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An Approach for Sound Source Localization by Complex-Valued
Neural Network

Hirofumi TSUZUKI†a), Student Member, Mauricio KUGLER†b), Nonmember, Susumu KUROYANAGI†c),
and Akira IWATA†d), Members

SUMMARY This paper presents a Complex-Valued Neural Network-
based sound localization method. The proposed approach uses two mi-
crophones to localize sound sources in the whole horizontal plane. The
method uses time delay and amplitude difference to generate a set of fea-
tures which are then classified by a Complex-Valued Multi-Layer Percep-
tron. The advantage of using complex values is that the amplitude infor-
mation can naturally masks the phase information. The proposed method
is analyzed experimentally with regard to the spectral characteristics of the
target sounds and its tolerance to noise. The obtained results emphasize and
confirm the advantages of using Complex-Valued Neural Networks for the
sound localization problem in comparison to the traditional Real-Valued
Neural Network model.
key words: sound source direction, complex-valued neural networks, bin-
aural sound localization, amplitude-phase function

1. Introduction

Sound is a very important factor in life. People can dis-
tinguish different sounds from different directions, which
makes it possible to understand their surroundings and de-
tect dangerous situations. Therefore, various studies have
been conducted in order to realize this functionality.

Among these studies, Multiple Signal Classification
(MUSIC) [1] is widely used; it uses a microphone array
to estimate the direction of arrival of given sound. This
method is based on a correlation matrix obtained from sev-
eral signals recorded by the microphone array. Estimation of
Signal Parameters via Rotation Invariance Techniques (ES-
PRIT) [2] is another method that uses microphone arrays.
While this method is also based on a correlation matrix, it
has the advantage of not requiring any calibration for the
microphone array. The aforementioned methods use several
microphones in order to localize a sound source. On the
other hand, a different approach for sound source localiza-
tion is to use only two microphones since animals can lo-
calize sound sources with two ears [3], [4]. These methods
estimate the direction of a sound source using Maximum-
Likelihood Estimation (MLE) or a variation of MUSIC.

Furthermore, neural networks are also widely used for
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sound source localization. Among these, the most popu-
lar are the Radial Basis Function (RBF) networks used with
microphone arrays [5], [6]. Neural networks have also been
applied in a two-microphone configuration [7].

Complex-valued neural networks have been used in
combination with microphone arrays for sound localiza-
tion [8], however, the potential for their use in a two-
microphone configuration is yet to be explored.

The advantage of using complex-valued neural net-
works which can treat complex numbers in their original
representation is particularly important in the sound local-
ization domain. For instance, when using real numbers, the
sound phase information has to be represented in a bounded
interval of [−π and π]. However, by using complex num-
bers, the sound phase information can be represented cor-
rectly without these artificial edges.

Based on the aforementioned suitability, this paper pro-
poses a sound localization method that uses complex-valued
neural networks in a two-microphone configuration.

2. Background

2.1 Sound Localization

The most basic information used for determining the direc-
tion of a sound source is the difference of sound pressure
and time of arrival between the two microphones. Because
the time delay information between two microphones for a
given direction takes the shape of a hyperbola [9], the local-
ization of the sound source is limited to a half-plane. Thus,
for localization across the whole plane, the sound pressure
difference information is also necessary (Fig. 1).

This information is then classified using a Complex-
Valued Multi-Layer Perceptron (CV-MLP) neural network.

