
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013
2309

PAPER

An Improved Model of Ant Colony Optimization Using a Novel
Pheromone Update Strategy

Pooia LALBAKHSH†∗, Member, Bahram ZAERI††, Nonmember, and Ali LALBAKHSH†††a), Member

SUMMARY The paper introduces a novel pheromone update strategy
to improve the functionality of ant colony optimization algorithms. This
modification tries to extend the search area by an optimistic reinforcement
strategy in which not only the most desirable sub-solution is reinforced
in each step, but some of the other partial solutions with acceptable lev-
els of optimality are also favored. therefore, it improves the desire for the
other potential solutions to be selected by the following artificial ants to-
wards a more exhaustive algorithm by increasing the overall exploration.
The modifications can be adopted in all ant-based optimization algorithms;
however, this paper focuses on two static problems of travelling salesman
problem and classification rule mining. To work on these challenging prob-
lems we considered two ACO algorithms of ACS (Ant Colony System) and
AntMiner 3.0 and modified their pheromone update strategy. As shown by
simulation experiments, the novel pheromone update method can improve
the behavior of both algorithms regarding almost all the performance eval-
uation metrics.
key words: ant colony optimization, ant colony system, ant-miner, classifi-
cation rule mining, learning automata, reinforcement learning

1. Introduction

Ant colony optimization (ACO) was adopted to solve dif-
ferent problems in both classic computer literature and real
world challenges just after its introduction to the world [1].
Although the underlying theory of this evolutionary method
is pretty simple and follows the philosophy similar to many
other iterative evolutionary approaches, its multiagent po-
tential provides a scalable and flexible structure to tackle
different kinds of problems even better than some other evo-
lutionary methods. Inspired by real foraging ants, ACO
takes advantage of independent software agents simulating
real foraging ants to find partial solutions. These artificial
ants also make use of an indirect communication strategy
which is called stigmergy. This strategy uses the environ-
ment as a shared medium for the exploring ants to inform
each other about their experience [2]. The platform of stig-
mergy is the advantage of ACO over other schemes. This
feature eliminates the need for centralized control and pre-
pares an infrastructure to encompass both local and global
information for the search process. In other words, artificial
ants in ACO are not confined to a special area of the problem

Manuscript received May 8, 2013.
†The author is with the Islamic Azad University-Borujerd

Branch, Borujerd, Lorestan, Iran.
††The author is with the Young Researchers Club, Arak Branch,

Islamic Azad University-Arak Branch, Arak, Iran.
†††The author is with the Islamic Azad University, Kermanshah

Branch, Kermanshah, Iran.
∗Presently, with the Modirane Danesh Mehvar Computer Co.

a) E-mail: ali.lalbakhsh@yahoo.com
DOI: 10.1587/transinf.E96.D.2309

space; they can spread throughout the search space based on
the predefined plans and/or heuristic actions to find better
sub-solutions and accumulate their local/non-local experi-
ence onto artificial pheromone trails which can be further
used by the whole colony. In almost any ACO algorithm,
problem is modeled as a connected graph together with the
required data structures for the process of stigmergy. Artifi-
cial ants traverse the graph edges to build a partial solution
and store the related optimization data on nodes. This infor-
mation is used by other ants to choose better alternatives to
converge to the problem solution [1].

Although the artificial ants are mostly reputed as soft-
ware artificial agents, graph nodes are also important agents
sometimes much more active than artificial ants [3]. Deeper
conceptual study on the graph nodes reveals their capabili-
ties and intelligence in terms of learning and decision mak-
ing [4]. In ACO, graph nodes can be studied as learning
automata (LA) in which action set for each automaton con-
tains the goals towards which the artificial ants are triggered.
For each automaton the environmental response is the good-
ness of the selected action evaluated through a problem de-
pendent evaluation function. We will use the LA model to
study the characteristics of ACO pheromone update and to
describe the theoretical aspects of our proposal.

Our proposed algorithm deals with the pheromone up-
date phase of ACO which impacts the efficiency of the algo-
rithm. Finding better solutions for a specific problem with
a huge or dynamic search space closely depends on how
timely and extensively the algorithm covers the search space
and how the learning process converges to the global optima.
The novel strategy proposed in this paper tries to increase
exploration towards potential areas of the problem space ac-
cording to previously gathered optimization data. To ana-
lyze the efficiency of our proposed algorithm, we focused
on two ACO static algorithms which are ACS which faces
travelling salesman problem and Ant-Miner which is used
for classification rule mining through data sets and equipped
them with our new pheromone update strategy. As simula-
tion results show, the proposed approach works well in both
cases in almost all evaluation metrics.

2. General Ant Colony Optimization Approach

As a general optimization method, ant colony optimization
can be applied to solve an extensive category of optimiza-
tion problems. Although details of each algorithm should be
adjusted according to the nature of the problem, the whole

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

2310
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

anatomy is fixed as three main phases illustrated in Algo-
rithm 1 [1]. This structure is then customized and articulated
according to different application domains.

