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PAPER

Out-of-Sequence Traffic Classification Based on Improved Dynamic
Time Warping

Jinghua YAN†, Xiaochun YUN††a), Nonmembers, Hao LUO†, Member, Zhigang WU†,
and Shuzhuang ZHANG†, Nonmembers

SUMMARY Traffic classification has recently gained much attention in
both academic and industrial research communities. Many machine learn-
ing methods have been proposed to tackle this problem and have shown
good results. However, when applied to traffic with out-of-sequence pack-
ets, the accuracy of existing machine learning approaches decreases dra-
matically. We observe the main reason is that the out-of-sequence packets
change the spatial representation of feature vectors, which means the prop-
erty of linear mapping relation among features used in machine learning
approaches cannot hold any more. To address this problem, this paper pro-
poses an Improved Dynamic Time Warping (IDTW) method, which can
align two feature vectors using non-linear alignment. Experimental results
on two real traces show that IDTW achieves better classification accuracy
in out-of-sequence traffic classification, in comparison to existing machine
learning approaches.
key words: traffic classification, out-of-sequence, dynamic time warping

1. Introduction

Traffic classification is crucial for QoS provisioning, traf-
fic scheduling, intrusion detection, and lawful interception
of IP data. Traditionally, there are two categories in traffic
classification technologies: port number based approaches
and Deep Payload Inspection (DPI) approaches. The port
number based approaches become inefficient or even mis-
leading since many applications are increasingly using dy-
namically changed port numbers [1]. The DPI approaches
rely on the inspection of the packet payloads and hence can
classify traffic more accurately. However, they cannot deal
with encrypted and tunneled traffic [2].

To overcome these limitations, a number of researchers
apply machine learning techniques to traffic classifica-
tion [3]. Machine learning techniques extract the statistical
features of traffic, such as number of packets, flow duration,
packet size or inter-arrival time. The machine learning tech-
niques are divided into two stages: training a model based
on features, and then applying machine learning algorithms
to classify traffic. The works using machine learning tech-
niques for traffic classification can be categorized into two
classes according to to their level of observation:(1) flow-
level techniques; and (2) packet-level techniques. The flow-
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level methods use features such as number of packets, flow
duration, mean packet size, etc, while the packet-level meth-
ods use packet length, inter-arrival time and the packet di-
rection. Flow-level techniques are less practical since all
the features can only be calculated after the flow have com-
pleted [4], [5]. On the contrary, the packet-level methods can
perform traffic classification in a real-time manner, since it
only requires the first few (four or five) packets of a TCP
connection [6], [7]. In this paper, we concentrate on packet-
level techniques since it can classify traffic flows as fast as
possible.

Although machine learning methods have been well
studied and have shown good results on traffic classifica-
tion, things are quite different when it comes to traffic with
out-of-sequence packets. Most of the related works just ne-
glected the out-of-sequence packets by removing the traf-
fic flows with out-of-sequence packets. Generally speak-
ing, a packet is said to be out-of-sequence if its sequence
number is not equal to its expected sequence number. The
network traffic may suffer from packet loss, packet reorder-
ing and packet retransmission, all of which will lead to out-
of-sequence phenomenon. As previously proposed [8], [9],
out-of-sequence is not a pathological phenomenon on the in-
ternet and is prevalent at significantly high levels. In recent
years, a number of studies have concentrated on measured
the out-of-sequence packets in the Internet, all of which
have confirmed the prevalence of out-of-sequence in TCP
and UDP network [10]–[13].

An intuitive way to classify traffic with out-of-
sequence packets is utilizing the existing machine learn-
ing techniques. However, we observe that directly adopt-
ing these techniques will lead to poor performance, and the
reasons are twofold:

1. The out-of-sequence packets alter the representation of
feature vectors of traffic. In other words, the linear
mapping relation among features no longer exists.

2. Existing machine learning approaches are based on the
premise that the features are linear mapping.

Although these problems can be solved by packets re-
assembly technique, it will cause large processing latency
and storage complexity. Moreover, the UDP packets do not
contain sequence number information, thus the receiver can-
not identify which packet is out-of-sequence. Therefore, the
reassembly technique becomes invalid for UDP packets.

In this paper, we aim to address the out-of-sequence
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traffic classification problem in a more efficient manner, and
our contributions can be summarized as follows:

1. We propose an Improved Dynamic Time Warping ap-
proach named IDTW to overcome the above problems.
IDTW aligns two sequences in order to obtain a dissim-
ilarity measure using non-linear temporal alignment,
and it can deal with the traffic classification problem of
all the out-of-sequence situations.

