
2268
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.10 OCTOBER 2013

LETTER

Static Mapping of Multiple Data-Parallel Applications on
Embedded Many-Core SoCs∗

Junya KAIDA†, Nonmember, Yuko HARA-AZUMI††, Takuji HIEDA†, Ittetsu TANIGUCHI†,
Hiroyuki TOMIYAMA†a), and Koji INOUE†††, Members

SUMMARY This paper studies the static mapping of multiple applica-
tions on embedded many-core SoCs. The mapping techniques proposed
in this paper take into account both inter-application and intra-application
parallelism in order to fully utilize the potential parallelism of the many-
core architecture. Two approaches are proposed for static mapping: one
approach is based on integer linear programming and the other is based on
a greedy algorithm. Experiments show the effectiveness of the proposed
techniques.
key words: many-core SoCs, application mapping, system-level design,
embedded systems

1. Introduction

The embedded System-on-Chip (SoC) architecture has
shifted from the single-core to multi-core paradigm because
of the need for improved power/performance efficiency, and
we are now heading towards the many-core era. In order
to fully utilize the high parallelism of the many-core ar-
chitecture, mapping of application software onto cores is
one of the important technologies. Especially in embed-
ded SoCs, application mapping needs to take into account
not only application-level parallelism (inter-application par-
allelism) but also data parallelism within applications (intra-
application parallelism). One reason is that, unlike scientific
applications, the amount of data parallelism inherent in in-
dividual embedded applications is limited. Another reason
is that many embedded applications are inherently parallel.

This paper proposes two techniques for mapping mul-
tiple applications onto homogeneous many-core SoCs for
embedded systems. The proposed techniques consider both
inter-application and intra-application parallelism simulta-
neously. One of the proposed techniques is an exact solution
approach based on Integer Linear Programming (ILP), and
the other is based on a greedy algorithm. The two techniques
decide the number of cores to be used for each application.

The rest of this paper is structured as follows. Re-

Manuscript received February 21, 2013.
Manuscript revised June 24, 2013.
†The authors are with Ritsumeikan University, Kusatsu-shi,

525–8577 Japan.
††The author is with Nara Institute of Science and Technology,

Ikoma-shi, 630–0192 Japan.
†††The author is with Kyushu University, Fukuoka-shi, 819–

0395 Japan.
∗A preliminary version of this work has partially been pre-

sented at International SoC Design Conference in November 2012.
a) E-mail: ht@fc.ritsumei.ac.jp

DOI: 10.1587/transinf.E96.D.2268

lated works are reviewed in Sect. 2. Two application map-
ping techniques considering both inter-application and intra-
application parallelism are proposed in Sect. 3, and experi-
ments are shown in Sect. 4. Finally, Sect. 5 concludes this
paper.

2. Related Work

Application mapping for multi/many-core architectures has
been an important research topic for many years. Recent
studies include [1] which proposes a heuristic algorithm for
static task mapping on multi-core embedded systems. The
work supports task mapping to hardware accelerators as
well as CPU cores, but data parallelism is not considered.
In other words, a task is assigned a single core. The tech-
niques presented in [2]–[5] take into account data paral-
lelism within tasks as well as task parallelism. Their meth-
ods take a task graph as input and perform task schedul-
ing and mapping simultaneously, aiming at minimization
of schedule length or maximization of pipeline throughput.
Our work presented in this paper is similar to their works
in a sense that we try to find the optimal number of cores
for each task or application. However, our software model
is different from theirs in that they take a task graph (i.e.,
a set of dependent tasks) of a single application as input
and try to minimize the execution time of a single activation
of the application or to maximize the pipeline throughput,
while we target embedded systems where multiple applica-
tions run concurrently and repeatedly at different execution
rates. The applications may be independent or dependent.
To the best of our knowledge, this is the first paper which
studies application mapping for such embedded systems.

3. Application Mapping Techniques

This section proposes two techniques for the static mapping
of applications onto cores. The techniques determine, for
each application, the number of cores onto which the ap-
plication is mapped, considering both inter-application and
intra-application parallelism simultaneously.