Algorithm 1 General Procedure of ACO Metaheuristic

Procedure ACO Metaheuristic
Schedule Activities

Construct Solutions
Update Pheromone
Apply DeamonActions

End Schedule Activities
End Procedure

The processes of generating exploring ants and for-
warding them through the problem search space are ac-
complished in the phase of Construct Solutions. According
to the algorithm, artificial ants may use forward-backward
model or forward model. In forward-backward model after
constructing a partial solution by forward ants, a backward
ant is generated corresponding to each forward ant to trace
back and update pheromone values for the corresponding
solution [5], [6], while in forward model no backward ant
is generated and the forward ant itself is in charge of up-
dating pheromone values during or after constructing a sub-
solution. Ant-based routing algorithms mostly use forward-
backward model while both algorithms in this paper use
the forward model. At the core of the Construct Solutions
phase, is a function to evaluate each partial solution. This
function is responsible for accepting or rejecting a solu-
tion according to the predefined metrics. Each acceptance
leads to a pheromone update process mentioned as Up-
date Pheromone phase in Algorithm 1, allowing the corre-
sponding ant to add its experience in the form of increasing
a pheromone value as an attracting signal for the other ants
to get informed about the feasibility of the corresponding
partial solution. In its basic form, pheromone update is ac-
complished by the following relation[1]:

τi j ← τi j + Δτ (1)

Where τi j is the pheromone value assigned to the transition
of state i to state j, and Δτ is the reward or reinforcement
factor dedicated to this transition. To control pheromone
values, different approaches may be adopted. Some of
these strategies are using probabilistic quantities bounded
in the closed interval of [0,1] [5], [6], defining upper and
lower limits for pheromone values [7], and making use of a
pheromone evaporation process [1]. Apply DeamonAction
procedure is an optional phase which cannot be accom-
plished by artificial ants and needs centralized actions. The
purpose of daemon action which can be implemented as a
local search is to refine current partial solution to obtain bet-
ter results [8].

To narrow the subject and focus on our proposed ap-
proach in the next two sections we study Ant Colony Sys-
tem (ACS) and Ant-Miner as two instances of static ACO

algorithms.

3. Ant Colony System for Travelling Salesman Prob-
lem

In travelling salesman problem (TSP), having N distinct
cities, the purpose is to find a tour involving all cities that
minimizes tour length formulated as [8]:

N−1∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(N), cπ(1)) (2)

Where d(ci, c j) is the distance between city i to city j and π
is the resulted tour. This paper considers symmetric TSP in
which the following assumption is considered:

d(ci, c j) = d(c j, ci); f or1 ≤ i ≤ N, 1 ≤ j ≤ N (3)

Several algorithms have been proposed to solve TSP
using ACO [7], [9]–[17] while we selected Ant Colony Sys-
tem or ACS algorithm because of its acceptable results and
scalability. Since in this paper we are dealing with huge
graphs, scalability is an important factor which is presented
by ACS using a limited number of exploring ants indepen-
dent from the number of cities†. Considering Algorithm 1,
in the Construct Solutions phase of ACS, artificial ants are
generated and triggered from a source city to construct a
Hamiltonian tour by means of pheromone data and some
heuristic values by adding nodes that are not yet included in
the tour. Selecting the next city from the current one is ac-
complished by the following relation called pseudorandom
proportional rule:

J =

⎧⎪⎪⎨⎪⎪⎩
argmaxi∈Nk

i
{τil[ηil]β} if q ≤ q0

pk
i j otherwise

(4)

Where q is a random variable uniformely distributed in the
closed interval of [0,1], and parameter q0 is defined as 0 ≤
q0 ≤ 1. pk

i j is determined according to:

pk
i j =

[τi j]α[ηi j]β∑
l∈Nk

i
[τil]α[ηil]β

, j ∈ Nk
i (5)

Where Nk
i corresponds to the neighboring nodes of

node i which are not yet visited by ant k, α and β are two pa-
rameters for balancing the importance of pheromone value
and heuristic information respectively, and ηil is a heuristic
value calculated as:

ηi j =
1

di j
(6)

In ACS, the Update Pheromone phase consists of two up-
date processes namely: global update and local update. In

†In many other proposed algorithms number of exploring ants
are set equal to the number of nodes. Although this strategy works
well with small graphs, it is not applicable for huge graphs with
huge numbers of nodes causing inapplicable algorithm runtimes.

LALBAKHSH et al.: AN IMPROVED MODEL OF ANT COLONY OPTIMIZATION USING A NOVEL PHEROMONE UPDATE STRATEGY
2311

the sense of global update, at the end of each iteration, a
pheromone update process is accomplished according to (7)
by only the ant which has caused the best tour:

τi j ← f (x) =

⎧⎪⎪⎨⎪⎪⎩
(1 − ρ)τi j + ρΔτ

bs
i j ∀(i, j) ∈ T bs

τi j otherwise
(7)

Where ρ is the evaporation factor, τi j corresponds to the cur-
rent amount of pheromone on the link (i, j), T bs is the best-
so-far tour in the iteration, and Δτbs

i j is the reward given to
the iteration best tour as:

Δτbs
i j =

1
cbs

(8)

Where cbs refers to the cost of the best tour in the iteration.
In local pheromone update, update process is done on

the last traversed edge after each tour construction by the
corresponding ant through the following relation.

τi j = (1 − ξ)τi j + ξτ0 (9)

Where ξ is the pheromone decay factor bounded in (0,1]
and τ0 is the initial pheromone value. As a daemon action,
ACS uses a version of 3-opt tour improvement heuristic to
improve the results of the tour construction phase. More
detailed descriptions on ACS can be found in [1], [15], [16].

4. Ant-Miner: An ACO Algorithm for Classification
Rule Mining

The purpose of rule mining is to extract knowledge from
data. More precisely, a classification rule mining algorithm
tries to find precise and comprehensive rules throughout
data repositories for classification. Considering ant colony
optimization, the algorithm is designed as a supervised evo-
lutionary learning algorithm working on structured datasets
with several attributes, their values, and classification cate-
gories. The search space graph is conceptually considered
in runtime according to the terms and attributes of datasets.

The first ACO rule mining algorithm was Ant-Miner
reported by Parpinelli, Lopes, and Freitas to discover clas-
sification rules [18]. This algorithm not only considers the
characteristics of ACO such as stigmergy, evaporation, and
heuristic action, it also benefits from the concept of daemon
action in the form of rule pruning. The overall framework
of Ant-Miner is similar to Algorithm 1; however, a more
detailed algorithm for Ant-Miner can be presented as Algo-
rithm 2.