2.2 Complex-Valued MLP

Complex-valued neural networks [10], [11] behave like
standard neural networks but allow the calculation using
complex numbers domain. While the basic construction
of a CV-MLP is similar to that of a real-valued MLP (RV-
MLP) [12], few key differences exist with regard to the ac-
tivation function and the learning method. Although the
sigmoid and Gaussian functions tend to be the most com-
monly adopted activation functions for RV-MLP, they are
inappropriate for complex number inputs as they may result
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Fig. 1 Time delay and pressure difference information in the two-
microphone configuration.

in infinite values. Therefore, the following equations will be
adopted as the activation functions for this CV-MLP.

f (u) = tanh(ureal) + i tanh(uimag) (1)

f (u) = tanh(|u|)ei arg u (2)

where u is the summation of the weighted input values. In
the adopted model of CV-MLP, the amplitude-phase func-
tion in Eq. (2) is used. Thus, the learning proceeds as fol-
lows:
∣∣∣wnew

k j
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k j
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where j = 1, · · · , J and k = 1, · · · ,K are number of hidden
layer neuron and output layer neuron, wk j is a weight of the
synapse between neuron j and k, E is the error between the
desired output ẑ and the the output value z. The weights
of the output layer neurons are updated in Eq. (3) and (4),
and the derivatives are calculated in Eq. (5) and (6). In the
case of a CV-MLP, it is not sufficient enough to solely back-
propagate the error, as in an RV-MLP. It is also necessary

Fig. 2 Basic structure of the proposed method and output mapping of the
complex values in the horizontal plane.

to back-propagate the desired outputs in order to update the
weights of the neurons in the hidden layer. The desired out-
puts for the hidden layer are calculated as follows:

ẑH
j = f

⎛⎜⎜⎜⎜⎜⎝
∑

k

ẑO
k · wk j

⎞⎟⎟⎟⎟⎟⎠ (7)

where H and O mean hidden layer and output layer, z nota-
tion means a complex conjugate and f is an activation func-
tion (2).

3. Proposed Method

The proposed method consists of three main blocks: the
signal pre-processing block, the feature generation block,
and the CV-MLP. The pre-processing block calculates the
frequency-phase spectrum in the complex form using fast
Fourier transform (FFT). The feature generation block, ex-
plained in detail in the following section, transforms the FFT
output for efficient use with the CV-MLP. Finally, the re-
sults of the CV-MLP are associated with sound source di-
rections. The main structure is shown in Fig. 2.

3.1 Feature Generation

The phase and amplitude information generated by the pre-
processing block for the left and right channels are calcu-
lated as follows:

rLeθLi =

[
rL

0 eθ
L
0 i, · · · , rL

N
2 −1

e
θLN

2 −1
i
]

rReθRi =

[
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R
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N
2 −1

e
θRN

2 −1
i
]

(8)

where rLeθLi and rReθRi are vectors of complex numbers
generated by the FFT, representing amplitude and phase,
and N is the FFT’s window length. Sound level is usually
represented in a logarithmic scale which allows the evalua-
tion of the sound pressure difference, regardless of the abso-
lute sound level. As the sound level difference is represented
by the ratio of two sounds, a logarithmic scale is necessary.
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If a logarithmic scale is not used, the sound pressure differ-
ence is affected by the absolute sound level. However, a log-
arithmic scale would include negative values of amplitude.
As a replacement, the cubic root, which behaves similarly
as the logarithmic scale, was used.

In order to obtain the time delay, the phase difference
is calculated as follows:{

sLe(θR−θL)i

sRe(θL−θR)i (9)

where sL and sR are respectively:

sL =
3√
rL, sR =

3√
rR (10)

The phase difference is linearly proportional to the fre-
quency. If each phase difference is rotated by a correct an-
gle, all phase differences will become 0 radians. Otherwise,
the phase differences will take different values. In case of
correct rotation angles, the summation of values in Eq. (9)
will result in a large amplitude. In the other case, the sum-
mation will result in a small amplitude. Furthermore, fre-
quencies with small amplitudes do not affect the summation
significantly. In other words, the amplitude behaves as a
mask of phase difference.

