied separately to P1 and P2 and a non-
smooth local shape function approximate P is constructed
via the max/min Boolean operations. For the surface N with
a corner, we subdivide N into three sets, N1 and N2 are con-
structed as above. For the corners of degree four, the third
cluster is subdivided into two pieces. If the resulting four
clusters of normals correspond to either a convex or con-
cave corner, it is reconstructed via Boolean operations. Oth-
erwise, we go to (a) and a general quadric is fitted to P.
More complex types of sharp features are approximated by
smooth functions.

2.2 Landmarks Detection and Initial Registration

The MPU Implicits [3] are used for reconstructing face sur-
face in a hierarchical way. Once the different levels are
acquired, surface curvature, which has the valuable char-
acteristic of being viewpoint invariant, is exploited respec-
tively to the second level (L1) and the third level (L2) to
segment the eyeholes and nose regions. An mean and Gaus-
sian (HK) classification [6], based on the signs of mean and
Gaussian curvature, divided the face into six types: hyper-
bolic, Convex cylindrical, Convex elliptical, Planar, Con-
cave cylindrical and Concave elliptical. The nose region can
be found in L1, which is elliptical convex and the eyehole
regions are found from the high negative mean curvature
and high Gaussian curvature in L2. Experimental results
show that this method is accurate. For more details, see [9].
The three landmarks are used as a reference to register the
face surfaces. Figure 1 presents a description of the pro-
cessing steps. Accurate registration can reduce the timing-
consuming during face matching.

(a) (b)

Fig. 2 (a) Finding the responding point of Adaptive ICP. (b) Result of
Adaptive ICP.

2.3 Face Matching Based on Adaptive ICP

The gallery faces are reconstructed by MPU Implicits as im-
plicit models and the probe faces are point set models. We
propose a variant of ICP [4] method, namely Adaptive ICP,
to finely register a point set model with an implicit model.
Instead of using the nearest point as the responding point,
we use the intersection of normal and the implicit model as
the responding point. As show in Fig. 2 (a), the reference
data is a set of implicits F = { f j} and the test data is a set of
points P = {pi}. For each point pi, Normi is the norm of pi.

The intersection of Normi and F is y j, y j is the re-
sponding point of pi:

y j = pi − f j(pi) ∗ Normi (6)

The distance between yi and pi is:

d = f j(pi) (7)

ICP algorithm time complexity is O(NpNq) and the
time complexity of K-D Tree acceleration method is
O(NplogNq). By using the MPU implicits models as gallery
face models, Adaptive ICP avoid the process of search-
ing the closest point, which reduces the time complexity to
O(Np). Figure 2 (b) shows the result of Adaptive ICP.

3. Experiment Results

The experiment has been performed using models from the
GavabDB database [5]. This database includes 3D facial
surfaces of 61 individuals (45 males and 16 females). Each
image is given by a mesh of connected 3D points of the fa-
cial surface in the VRML format without texture. Due to
errors in the acquisition steps, some of the faces contain sig-
nificant amount of noise or holes on the face. Some artifacts
such as hair, beard and moustache are also presented. In our
experiments, we used the two neutral models, the two neu-
tral looking up and down models, the frontal models with
smile expression, and the frontal models with random ges-
ture. The models in the second capture are used as gallery
models and other models are used as the probe models for
recognition.

In the offline process, the gallery faces are initially reg-
istered by the method proposed in Sect. 2.2 and then recon-
structed by MPU implicits. In the online process, the probe
models are initially registered, to weaken the effects of ex-
pression, only the upper part of the face (i.e., face surface
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around the eyes and the nose) are considered. We use Adap-
tive ICP algorithm to finely register a 3D probe face surface
with a given 3D gallery face surface and compute the MSE
(mean square error) [4] between the two surface. Figure 3 is
the flow chart of face matching.

Table 1 lists the results of the experiments. For neutral
frontal models, the rank-one recognition rate is 94.83%. We
evaluate the performance of our method for recognition of
facial models with pose (looking up/down). As a result, the
recognition rates for facial models with looking up (down)
pose are 89.93% and 89.66%. Furthermore, we consider
the facial models with expression. We achieve a recognition
rate of 91.83% for the smiling expression and 81.82% for
the random gesture.

We compare our method with different approaches that
are presented by M. Mahoor [7] and A. Moreno [8] based
upon the GavabDB database in Table 1. As the results show,
our method has a similar performance as M. Mahoor’s ICP
method [7] with neutral models. Furthermore, our method
has a better recognition performance with poses and with
expressions. The experiment results show that the 3D face
recognition method based on MPU Implicits and Adaptive
ICP has a better recognition performance for faces with ex-
pression and with poses.

Fig. 3 Flow chart of face matching.

Table 1 Our experiment results comparing the results by M. Mahoor [7]
and A. Moreno [8] based upon the GavabDB database.

Our method M. Mahoor [7] A. Moreno
Robust HD ICP [8]

Neutral 94.83 93.5 95 90.16
Looking up 89.93 75.4 88.6
Looking down 89.66 70.5 85.3
Smiling 91.83 82 83.6 77.9
Random gesture 81.82 63.4 63.4

Furthermore, we compare the computation time of our
method to ICP using K-D Tree. The average computation
time of matching one face model is 3.20 seconds by using
MPU implicits and Adaptive ICP. The method of ICP using
K-D Tree needs 4.84 seconds. Experimental results show
that our method reduces the computational costs and saves
timing-consuming.

4. Conclusion

This paper presents a method for 3D face recognition us-
ing MPU Implicits based on 3D faces. 3D faces are re-
constructed by MPU Implicits in a hierarchical way. Cur-
vature analysis is carried out on different levels of recon-
structed facial surfaces. Candidate regions, including nose
and eyeholes, are isolated using mean and Gaussian curva-
ture features maps that highlight the curvature properties.
The 3D faces are initially registered according to the three
landmarks and then finely registered by Adaptive ICP. Only
the upper part of the face (i.e., face surface around the eyes
and the nose) are considered for matching. Experimental
results on the GavabDB show that our method has great ca-
pability for 3D face recognition under pose and expression
variations.
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