Like other ACO algorithms, pheromone tables are
identically initialized at the beginning with predetermined
values followed by the three phases of the ACO model. Each
classification rule contains a condition part as the antecedent
and a predicted class.

if < term1 AND term2 AND term3 AND . . . termi > then
< classk >

where termi refers to a selected term and classk refers to a

selected class from the training set.
Each term is a triple <attribute, operator, value>where

value is a value belonging to the domain of attribute, and
operator corresponds to a rational operator. In all datasets
used in our simulations, the operator ”=” is only considered.

Algorithm 2 A general pseudo code for Ant-Miner:
TrainingSet = AllTrainingCases;

While (number of uncovered cases in the training set >
MaxUncoveredCases)

Begin
i = 0 ;
initialize trails () ;
Repeat

i = i + 1 ;
Anti incrementally constructs a rule ;
Prune rule () ;
Update trail (Anti) ;

Until (i ≥ number of ants) OR (Anti has constructed samerule
as the previous T ants) ;

Select the best rule among all constructed rules ;
Remove the cases correctly covered by the selectedrule from training

set ;
End ;

To evaluate and control the rule construction process,
Ant-Miner uses the quality factor Q to remove irrelevant
terms in a process called rule pruning. The quality factor
is calculated as:

Q =
T P

T P + FN
× T N

FP + T N
(10)

In this relation TP is the number of cases involved in the
rule that have a class predicted by the rule. FP reflects the
number of cases covered by the rule having a class different
from the class predicted by the rule. FN shows the num-
ber of cases that are not covered by the rule but that have a
class predicted by the rule, and finally TN is the number of
cases that are not covered by the rule and do not have the
class predicted by the rule. According to relation (10), the
value of Q is bounded in the closed interval of [0, 1]. Larger
values for Q result in higher rule qualities. In Ant-Miner af-
ter constructing a classification rule by each ant, pheromone
update phase is performed in two steps. First, the amount
of pheromone for each termi j occurring in the rule found by
the ant is increased proportional to the quality of that rule.
Then, pheromone evaporation is carried out by decreasing
the amount of pheromone values associated with each termi j

that does not occur in the rule.
Three versions of Ant-Miner are proposed as Ant-

Miner 1.0, Ant-Miner 2.0, and Ant-Miner 3.0. We consid-
ered the latest version according to its superiorities [18]–
[20].

In Ant-Miner 3.0 the pheromone initialization is ac-
complished through the following relation equally for all
pheromone tables:

τi j(t = 0) =
1∑a

i=1 bi
(11)

2312
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

Where a is the number of attributes, and b refers to the
number of values in the domain of attribute i. In the phase
of rule construction, Ant-miner 3.0 adopts a transition rule
as illustrated in the following code to improve exploration.

While (q1 ≤ ϕ)
Begin

If q2 ≤ ∑ j∈Ji
pi j Then Choose termi j ;

End;
Choose termi j with the Max(pi j);

q1 and q2 are randomly generated numbers, and ϕ is a
parameter bounded in [0,1]. Ji refers to the number of ith

attribute values, and the probability of Pi j is calculated as:

pi j(t) =
τi j(t)ηi j∑a

i
∑bi

j τi j(t)ηi j

, ∀i ∈ I (12)

Where ηi j is a heuristic value for termi j, and τi j(t) is the
amount of pheromone available on the relation between at-
tribute i and value j at time t. I refers to a set of attributes
that are not used by the ants. After constructing a rule,
pheromone update phase is performed according to the fol-
lowing update rule:

τi j(t + 1) = (1 − ρ)τi j(t) + (1 − 1
1 + Q

)τi j(t) (13)

Where ρ is the pheromone evaporation factor for
controlling the influence of the history on the current
pheromone trail determined as a constant value of 0.1 and
Q is the rule quality. More details on ant-based classifica-
tion rule mining can be found in [18]–[21].

5. Modifications on ACO Pheromone Update

As mentioned above, pheromone update is a key process in
all ACO algorithms which guarantees the convergence ac-
curacy and speed towards the solution. Our strategy con-
centrates on how to update pheromone trails to increase ex-
ploration to find better partial solutions. In our theoretical
discussions, we focus on reinforcement learning strategy
adopted behind ACO algorithms with the aid of learning
automata theory. Using this well defined model, we study
the way ACS accomplishes the pheromone update phase and
then propose our novel pheromone update strategy.

We start by the general form of pheromone update
strategy which can be illustrated as the following relation:

τi j(n + 1) = (1 − ρ)τi j(n) + Δ ∀i, j ∈ s∗ (14)

Where ρ is the evaporation factor and s∗ corresponds
to set of the selected sub-solutions. For desirable actions
in ACS according to (9) Δ = ξ × τ0 and in Ant-Miner ac-
cording to (13) Δ = (1 − 1

1+Q) × τi j(t). In both algorithms
for other actions Δ = 0 since no pheromone modification is
considered for the actions which are not selected. Assume
a feasible sub-solution with pheromone value τi j where τi j

is the highest value among constructed sub-solutions. Evi-
dently, this solution is selected for the Update Pheromone

phase and the algorithm ignores all the other constructed
solutions even with pheromone values as τi j − ε (where
ε is a very small value). This strategy implies a kind of crisp
decision making for the constructed sub-solutions. In other
words, it is not important how good a sub-solution is, if it is
not the best one. We are to solve this problem with a more
optimistic strategy to cover a group of feasible sub-solutions
in each step to elevate the chance of finding better solutions.