3.1 Many-Core Architecture and Application Models

In this paper, we assume homogeneous many-core architec-
tures such as the SMYLEref architecture [6]. If there are N
applications in the system, the architecture must contain at

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



LETTER
2269

Fig. 1 An example of exclusive application mapping.

least N cores. The architecture must support data-parallel
execution within an application as well as parallel execu-
tion of multiple applications. We do not assume any spe-
cific interconnection network among cores, but assume that
the execution time of an application does not depend on the
physical position of the application unless the application is
assigned the same number of cores. We implicitly assume
that each core has local memory where the application code
is stored. In case the application code is stored in shared
memory, each core should have cache memory in order to
reduce memory access traffic.

We assume embedded systems where multiple appli-
cations run in parallel. The applications are repeatedly ex-
ecuted at runtime in a cyclic way. Their execution can be
periodic, aperiodic or sporadic, and their execution repeti-
tion rates may differ between applications. We implicitly
assume that the applications are independent of each other.
It is still possible to apply this work to dependent applica-
tions, but the obtained mapping results may not be optimal
depending on how much the applications communicate with
each other.

3.2 Problem Description

In this work, applications are mapped onto cores in a static
and exclusive way. Static mapping means that application
mapping decision is made at a design time, and the applica-
tions never migrate over the cores at run time. This reduces
the runtime overhead (in terms of performance and memory
requirement) at the cost of lower CPU utilization compared
with dynamic mapping. Also, our mapping is exclusive,
which means that no two applications use the same cores.
An application may use multiple cores for data-parallel exe-
cution, but a core is assigned only a single application. Such
single-application (single-task) mapping further reduces the
runtime overhead as demonstrated in [7].

Figure 1 depicts an example of application mapping,
where five applications are mapped onto a 64-core SoC in a
static and exclusive manner. As shown in the figure, applica-
tions may use the different numbers of cores. For example,
Application 1 has a rich amount of data parallelism, and thus
the application is assigned a large number of cores. On the
other hand, applications with poor data parallelism such as
Application 5 are assigned the small number of cores.

In general, the execution time and energy consump-

Fig. 2 Normalized performance on different number of cores.

tion of an application depend on the number of cores which
the application uses. Figure 2 shows the normalized per-
formance of eight application programs from the SPLASH-
2 benchmark suite executed on the Graphite cycle-accurate
multi-core simulator [8]. For each program, we changed the
number of cores from 1 to 256, and measured the number
of execution cycles. The cores are connected in a 2D-mesh
structure, and each core is based on Intel x64 ISA (1GHz,
single issue) with private L1 I-cache (32KB, 4 ways), pri-
vate L1 D-cache (32KB, 4 ways), and L2 coherent cache
(unified, 512KB, 8 ways). In addition, the architecture
has main memory shared by all cores. Figure 2 shows
that eight programs feature different performance scalability
curves. For example, the performance of ocean contiguous
scales up nicely until 128 cores, but it drops at the point
of 256 cores. Barnes continuously scales up to 256 cores,
but the performance improvement is relatively lower than
ocean contiguous. Cholesky does not scale up at all.

As we see in Fig. 2, different applications present dif-
ferent performance scalability curves, meaning that the op-
timal number of cores to be assigned depends on the appli-
cation. In addition, we have to remind that the total number
of cores is limited. For example, let us consider a scenario
where we need to map barnes and radix onto a 64-core SoC.
Of course, we cannot allocate 64 cores to both of the two
applications because we have only 64 cores in total. In this
case, assigning 32 cores to each application is a natural so-
lution.

In the example above, we used the normalized perfor-
mance as a metric for application mapping, but in practice
we need to consider other factors such as energy consump-
tion. Hereafter, for generality, let gain be a metric which in-
dicates not only performance but also energy consumption
and other important factors.