2. We conduct extensive experiments on two real traces
to evaluate the proposed method. Experimental results
show that our approach can dramatically improve the
accuracy of out-of-sequence traffic classification and
enhance the robust of traffic classification.

The remainder of this paper is organized as follows:
Sect. 2 introduces the related works. Section 3 summarizes
different situations of out-of-sequence traffic, and analyzes
the reason why they impact the existing machine learning
classification methods. We introduce our IDTW approach
in Sect. 4. Section 5 presents the experimental results and
Sect. 6 concludes the paper.

2. Related Work

In this section, we first summarize the related works on
traffic classification, and then introduce the out-of-sequence
phenomenon in network traffic.

2.1 Related Works on Traffic Classification

In the last decades, there has been a lot of work for traf-
fic classification using machine learning techniques. Such
methods assume that the statistical characters of traffic are
unique for different applications and can be used to distin-
guish them from each other. Then we can classify a traf-
fic flow by different machine learning classification algo-
rithms, such as Decision Trees, Bayesian Networks, Naive
Bayes, K-Nearest Neighbor, Support Vector Machines and
so on [14].

As mentioned in Sect. 1, the related work can divided
into two classes: flow-level methods and packet-level meth-
ods. The flow-level methods were proposed in the early
stage of traffic classification. Moore and Zuev [4] extracted
248 features based on the statistical properties of the whole
traffic flow, then applied the Naive Bayes technique to cat-
egorize network traffic. The work was extended with the
application of a Bayesian neural network approach [15].
Roughan et al. also introduced the Nearest Neighbor algo-
rithm into traffic classification with flow-level features [16].
The flow-level techniques calculate features over the full
flows, which may have thousands of packets. Hence, these
techniques become less practical due to the time consuming
feature extraction.

Recently, more and more researchers focused on
packet-level techniques because it classify flows in a real-
time manner. These methods extracted the features such
as the packet size and the inter-packet time of the first n

packets of a flow. Bernaille et al. [6], [17] first proposed a
early traffic classification method. In this work, every flow
is mapped to an n-dimensional space depending on features
such as the packet size and the direction of its first n packets.
Heuristics based on minimum Euclidean distance are used
to assign class label to analyzed flows. Similar to approach
proposed by Bernaille, Crotti et al. not only made use of
packet size and direction as features, but also inter-arrival
times, which provided a statistical behavioral description of
the corresponding protocol [7]. Este et al. took advantage
of the packet size of the first two packets and applied sup-
port vector machine algorithm for traffic classification [18].
There has been a number of works on packet-level traffic
classification [19]–[23], all of which proved the effective-
ness of packet-level traffic classification method.

Although the packet-level traffic classification method
can obtain high accuracy, it can not deal with traffic flow
with out-of-sequence packets [7], [18]. The reason is that
all of the existing machine learning algorithms are based on
the hypothesis of right order of packets series and using Eu-
clidean distance to measure similarity among feature vec-
tors. Thus they cannot classify out-of-sequence flows effec-
tively, since Euclidean distance is very sensitive to distortion
of feature vectors.

2.2 Related Works on Out-of-Sequence Traffic

Out-of-sequence is a very common phenomenon on net-
work [9], especially in high speed networks where there is
high degree of parallelism and different link speeds. Dur-
ing the last decade, a number of studies have measured the
prevalence of out-of-sequence in the Internet. As previous
proposed [8], packet reordering is prevalent at significantly
high levels, and the probability of a session experiencing
packet reordering is 90%. Paxson [9] reports that 12% and
36% of all connections, in two different data sets, included
at least one reordering event. Jaiswal et al. [10] presented
a measurement study for out-of-sequence packets in TCP
connections within the Sprint IP backbone. They observed
about 5% packets are out-of-sequence, and the percentage
of flows experienced any out-of-sequence packets varied be-
tween 7.2% and 20.1%. Rewaskar et al. [12] found that the
number of out-of-sequence deliveries in seven different traf-
fic traces were between 17% and 51%.

Moreover, the use of UDP as a transport protocol has
gained popularity recently [24], more and more P2P appli-
cations started to use UDP for their overlay signaling traf-
fic. Zhou et al. analyzed the measurements of the out-
of-sequence packets by tracing UDP packets, and pointed
out that 56% of the whole flows suffered from out-of-
sequence [13]. In view of this, it is highly desirable to design
robust approaches to classify traffic with out-of-sequence
packets.