The model which ACS and Ant-Miner follow can be
well studied through the theory of learning automata (LA).
The general non-linear form of learning in LA theory is
stated as [22], [23]:

pi(n + 1) = (pi(n) − (1 − β(n))
∑

j�i

gi(pi(n))−

β(n)
∑

j�i

h j(pi(n)) if α(n) = αi

pi(n + 1) = pi(n) − (1 − β(n))gi(pi(n))+

β(n)hi(pi(n) if α(n) � αi (15)

In this model, β(n) refers to the environmental response
and the functions gi(.)and hi(.) can be associated with re-
ward and penalty respectively. Although some works are
reported considering penalty on ACO algorithms [3], ACS
and Ant-Miner like most of the other ACO algorithms are
designed in reward-inaction form ignoring penalizing unde-
sirable actions. Considering β(n) = 0 , penalty statement of
hi(.) is removed and the following relation will be resulted
from (15):

pi(n + 1) = pi(n) − (1 − β(n))
∑

j�i

gi(pi(n)) if α(n) = αi

pi(n + 1) = pi(n) − (1 − β(n))gi(pi(n)) if α(n) � αi

(16)

Defining r = 1 − β(n) as the reinforcement factor, rela-
tion (16) can be summarized into the following:

pi(n + 1) = pi(n) + r(1 − pi(n)) if α(n) = αi

pi(n + 1) = pi(n) − r(pi(n)) if α(n) � αi (17)

To use the LA model, the pheromone update model of ACO
should be mapped onto a probability model. Such an ap-
proach is used in ant-based routing algorithms in which all
routing tables involve probability values [5], [6], [24]. We
simply use (18) to transform pheromone values into the
corresponding probability values. Since in ACO, problem
space is modeled as a graph, pi(n) in all relations is replaced
with pi j(n)†.

pi j(n) =
τi j(n)

si(n)
(18)

†Each action in the problem space graph corresponds to select-
ing a link from node i as the current node to a next node j, so pi j(n)
corresponds to the probability of an action which selects the link
connecting node i to node j.

LALBAKHSH et al.: AN IMPROVED MODEL OF ANT COLONY OPTIMIZATION USING A NOVEL PHEROMONE UPDATE STRATEGY
2313

Where τi j(n)corresponds to the amount of pheromone
for the link connecting node i to j, and si(n) is the summation
of all pheromone values as:

si(n) =
N∑

j=1

τi j(n) (19)

in (19) N corresponds to all existing selections (actions) in
the ith node of the problem space graph.

Considering (14), and (18), the following integrated
relations for reward-inaction reinforcement learning is
achieved:

pi j(n + 1) =
τi j(n + 1)

si(n + 1)
=

(1 − ρ)τi j(n)

(1 − ρ)si(n) + Δ
(20)

and using (17) we have:

τi j(n + 1)

si(n + 1)
=

(1 − ρ)τi j(n)

(1 − ρ)si(n) + Δ
=
τi j(n)

si(n)
− r
τi j(n)

si(n)
(21)

Finally, the reinforcement factor r is emerged as:

r =
Δ

(1 − ρ)si(n) + Δ
(22)

The above equation reveals the independency of the
reinforcement factor from path probabilities, showing the
linear behavior of the applied update strategy. In other
words, the desirable action in ACO is reinforced regardless
of its current desirability. We call this situation as linear
pheromone update in ACO.

Our novel model is proposed according to the follow-
ing pheromone update model in which not only the desirable
action is reinforced, some other potential actions are also re-
inforced with a different value of Δ̂.

τi j(n + 1) = (1 − ρ)τi j(n) + Δ ∀i, j ∈ s∗ (23)

τi j(n + 1) = (1 − ρ)τi j(n) + Δ̂ ∀i, j � s∗

By extending the model we have:

pi j(n+ 1) =
τi j(n + 1)

si(n + 1)
=

(1 − ρ)τi j(n) + Δ̂

(1 − ρ)si(n) + Δs
∀i, j � s∗

(24)

where Δ̂ = Δ
N , Δs = Δ + NΔ̂ and N > 1 is a constant

value determined by the algorithm. It should be noted that,
by the above definition, Δ̂ is a fraction of Δ so Δ̂ < Δ which
avoids algorithm divergence preventing undesirable actions
to get more reinforcement than the most feasible one. Simi-
lar to (21), by extracting reinforcement factor from (24) we
have:

r =
Δsτi j − Δ̂si(n)

((1 − ρ)si(n) + Δs)τi j(n)
(25)

The above relation shows that the resulted reinforce-
ment factor is a function of τi j(n) and r depends on the
current amount of pheromone. This condition shows that

reinforcement factor varies based on different actions. We
refer to this situation as nonlinear pheromone update; there-
fore, the following definitions can be expressed based on the
above math works:

Difinition 1. In ACO algorithms, a pheromone update
strategy is linear if the pheromone update function is inde-
pendent from the current value of the pheromone related to
the selected action.

Difinition 2. In ACO algorithms, a pheromone update
strategy is non-linear if the pheromone update function is a
function of the current value of the pheromone related to the
selected action.

Nonlinear pheromone update not only reinforces the
current automaton towards better results, it also encourages
the other potential automata to select better actions. We fo-
cus on the concept of exploration while adopting nonlinear
update strategy into both ACS and Ant-Miner. We try to
form a local obligation towards selecting better actions by
defining a kind of coordinated exploration throughout the
system.

6. Adopting Nonlinear Pheromone Update on ACS and
Ant-Miner

Since our strategy deals with the update phase, we only
modify the update pheromone phase in both algorithms. We
embark by travelling salesman problem and then classifica-
tion rule mining will be taken into account.