The complete feature vector is then given by F =

[F0, · · · , FD−1]. The number of features D corresponds to
the number of subdivisions of the interval [−Φ,Φ], where
the optimal value of D is determined experimentally. Each
dth element of the vector F is calculated by subtracting the
aforementioned summation of the right signal from the left
one, as follows:

Fd =

N
2 −1∑
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sL
k e
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N
2 −1
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−
N
2 −1∑
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N
2 −1
φd)i

(11)

where sL
k and sR

k are, respectively, the kth elements of sR and
sR given by Eq. (9), and the rotation angle φd is the dth ele-
ment of [−Φ,Φ]. The subtraction sign indicates which mi-
crophone has the larger amplitude, and thus, sounds coming
from the front and back half-planes can be distinguished.

Figure 3 shows examples of feature vectors generated
from white noise coming from four different directions. It is
clear that each different direction corresponds to a different
value of φ. Figure 4 (a) and (b) are enlarged portions of
Fig. 3 (c) and (d), respectively.

3.2 Localization

As stated before, the localization is performed by a CV-
MLP. In the proposed method, an amplitude-phase activa-
tion function is used as follows:

f (z) = tanh(|z|)ei arg z (12)

The CV-MLP has three layers: an input layer, a hidden

(a) −45◦

(b) 0◦

(c) 45◦

(d) 135◦

Fig. 3 Extracted features for white noise localized in different directions.

layer and an output layer. The number of neurons on the in-
put layer is the same as the dimension of the feature vector.
The final output phase corresponds to the sound source di-
rection. Hence, a complex number of amplitude 1.0 is used
as the desired output. For instance, when a sound source di-
rection of 45 degrees is inputted, e

π
4 i is used as the desired

output.
The order of complexity of the proposed method can

be obtained by analysing each of its blocks independently.
The FFT-based signal preprocessing block has complexity
O(N log N), while the feature generation block has complex-
ity O(ND). The CV-MLP has complexity O(DH), where H
is the number of hidden neurons. By contrast, the widely
used correlation method has complexity O(N2). In the
proposed method, the feature vector dimension D is usu-
ally much smaller than the window length N. Therefore,
the computation cost for the proposed feature generation
method is considerably smaller than the standard correlation
method.
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(a) 45◦

(b) 135◦

Fig. 4 Detailed view of the extracted features (white noise) for two dif-
ferent directions.

4. Experiments

Initially, artificial sound sources were used for evaluation
of the proposed method. The same experiments were con-
ducted for both, CV-MLP and RV-MLP, to verify the advan-
tages of using a CV-MLP.

Then, experiments were conducted using real sounds.
When recording the real sounds, MX184 (SHURE) and
MSP7 STUDIO (YAMAHA) were used for the recording
system.

Table 1 shows experimental conditions. The speaker
distance Lspk represents the distance from the speaker to the
midpoint between the microphones. The rotation Φ must
exceed the maximum phase difference of the sound from the
two microphones. Therefore, the rotation Φ is set to a value
greater than the phase difference of the Nyquist frequency
fnyq, in the case where the sound source is arranged on a

Table 1 Experimental conditions.

Recording

microphones distance (m): Lmic 0.20

speaker distance (m): Lspk 2.00

sampling frequency (Hz): fs 48000

Feature generation

window length: N 16384

rotation (rad): Φ 30π

dimension: D 400

CV-MLP

hidden layer dimension H 20

learning iteration 200

Fig. 5 Emulation system for band-limited signals with added noise.

straight line and two microphones. This value is calculated
as follow:

Φ ≥ 2πLmic fnyq

V

∣∣∣∣
V=342

� 28π (13)

where V is a velocity of sound.
In the experiment, the proposed system localizes sound

source to 8 directions.

4.1 Artificial Sounds

The experiment evaluates the CV-MLP and the RV-MLP
with regard to several frequency ranges and signal-to-noise
ratios (SNR).