Yang et al. [25] proposed a packet-level traffic classi-
fication approach and considered the impact of reordering
packets in traffic. The classification method is SVM, which
takes use of Euclidean distance to measure similarity be-
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tween features. They simply considered packets with wrong
order as loss, and set the values of the missing features to 0.
In their simulate experiment, they randomly dropped several
packets from the first five packets. The performance of their
method decreased almost linearly by increasing loss pack-
ets. When there are more than two loss packets in a flow, the
accuracy will be less than 45%. Their solution was relative
simple since they just considered out-of-sequence packets as
loss, while packets can arrive out-of-sequence for other rea-
sons such as packet reordering and packet retransmission.

Nguyen et al. also measured the accuracy of traffic
classification with packet loss [26]. They extract flow-level
features of a sub-flow, and each sub-flow contains at least
25 packets. They used Naive Bayes and C4.5 decision tree
to classify ET and VoIP traffic. They only considered packet
loss phenomenon as well as Yang [25], and they chose 5%
as packet loss rate. Their experimental results demonstrated
that for ET traffic, the packet loss degraded Recall and Pre-
cision of both classifiers by less than 0.5%. For VoIP traffic,
the packet loss did not produce noticeable degradation of
the Naive Bayes classifiers Recall and Precision. However,
it degraded the C4.5 Decision Tree classifiers Recall and
Precision by 8.5% and 0.1%, respectively. Their measure-
ment is not comprehensive since it only take into account of
packet loss, moreover, they extract flow-level features which
is time consuming.

In summary, none have been studied out-of-sequence
traffic classification comprehensive so far. In this paper, we
focus on construct a robust classifier in the presence of out-
of-sequence packets.

3. Problem Statements

Out-of-sequence packets are very common in network,
which mainly result from packet loss, looping, reordering,
or duplication in the network. The well-recognized defini-
tion of out-of-sequence packets can be described as follows:

Definition 1: A packet is out-of-sequence if its sequence
number is not equal to the expected sequence number.

A flow is typically defined by a 5-tuple, including sr-
cIP, dstIP, srcport, dstport and protocol. IP packets that
have the same 5-tuple are therefore considered to belong to
the same flow. Consequently, the out-of-sequence flow can
be described as follows:

Definition 2: If there is one or more out-of-sequence pack-
ets exist in the first n packets of a flow (in this paper, we set
n to 5), this flow is out-of-sequence.

Jaiswal et al. [10] summarized that out-of-sequence
packets can be caused by three different events: (1) Retrans-
mission: In this case, a packet has been lost and would be
retransmitted. (2)Network duplication: In this case, the re-
transmission of a packet not from the sender is observed.
This may be because the monitoring point is within a rout-
ing loop, or the network creates a duplicate of the packet. (3)
Network-reordering: In this case, the network changes the

(a) normal (b) repeated

(c) cross (d) loss

Fig. 1 Four mapping situations of normal, repeated, cross and loss.

order of two packets of a connection, which may be because
of parallelism within a router or a route change.

Suppose we passively capture the network packets at
a monitoring point between client and server, and record
packet size and direction of the first 5 packets of a flow
as feature. According to the above categories described by
Jaiswal et al, we can summarize four mapping situations for
traffic feature, as stated below:

1. normal: this situation indicates that there is no out-of-
sequence packet (Fig. 1 (a));

2. repeated: this situation is caused by three reasons: (1)
network duplication; (2) retransmission when a packet
lost after monitoring point; (3) unnecessary retransmis-
sion when the ack packet lost (Fig. 1 (b));

3. cross: this situation is also caused by two reasons: net-
work reordering or retransmission when packet lost be-
fore monitoring point (Fig. 1 (c));

4. loss: this situation means that a packet has been lost
but no retransmission occurred (Fig. 1 (d));

In summary, the out-of-sequence situations include
cases 2),3) and 4), and all of them will break the linear
mapping property among features. It is worth noting that
for the cross case, we hypothesise that the packet lag is 1.
The packet lag refers to the number of packets, with a se-
quence number greater than the out-of-sequence packet, that
are seen before the out-of-sequence packet itself. Wang et
al. [27] studied internet packet reordering, and observed that
86.5% of reordering packets have a packet lag= 1, 95.3% of
reordering packets have a packet lag≤ 2, and 78.8% of re-
transmitted packets have a packet lag≤ 3. Thus this hypoth-
esis is relatively reasonable.