6.1 ACS with Nonlinear Pheromone Update

Our proposed strategy in ACS uses the same strategy as
the original algorithm in tour construction phase in which
each ant k uses a pseudorandom proportional rule defined
as (4) to move from city i to city j with parameters α =
1 and β = 3. We ignored ACS local pheromone update and
only the global update is considered in which only the ant
that is responsible for the best-so-far tour is allowed to add
pheromone after the iteration. In this step, nonlinear up-
date plays its role through which both selected and some
of the potential non-selected solutions are updated. In non-
linear method, pheromone update for best-so-far solution is
accomplished according to (26) in which cbs refers to the
cost of the best-so-far tour and ρ1 corresponds to the evapo-
ration rate for the best solution, and s∗ refers to the feasible
solution.

τi j(t + 1) = (1 − ρ1)τi j(t) + Δ ∀i, j ∈ s∗ (26)

Δ =
1

cbs
(27)

On the other hand, for the other tours, the update strat-
egy is triggered using a similar equation but with different
parameters as:

τi j(t + 1) = (1 − ρ2)τi j(t) + Δ̂ ∀i, j ∈ s̈ (28)

Δ̂ =
Δ

N
for N > 1 (29)

2314
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

Where ρ2 corresponds to the evaporation rate,
s̈ is the N feasible solutions ranked after the best solution,
N itself is a constant value determined according to the al-
gorithm. To coordinate exploration toward better results, N
is defined as the number of neighbors with larger amount
of pheromone. In our simulations we considered N = 20;
therefore, in addition to the best solution, some other 20 top
solutions are also favored. Relation (28) is the ingredient
added to ACS to favor feasible alternatives which improve
the exploration. As simulation results show, not only this
strategy results in better tour lengths, it also reduces the re-
quired number of iterations and algorithm’s run time.

6.2 Ant-Miner with Nonlinear Pheromone Update

The major anatomy of our non-linear Ant-Miner follows
Ant-Miner 3.0, but we used the update relation proposed
in Ant-Miner 1.0 because its simplicity copes well with the
nonlinear pheromone update model. It also takes advantage
of a rule pruning strategy as a daemon action according to
relation (10).

In our algorithm, pheromone update strategy (13) for
the selected term is changed into (30) similar to Ant-Miner
1.0 [18]. This is a simple form of ACO pheromone update
in comparison with the complicated form used in Ant-Miner
3.0.

τi j(t + 1) = τi j(t) + Qτi j(t) ∀i, j ∈ s∗ (30)

Where Q corresponds to rule quality calculated
through(10). For the other terms, pheromone values are in-
creased as:

τi j(t + 1) = τi j(t) +
Q

2 × N
τi j(n) ∀i, j � s∗ (31)

Where N corresponds to the number of attributes in the
training set. This strategy favors other terms to be consid-
ered for participating in the current rule. Favoring other
terms by the quality factor also prevents stagnation in this
algorithm. Similar to non-linear ACS, by using non-linear
pheromone update in Ant-Miner much more extensive do-
main of terms are considered which can result in more ac-
curate and comprehensive rules.

7. Simulation and Performance Evaluation

We simulated nonlinear update strategy on original versions
of ACS and Ant-Miner 3.0 algorithms considering the mod-
ifications described in the previous section. The main skele-
ton of the previous algorithms are kept unchanged. For the
traveling salesman problem we considered two challenges
of memory consumption and algorithm’s run time in the se-
lection of a competing algorithm. We had to dismiss all ap-
proaches using n exploring ants where n is equal to the num-
ber of cities because of their inapplicable memory consump-
tion and runtimes in huge graphs. We selected ACS+NN
algorithm proposed in [25] considering its improvements
and applicability in huge search spaces. In this algorithm

the nearest neighbor (NN) strategy is used as a kind of lo-
cal search method to boost the efficiency of ACS by select-
ing nearest neighbors in craeting the initializing tour. Hav-
ing such an initialization, the time taken by the ants to find
the shortest path will be reduced. On the other hand, this
scheme of initialization heps the ants to find better tours by
means of these initial suggestions. For an extensive evalua-
tion we simulated four algorithms namely, ACS+NN, ACS
with non-linear pheromone update, Ant-Miner 3.0, and fi-
nally Ant-Miner with non-linear pheromone update. Each
pair is run on same input simulation data on the same ma-
chine to have accurate simulation results.

7.1 Simulation Environments

For travelling salesman problem we used an open source
software package developed by Thomas Sttzle available
online at: http://www.aco-metaheuristic.org/aco-code. We
coded ACS+NN on the original code applying the nearest
neighbor strategy in the initialization phase. To develop
the nonlinear version, the pheromone update phase of the
original code was modified and replaced with the novel
nonlinear update function. Simulations were run on 6 se-
lected graphs from TSPLIB graph repository available at:
http:// www.iwr.uni-heidelberg.de /groups /comopt/software
/TSPLIB95 /tsp/ having 198, 1291, 3038, 5934, 7397, and
finaly 11849 nodes. The characteristics and structures of
these graphs can be found in Table 1. Parameter initializa-
tion was identically accomplished for both ACS+NN and
Non-linear ACS according to the values illustrated in Table
2†.

For classification rule mining, experiments are ac-

Table 1 Graphs used in traveling salesman problem experiments
(EUC 2D corresponds to 2-dimensional Euclidean distance and CEIL 2D
refers to the rounded up EUC 2D used in distance computation).

Graph No. of Cities Type Optimum Solution Origin
d198 198 EUC 2D 15780 TSPLIB
d1291 1291 EUC 2D 50801 TSPLIB
pcb3038 3038 EUC 2D 137694 TSPLIB
rl5934 5934 EUC 2D 556045 TSPLIB
pla7397 7397 CEIL 2D 23260728 TSPLIB
rl11849 11849 EUC 2D 923288 TSPLIB

Table 2 Initialization of constant parameters for both ACS+NN and
Nonlinear ACS.