Let gaini, j indicate the gain of i-th application when
the application is assigned j cores. We assume that gaini, j
for each application is given prior to application mapping.



2270
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.10 OCTOBER 2013

Then, the static application mapping problem is defined as
follows: Given gaini, j for each application and the total
number of cores available, determine the number of cores
for each application so that the total gain is maximized.

3.3 An ILP-Based Technique

We formulate the application mapping problem stated in
Sect. 3.2 as an Integer Linear Programming (ILP) problem.
By solving the ILP problem using a commercial or free ILP
solver, an optimal application mapping solution is obtained.

Let mapi, j be a 0/1 decision variable whose value is
1 if application i is assigned j cores. Otherwise, mapi, j is
0. Also, let Ncore indicate the number of cores available
on the target SoC. Then, the ILP formulation of the static
application mapping problem is formulated as follows:

Maximize :
∑

i

∑

j

mapi, j × gaini, j (1)

Subject to : ∀i,
∑

j

mapi, j = 1 (2)

∑

i

∑

j

j × mapi, j ≤ Ncore (3)

Objective function (1) to be maximized expresses the
total gain of the applications. Formulas (2) and (3) are the
constraints about mapping. Formula (2) says that each ap-
plication should be assigned at least one core. Formula (3)
shows that the total number of assigned cores should not
exceed the total number of cores available on the SoC.

3.4 A Greedy Algorithm

Since the ILP problem defined in Sect. 3.3 is NP-hard, exact
solutions may not be obtained in a practical time for a large
set of applications and a large number of cores. Therefore,
we have developed a fast greedy algorithm for the mapping
problem.

Let mapi denote the number of cores assigned to appli-
cation i. Then, our greedy algorithm works as follows.

1. mapi = 1 for each application.
2. For each application, calculate the gain increase, i.e.,

gaini,mapi+1−gaini,mapi
, in case we allocate an additional

core to the application.
3. Select the application with the largest gain increase,

and set mapi = mapi + 1.
4. Repeat steps 2 to 4 until no core is available.

The computational complexity of the greedy algorithm
is O(Napp ·Ncore), where Napp and Ncore are the number
of applications and that of cores, respectively.

4. Experiments

We have evaluated the two application mapping techniques
presented in Sect. 3, i.e., the ILP-based approach and the
greedy algorithm. We used IBM ILOG CPLEX 12.5 as

Fig. 3 Results of three mapping techniques for Set 1.

Fig. 4 Results of three mapping techniques for Set 2.

Fig. 5 Results of three mapping techniques for Set 3.

an ILP solver. We used three sets of application programs
based on the SPLASH-2 benchmark suite as shown in Fig. 2.
Set 1 includes water nsquared, ocean non contiguous,
ocean contiguous and lu non contiguous, while Set 2 in-
cludes radix, lu contiguous, cholesky and barnes. Set 3
includes all of the eight programs. As gain values, we used
the normalized performance whose baseline is the execution
on a single core as shown in Fig. 2.

The experimental results for Sets 1, 2 and 3 are shown
in Figs. 3, 4 and 5, respectively, where the Y-axis presents
the normalized gain. Because, to our knowledge, no existing
techniques are directly applicable to our application map-
ping problem, we compared our techniques with a simpler
mapping technique with which cores are evenly allocated to



LETTER
2271

Table 1 Computation time [milliseconds].

all applications. For example, if we have 32 cores for four
applications, each application is assigned eight cores. This
mapping technique is labeled “even” in the figures.

In any cases, our ILP technique is the best, but we ob-
serve that our greedy algorithm also yields the optimal or
near-optimal mapping solutions in many cases. The “even”
technique, on the other hand, could hardly find good map-
ping solutions because it does not take into account the char-
acteristics of the applications. This is observed clearly for
Set 3 where the “even” technique is less efficient than for
Sets 1 and 2. As seen in Fig. 2, ocean contiguous and
ocean non contiguous scale up nicely along with the num-
ber of cores, while cholesky does not. Set 3 contains these
applications with such different characteristics, and there-
fore, the “even” technique is not good for Set 3.