Figure 5 shows the experiment flow. The frequency
range of the white noise sound source is limited by a band
pass filter (BPF). This limited noise is then inputted into
the emulation system which introduces a time delay and a
sound pressure gain. The delay and the pressure gain were
obtained using the distance between the microphone and the
speaker and the microphone’s polar pattern. The delay T
and the pressure gain A are obtained as follows:
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Table 2 Test sounds.

cut frequency ratio 1/20, 2/20, · · · , 20/20

S/N ratio (dB) −6, 0, 6, 12, 18, 24,∞

Fig. 6 Filter’s frequency response (band ratio: 5/20).

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣−−→MS
∣∣∣∣ f s

V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

A = g(arg−−→MS ) − 20 log10

∣∣∣∣−−→MS
∣∣∣∣ (15)

where −−→MS is a vector from the microphone to the sound
source and g(·) is the microphone’s polar pattern function.
The emulated sound x′(t) is generated from the sound source
x as follows:

x′(t) = Ax(t − T ) (16)

After emulation, uncorrelated white noise is added to the
emulated sounds as environmental noise.

Table 2 shows the parameters used to generate the ar-
tificial sounds. The cut frequency ratio is the ratio between
the filter pass-band range and the Nyquist frequency. For
example, for a sampling frequency of 48000 Hz, a cut fre-
quency ratio of 3/20 means 3600 Hz bandwidth with the
24000 Hz Nyquist frequency. Actually, three types of fil-
ters were used: low-pass, band-pass and high-pass. Figure 6
shows an example of each of the filters’ frequency response.
The center frequency of the band-pass filter is half of the
Nyquist frequency. The SNR is measured only within the
filter pass range. The signal level is the average sound level
of the white noise emulated by the recording system, while
the noise level is the sound level of the white noise added af-
ter the emulation system. Thus, the obtained values of SNR
are larger than they would have been if calculated across the
whole spectrum. The reason for this is that the SNR at the
stop range of the filters has a negative infinite value, since
only noise is present.

At first, for each combination of parameters of Table 2,
an input sound signal was generated. Each signal was used
to train and test the CV-MLP independently. This process
was repeated for each filter type. The obtained results are

(a) low-pass

(b) band-pass

(c) high-pass

Fig. 7 Localization error for a single training set.

shown in Fig. 7.
Then, all signals for which the error was below 5 de-

grees were combined and used to retrain the CV-MLP. Un-
like the training, the test set also included the signals for
which the error was larger. The results are shown in Fig. 8.
Finally, the training sets for all filter types were combined
and used to re-train the CV-MLP. The complete set of
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(a) low-pass

(b) band-pass

(c) high-pass

Fig. 8 Localization error for the combined training sets.

sounds was then used to test the CV-MLP, of which the re-
sults are shown in Fig. 9.

From the experimental results, it is clear that the value
of SNR needs to exceed 6 dB in order to achieve a success-
ful sound localization. For lower SNR values, it becomes
difficult to obtain consistent time delays. Moreover, narrow
frequency ranges also make it difficult to obtain the correct

Fig. 9 Localization error for the combination of all filters.

time delay, since several values of delay can be estimated
from a single phase difference. Furthermore, when com-
pared to high frequencies, despite the same time delay, much
smaller phase differences are obtained in the case of low
frequencies, making the estimation of the time delay less
accurate. The results indicate that low frequency sounds re-
quire a bandwidth ratio of at least 3/20, while high frequency
sounds only require a minimal bandwidth ratio of 1/20.

4.2 Comparison with Real-Valued MLP

The CV-MLP’s performance was compared to that of the
RV-MLP. The same data was used for training and testing
both models. The number of neurons in the hidden and out-
put layers is the same for both models. The input layer of the
RV-MLP has double the dimension of that of the CV-MLP,
as the complex values of the features have to be divided into
two real values (amplitude and phase). In the RV-MLP the
sigmoid function was used as the activation function.

Figure 10 shows the accuracy of the RV-MLP. Clearly,
those results are significantly inferior to the results of the
CV-MLP shown in Fig. 7. For the purpose of our method,
it is necessary to consider a combination of amplitude and
phase as the features. The inferior results of the RV-MLP
can thus be explained by the fact that it can only consider
amplitude and phase independently. Hence, it is sound to
conclude that complex-valued neural networks are the more
appropriate approach for the sound localization problem.