Parameter Value Algorithms
Max Time 10s ACS+NN / Nonlinear ACS
No.Ants 25 ACS+NN / Nonlinear ACS
Neighbors Bound 20 Nonlinear ACS
ξ 0.1 ACS+NN
α 1.0 ACS+NN / Nonlinear ACS
β 2.0 ACS+NN / Nonlinear ACS
ρ 0.5 ACS+NN / Nonlinear ACS

†in Table 2 some parameters are used for just one of the algo-
rithms because it does not exist in the other one. For example the
parameter Neighbors Bound refers to the N best sub-solutions that
the nonlinear update strategy considers for its pheromone update
process.

LALBAKHSH et al.: AN IMPROVED MODEL OF ANT COLONY OPTIMIZATION USING A NOVEL PHEROMONE UPDATE STRATEGY
2315

complished through GUIAntMiner software, developed
in JAVA by Fernando Meyer under the orientation of
Rafael Stubs Parpinelli who is the initiator of ant-based
rule mining [18]. The code can be downloaded from
http://sourceforge.net. Simulation results were generated us-
ing five standard databases from the UCI Irvine Machine
Learning Dataset Repository used to analyzed rule mining
algorithms (http://sourceforge.net). The characteristics and
structures of these datasets can be found in Table 3. To train
the algorithm about 70% of datasets were used as training
sets. Parameter initialization was identically accomplished
for both AntMiner 3.0 and Non-linear AntMiner according
to the values illustrated in Table 4. All algorithms were sim-
ulated on a Double Core Pentium PC 3.00 GHz with 4 GB
RAM under Windows 7 32-bit operating system.

7.2 Performance Evaluation Metrics

To evaluate nonlinear pheromone update in solving travel-
ling salesman problem, four major metrics were considered
for the original and the nonlinear algorithm. These metrics
are:

• Average branching factor which estimates the explo-
ration of the algorithm by analyzing the distribution of
pheromone trail values.

• Tour length information a group of data about the best
generated tours for both algorithms such as the best try,
average best tour length, standard deviation and error.

• Average iteration for the best tour which shows the av-
erage required iterations to construct the best tour. This
metric shows how good artificial ants are performing
to obtain the best tour which reveals the convergence
speed of the algorithm.

• Average best experienced time which shows how fast
the algorithm finds the feasible solution.

To evaluate the results of non-linear pheromone update

Table 3 Datasets used in the experiments (Tic. stands for Tic-Tac-Toe;
L.B.C. stands for Ljubljana Breast Cancer; W.B.C. stands for Wisconsin
Breast Cancer; D.T.Y. stands for Dermatology; H.P stands for Hepatits;
Cat. stands for Categorical; Con. stands for Contineous).

Data Set No. of Cases Cat. Attributes Con. Attributes Classes
Tic. 282 9 NA 2
L.B.C 683 NA 9 2
W.B.C 985 9 NA 2
D.T.Y 366 33 1 6
H.P 155 13 6 2

Table 4 Initialization of constant parameters for both AntMiner 3.0 and
Nonlinear AntMiner.

Parameter Value Algorithms
Number of Ants 10 AntMiner 3.0 / Nonlinear AntMiner
Min Case Per Rule 5 AntMiner 3.0 / Nonlinear AntMiner
Max Uncovered Cases 10 AntMiner 3.0 / Nonlinear AntMiner
Rules for Convergence 10 AntMiner 3.0 / Nonlinear AntMiner
Number of Iterations 100 AntMiner 3.0 / Nonlinear AntMiner
ρ 0.1 AntMiner 3.0 / Nonlinear AntMiner
ϕ 0.4 AntMiner 3.0 / Nonlinear AntMiner

on Ant-Miner in classification rule mining, three major met-
rics were analyzed which are:

• Number of discovered rules which shows the number
of discovered classification rules for each data set.

• Total elapsed time which reflects the algorithm’s run
time for each data set.

• Accuracy rate which shows how accurate the discov-
ered rules are according to datasets.

To calculate Accuracy Rate the folllowing calculation
was used:

AccuracyRate =
T P + T N

T P + FN + FP + T N
(32)

Where all the acronyms are the same as mentioned in
Sect. 4.

7.3 Simulation Results and Diagrams for ACS+NN and
Nonlinear ACS

To comprehensively evaluate the proposed nonlinear ver-
sion of ACS, we simulated both the ACS+NN and our algo-
rithm on 6 completely connected graphs mentioned in Ta-
ble 1. The results are obtained from 30 independent sim-
ulation runs and for both algorithms 25 artificial ants were
considered. Figure 1 shows the average branching factor for
ACS+NN and ACS with non-linear pheromone update. As
shown in this figure, the non-linear approach outstrips the
ACS+NN in the sense of exploration in a steady way in-
dependent from the number of cities. The reason for this
improvement is reinforcing more trails which prevents arti-
ficial ants to be trapped in local optima in the huge problem
search spaces. As shown in the figure, the nonlinear ap-
proach improves the branching factor by upto 12% in some
cases.

Figure 2 shows the average iteration for the best tour re-
sulted by both algorithms. The non-linear approach shows
its efficiency in convergence speed since less iteration is re-
quired to find the desirable solution. For this metric, im-
provements in some cases are more than 40%. Figure 3 di-
agrams the average best experienced time resulted by both
algorithms. As shown in the diagram, the non-linear ap-
proach experiences much less time than ACS+NN caused

Fig. 1 Average branching factor for ACS+NN and ACS with non-linear
pheromone update for TSP.

2316
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

by the less iteration required in the non-linear approach. al-
gorithm’s run time in some cases reduces by 39%.

Table 5. and Table 6. show the information about the
tours generated by ACS+NN and Nonlinear ACS algorithms
respectively. These tables contain the best try, average of
the best tours, standard deviation for the best tour, and error
which was calculated as the difference between the optimum
solution and the solution found by the algorithms. The in-
formation show the improvements caused by the nonlinear
strategy in comparison with the ACS+NN algorithm.