In general, the results in Figs. 3, 4 and 5 present simi-
lar characteristics. As an example, let us take a closer look
at the results for Set 3 in Fig. 5. Since Set 3 contains eight
applications, when the total number of cores is eight, each
application is assigned a single core by any of the three map-
ping techniques, and this is the only feasible solution (thus,
the best). In the rightmost case, 2048 cores are more than
sufficient for the eight applications, because each applica-
tion is assumed to be assigned at most 256 cores as shown in
Fig. 2. Therefore, any of the three mapping techniques eas-
ily found the optimal mapping solution, i.e., 256 cores for
barnes, lu contiguous and lu non contiguous, 128 cores
for radix, ocean contiguous and ocean non contiguous,
and 64 cores for cholesky and water nsquared. When the
number of cores is between 16 and 1024, there exist a num-
ber of feasible mapping solutions to be explored, and that is
why the results of the three techniques differ.

The runtimes of the ILP solver and the greedy algo-

†In our experiments, the ILP solver was fast enough because
we restricted that each application is assigned 2n cores where n is a
positive integer. This limitation comes from our simulation setups,
not from our mapping techniques. If we assign cores in a finer
granularity, the runtime will be much longer.

rithm on Intel Core i5 (1.7GHz, 2 cores / 4 threads) with
4GB memory are presented in Table 1. The runtime of the
ILP solver was within 1 second in our experiments†, and the
greedy algorithm was much faster.

5. Conclusions

In this paper, we have proposed static application map-
ping techniques for embedded many-core SoCs. The pro-
posed techniques take into account both inter-application
and intra-application parallelism in order to efficiently uti-
lize the potential parallelism of the many-core architecture.
Experiments show the effectiveness of the mapping tech-
niques.

At present, this work does not assume that applications
have deadline constraints. In the future, we will take into
account deadline constraints of individual applications.

Acknowledgements

The authors would like to thank Professor Hiroshi Sasaki for
his support in conducting the experiments. This work was
in part supported by NEDO.

References

[1] Y. Ando, S. Shibata, S. Honda, H. Tomiyama, and H. Takada, “Fast
design space exploration for mixed hardware-software embedded sys-
tems,” International SoC Design Conference (ISOCC), 2011.

[2] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, “A framework for
exploiting task and data parallelism on distributed memory multicom-
puters,” IEEE Trans. Parallel Distrib. Syst., vol.8, no.11, pp.1098–
1116, Nov. 1997.

[3] H. Yang and S. Ha, “ILP based data parallel multi-task map-
ping/scheduling technique for MPSoC,” International SoC Design
Conference (ISOCC), 2008.

[4] H. Yang and S. Ha, “Pipelined data parallel task mapping/scheduling
technique for MPSoC,” Design Automation and Test in Europe
(DATE), 2009.

[5] N. Vydyanathan, S. Krishnamoorthy, G.M. Sabin, U.V. Catalyurek,
T. Kurc, P. Sadayappan, and J.H. Saltz, “An integrated approach
to locality-conscious processor allocation and scheduling of mixed-
parallel applications,” IEEE Trans. Parallel Distrib. Syst., vol.20, no.8,
pp.1158–1172, Aug. 2009.

[6] M. Kondo, S.T. Nguyen, T. Hirao, T. Soga, H. Sasaki, and K. Inoue,
“SMYLEref: A reference architecture for manycore-processor SoCs,”
Asia and South Pacific Design Automation Conference (ASP-DAC),
2013.

[7] H. Xiao, T. Isshiki, A. Ullah Khan, D. Li, H. Kunieda, Y. Nakase, and
S. Kimura, “A low-cost and energy-efficient multiprocessor system-
on-chip for UWB MAC layer,” IEICE Trans. Inf. & Syst., vol.E95-D,
no.8, pp.2027–2038, Aug. 2012.

[8] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C.
Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” High Performance Computer Architecture
(HPCA), 2010.