4.3 Real Sounds

The proposed method was also tested with 21 environmental
sounds listed in Table 3, in which the bold names correspond
to sounds with two different variations. The sounds were
played through a speaker and recorded using two cardioid
microphones arranged according to the diagram in Fig. 11.
The two microphones are fixed to the ends of a bar facing
opposite directions as shown Fig. 11 (a). When using a car-
dioid microphone, signals coming from the back of the mi-
crophone are inverted due to the sensor’s characteristics. In
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(a) low-pass

(b) band-pass

(c) high-pass

Fig. 10 Localization error for RV-MLP.

this case, the time difference cannot be calculated properly.
To avoid this, the microphones are tilted 70 degrees upwards
as shown Fig. 11 (b). By doing this, the signals from both
front and back present the same phase, yet differ in ampli-
tude. Figure 11 (a) defines the sound direction angles refer-
enced hitherto.

Figure 12 shows localization accuracy for the proposed

Table 3 Sound types.

pure tone (250Hz, 500Hz, 1kHz, 2kHz, 4kHz)

alarm

siren (ambulance, fire truck, police car)

interphone

kettle

mobile phone

phone

voice

white noise

(a) top view (b) side view

Fig. 11 Microphone configuration used to record real sounds.

Fig. 12 Localization accuracy of real sounds.

method with different sounds. For the purpose of this exper-
iment, directions are divided into eight sectors of 45 degrees
each. Therefore, an absolute error of up to 22.5 degrees
is accepted as a correct answer. From Fig. 12, the accu-
racy of mobile (a) and white noise was 100%. The accu-
racy of fire truck was also very high. On the other hand,
the accuracy of pure tones was considerably low. That can
be explained by the fact that pure tones contain only one
single frequency from which only one phase difference can
be extracted. However, in order to calculate a time delay,
the phase information of at least two different frequencies is
needed. Nevertheless, some of the pure tones present non-
zero accuracy. As the propose method treats the localization
problem as a pattern recognition problem, some of the data
can be classified to the correct directions due to small differ-
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(a) ambulance

(b) interphone

Fig. 13 Power spectrum of low accuracy sounds.

ences among the feature vectors.
Figure 13 shows the power spectrum of the siren (am-

bulance) and interphone. Each sound contains only one
frequency component of around 950 Hz and 750 Hz re-
spectively. Thus, because the restricted spectrum of the
sound approaches a pure tone, correct time delay informa-
tion could not be obtained. On the other hand, sounds with
slightly more varied spectral components produce fairly ac-
curate results.

5. Conclusions

This paper presented a novel approach for sound localiza-
tion based on complex-valued neural networks. This method
uses time delay, phase delay and sound pressure difference
information, extracted from the sound signals acquired by
two microphones, in order to generate the features. The fea-
tures are then classified by a CV-MLP. In the experiments,
the proposed method was used to localize sound sources in
eight different directions distributed along both the front and
the rear planes.

Artificial sounds with at least 6 dB SNR were success-
fully localized by the system. In the case of low-frequency
sounds, a bandwidth ratio of at least 3/20 is needed for suc-
cessful localization. This behavior was confirmed by exper-
iments using real sounds in which the sounds with varied
spectral components presented a higher accuracy than the
ones with narrow spectra. This is explained by the fact that
multiple frequency components are required for extracting
meaningful time delay information. Moreover, the CV-MLP
model consistently outperformed its RV-MLP counterpart.
This is due to the real-valued neural networks’ treatment of
the phase and the amplitude as independent information.

Future research aims at improving the resolution of the
system from the current 45 degrees. In addition, while the
proposed method deals with sound source localization as a

classification problem, it is possible to treat it as an esti-
mation problem since the CV-MLP can naturally generate
analog outputs.
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