Fig. 2 Average iteration for the best tour resulted for ACS+NN and ACS
with non-linear pheromone update for TSP.

Fig. 3 Average best computational time for ACS+NN and the non-linear
algorithm for TSP.

Table 5 Tour information for ACS+NN algorithm (Std-Dev stands for
Standard Deviation).

Graph Best Solution Average Best Std-Dev Error
d198 16353 16700.37 209.86 573
d1291 55336 56669.63 935.68 4535
pcb3038 163459 166798.53 1452.48 25765
rl5934 648899 663131.87 6964.85 92854
pla7397 27711693 28210545.33 227682.09 4450965
rl11849 1103806 1119696.73 6977.67 180518

Table 6 Tour information for ACS with nonlinear pheromone
update(Std-Dev stands for Standard Deviation).

Graph Best Solution Average Best Std-Dev Error
d198 16258 16655.77 228.25 478
d1291 54793 55803.60 710.92 3992
pcb3038 162793 164650.70 1011.12 25099
rl5934 639483 648758.47 3826.23 83438
pla7397 27438467 27847044.50 159528.34 4177739
rl11849 1082890 1093732.73 5192.01 159602

Table 7 shows the percentage of improvements of the
nonlinear strategy in comparison with ACS+NN algorithm
for four important factors namely: average branching factor,
average iteration for the best tour, average best experienced
time, and finally the best tour. As shown in the table all these
factos are improved in all problem samples.

7.4 Simulation Results for Ant-Miner

Simulation results for Ant-Miner 3.0 and Ant-Miner with
nonlinear pheromone update are generated through 30 inde-
pendent simulation runs with similar conditions for both al-
gorithms. Table 8 contains accuracy rates generated by both
algorithms. As figured in the table, the non-linear strategy
is able to find more accurate rules than Ant-Miner 3.0. Ta-
ble 9 involves the number of discovered rules for both algo-
rithms. Evidently, for a rule mining algorithm it is preferred
to find much more comprehensive rules, so smaller num-
ber of rules is considered as superiority. As shown in Table
9, in majority of datasets the non-linear approach results in
fewer constructed rules. Table 10 presents the elapsed time
for the process of rule construction for both algorithms. As
shown in the table, the non-linear strategy reduces the re-
quired time for rule construction. This improvement is sig-
nificant when the algorithm deals with large datasets like
W.B.C and L.B.C. Detailed results for improvements caused

Table 7 Improvements of ACS with non-linear pheromone update with
respect to ACS+NN (ABF stands for Average Branching Factor, BT stands
for Best Tour, ABI stands for Average Best Iteration, ABR stands for Av-
erage Best Run time).

Graph ABF BT ABI ABR
d198 7.2% 0.5% 0.9% 13.7%
d1291 7.4% 1.0% 8.5% 10.3%
pcb3038 3.8% 0.4% 26% 26.6%
rl5934 8.4% 1.4% 32% 28.1%
pla7397 5.4% 1% 44.5% 39.5%
rl11849 11.9% 1.9% 26% 19%

Table 8 Comparison of accuracy rates for Ant-Miner 3.0 and Ant-Miner
with nonlinear pheromone update (The acronyms are similar to those used
in Table 3).

Algorithm Tic. L.B.C W.B.C D.T.Y H.P
Ant-Miner 3.0 70.53 75.02 90.66 97.28 81.13
Nonlinear Ant-Miner 74.73 76.62 92.99 97.53 83.5

Table 9 Comparison of the number of discovered rules for both algo-
rithms (The acronyms are similar to those used in Table 3).

Algorithm Tic. L.B.C W.B.C D.T.Y H.P
Ant-Miner 3.0 8.5 6.4 12.4 7.4 5.9
Nonlinear Ant-Miner 8.0 6.3 12.4 7.6 5.1

Table 10 Comparison of total elapsed time for Ant-Miner 3.0 and Ant-
Miner with non-linear pheromone update in seconds (The acronyms are
similar to those used in Table 3).

Algorithm Tic. L.B.C W.B.C D.T.Y H.P
Ant-Miner 3.0 9 3 31 96 5
Nonlinear Ant-Miner 9 2 19 52 5

LALBAKHSH et al.: AN IMPROVED MODEL OF ANT COLONY OPTIMIZATION USING A NOVEL PHEROMONE UPDATE STRATEGY
2317

Table 11 Improvements of Nonlinear AntMiner with respect to the
AntMiner 3.0 (The acronyms are similar to those used in Table 3).

Datasets Accuracy Rate No.Discovered Rules Elapsed Time
Tic. 6.0% 5.9% 0.0%
L.B.C 2.1% 1.5% 33.0%
W.B.C 2.5% 0.0% 38%
D.T.Y 0.2% −2.7% 45%
H.P 2.9% 13.5% 0.0%

by our proposed rule mining algorithm are presented in Ta-
ble 11.

8. Conclusion

Our proposed strategy focuses on the concept of exploration
which is one of the key points in swarm-based evolution-
ary algorithms particularly when the algorithm deals with
huge search spaces. The way the algorithm controls explo-
ration determines how it covers the problem search space.
This issue is much more critical when the algorithm deals
with an instance of NP-hard problems such as TSP and rule
mining with a huge or dynamic search space. The proposed
non-linear pheromone update strategy tries to increase ex-
ploration but in a controlled way to cover the potential ar-
eas of the problem space to find more feasible solutions. As
simulation results show, our new idea improves both metrics
of algorithms’ runtimes and accuracy.

References

[1] M. Dorigo and T. Sttzle, Ant Colony Optimization, MIT Press, Cam-
bridge, MA, USA, 2004.

[2] M. Dorigo, M. Bonabeau, and E. Theraulaz, “Ant algorithms and
stigmergy,” Future Generation Computer Systems, vol.16, no.8,
pp.851–871, 2000.

[3] P. Lalbakhsh, B. Zaeri, A. Lalbakhsh, and M.N. Fesharaki, “AntNet
with reward–penalty reinforcement learning,” Proc. 2nd Int. Conf.
Computational Intelligence, Communication Systems, and Net-
works, pp.17–21, Liverpool, UK, 2010.

[4] K. Verbeeck and A. Now, “Colonies of learning automata,” IEEE
Trans. Syst., Man. Cybern. B, Cybern., vol.32, no.6, pp.772–780,
2002.

[5] G. Di Caro, D. Frederick, and L.M. Gambardella, “AntHocNet:An
adaptive nature-inspired algorithm for routing in mobile ad hoc net-
works,” European Transactions on Telecommunicationsm, vol.16,
pp.443–455, 2005.

[6] G.Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control
for communications networks,” J. Artificial Intelligence Research,
vol.9, pp.317–365, 1998.

[7] T. Sttzle and H.H. Hoos, “Max-Min ant system,” Future Generation
Computer Systems, vol.16, no.8, pp.889–914, 2000.

[8] E. Aarts, Local Search in Combinatorial Optimization, John Wiley
& Sons, 1999.

[9] B. Bullnheimer, R.F. Hartl, and C. Strauss, “A new rank-based ver-
sion of the ant system: a computational study,” Central European
Journal for Operations Research and Economics, vol.7, no.1, pp.25–
38, 1999.

[10] O. Cordon, I.F. De Viana, F. Herrera, and L. Moreno, “A new ACO
model integrating evolutionary computation concepts: The best-
worst ant system,” Proc. 2nd Int. Workshop on Ant Algorithms,
Brussels, pp.22–29, 2000.

[11] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a

search strategy,” Technical Report 91-016, Dipartimento di Elettron-
ica, Politecnico di Milano, Milan, 1991.

[12] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: An auto-
catalytic optimizing process,” Technical Report 91-016 revised, Di-
partimento di Elettronica, Politecnico di Milano, Milan, 1991.

[13] M. Dorigo and V. Maniezzo, “Ant system: optimization by a colony
of cooperating agents,” IEEE Trans. Syst., Man. Cybern., B: Cy-
bern., vol.26, no.1, pp.29–41, 1996.

[14] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD
Thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan,
1992.

[15] M. Dorigo and L.M. Gambardella, “Ant colonies for the travelling
salesman problem,” biosystems, vol.43, no.2, pp.73–81, 1997.

[16] M. Dorigo and L.M. Gambardella, “Ant colony system: A cooper-
ative learning approach to the travelling salesman problem,” IEEE
Trans. Evol. Comput., vol.1, no.1, pp.53–66, 1997.

[17] T. Sttzle and H.H. Hoos, “The max-min ant system and local search
for the travelling salesman problem,” Proc. IEEE Int. Conf. Evolu-
tionary Computation, NJ, USA, pp.309–314, 1997.

[18] R.S. Parpinelli, H.S. Lopes, and A.A. Freitas, “Data mining with
an ant colony optimization algorithm,” IEEE Trans. Evol. Comput.,
vol.6, no.4, pp.312–332, 2002.

[19] B. Liu, H.A. Abbas, and B. McKay, “Density-based heuristic for rule
discovery with AntMiner,” Proc. 6th Australian-Japan Joint Work-
shop on Intelligent and Evolutionary Systems, pp.180–184, Can-
berra, Australia, 2002.

[20] B. Liu, H.A. Abbas, and B. McKay, “Rule discovery with ant colony
optimization,” Proc. IEEE/WIC Int. Conf. Intelligent Agent Tech-
nology, China, pp.83–88, 2003.

[21] P. Lalbakhsh, M.S.K. Fasaei, B. Zaeri, and M.N. Fesharaki, “Fo-
cusing on rule quality and pheromone evaporation to improve ACO
rule mining,” Proc. IEEE Int. Symp. Computers and Informatics,
pp.108–112, Kuala Lumpur, Malaysia, 2011.

[22] K. Narendra and M.A.L. Thathachar, Learning Automata: An Intro-
duction, Prentice Hall, New Jersey, USA, 1989.

[23] J. Oomen and S. Mirsa, “Cybernetics and learning automata,”
Springer Handbook of Automation- Part B, vol.12, no.1, pp.221–
235, 2009.

[24] G. Di Caro, Ant colony optimization and its application to adap-
tive routing in telecommunication networks, PhD Thesis, Polytech-
nic School, Universit Libre de Bruxelles, Brussels, Belgium, 2005.

[25] C.F. Tsai, C.W. Tsai, and C.C. Tseng, “A new hybrid heuristic
approach for solving large ttraveling salesman problem,” Inf. Sci.,
vol.166, Issues 1–4, pp.67–81, 2004.

Pooia Lalbakhsh was born in Kermanshah,
Iran in 1981. He received the B.Sc. degree in
Computer Hardware Engineering from Islamic
Azad University, Maybod Branch, in 2003 and
M.Sc. in Computer Architecture from Islamic
Azad University, Science and Research Branch,
Tehran in 2006. His research interests include
Swarm Intelligence, Ant Colony Optimization,
and Network Centric Warfare.

2318
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

Bahram Zaeri was born in Borujerd, Iran
in 1986. He received the B.Sc. degree in Com-
puter Software Engineering from Islamic Azad
University, Borujerd Branch, in 2005.

Ali Lalbakhsh was born in Tehran, Iranin
1986. He received the B.Sc and M.Sc. degree
in Tlecommunication Engineering from Islamic
Azad University.