4. Improved DTW for Out-of-Sequence Traffic Classi-
fication

In this section, we first introduce the classic DTW algo-
rithm [28], and then describe our imporved DTW method,
namely IDTW for short. Finally, we introduce the construc-
tion of IDTW templates using K-Means.

4.1 Classic DTW

The DTW algorithm can handle the non-linear mapping
problem, which has been proved to be superior to Euclidean
distance for classification and clustering of time series [29].
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DTW algorithm can be described as follows: Suppose there
are two time series, a template S of length N and an in-
put signal I of length M, where S = s1, s2, s3,. . . ,sN , and
I = i1, i2, i3,. . . ,iM . To compare the similarity of these two
time series using DTW, one can construct an N-by-M dis-
tance matrix D, and use d (x, y) to represent the Euclidean
distance between sx and iy, that is

d (x, y) =
∥∥∥sx − iy

∥∥∥ f or 1 ≤ x ≤ N; 1 ≤ y ≤ M (1)

A warping path W = w1, w2, w3,. . .,wk,. . .,wK , is a contigu-
ous set of matrix element D that defines a mapping between
the template S and input I. The k-th element of W is defined
as wk = d (ik, jk) and max(m, n) ≤ K ≤ m + n − 1. The con-
struction of the warping path W is subjected to the following
constraints:

1. Boundary constraint: w1 = d (1, 1) and wK =

d (N,M), this requires the warping path W to start at
(1,1) and end at (N,M).

2. Continuity constraint: Given wk = d (a, b), then
wk+1 = d (a′, b′), where a′ − a ≤ T and b′ − b ≤ T .
In practice, T = 1, 2, 3. If T = 1, the allowable steps in
the warping path can only be between adjacent cells. If
T > 1, the steps can be skipped.

3. Monotonicity constraint: Given wk = d (a, b), then
wk+1 = d (a′, b′), where a′ − a ≥ 0 and b′ − b ≥ 0.
This restricts points in W to be monotonically spaced
in time.

In DTW, dtw (S , I) denotes the minimum warping cost
of S and I. There are many warping paths that meet the
above constraints. Since we are only interested in the path
that preserves the minimum warping cost of S and I, we
have:

dtw (S , I) = min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√√ K∑

k=1

wk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

To determine the minimum cost warping path, one can
test every possible warping path between S and I. Such a
procedure, however, will lead to a computational complex-
ity that is exponential in the lengths N and M. So dynamic
programming approach is introduced to address this prob-
lem. That is, the DTW algorithm constructs a matrix γ with
dimension of N-by-M, the element of (x, y) in γ defines the
cumulative distances of the warping path W from position
(1, 1) to positive (x, y). The minimum of the cumulative dis-
tance is represent by γ (x, y) as:

γ(x, y)=d(x, y)+min{γ(x − 1, y − 1), γ(x − 1, y), γ(x, y − 1)}
(3)

After creating the matrix γ, the value γ(N,M) is the min-
imum cumulative distances of the DTW between the tem-
plate S and the input I, that is, dtw (S , I)=γ(N,M).

4.2 Improved DTW

In order to achieve better performance on out-of-sequence

traffic classification, we design an improved DTW (IDTW)
algorithm. Specifically, we relax the constraints of the clas-
sic DTW algorithm. Now let idtw (S , I) denotes the distance
in IDTW, we detail how to calculate idtw (S , I) as below:

1. Relaxed boundary constraint:
We relax the boundary constraint, that is, the last point
of I is not necessary to be aligned to the last point of S .
Therefore, idtw (S , I) can be modified as: idtw (S , I) =
min {γ(1,M), γ(2,M), . . . , γ(N,M)}.

2. Relaxed monotonicity and continuity constraints:
We relax the monotonicity and continuity constraints
in our scheme by adding admissible step patterns.
Equation (3) illustrates the admissible step patterns
are {γ(x − 1, y − 1), γ(x − 1, y), γ(x, y − 1)}. Specif-
ically, we add γ(x − 1, y + 1) and γ(x − 1, y − 2) to
the set of step patterns of classic DTW to relax mono-
tonicity and continuity constraints respectively, that is:
γ(x, y) = d(x, y)+min{γ(x−1, y−1), γ(x−1, y), γ(x, y−
1), γ(x − 1, y − 2), γ(x − 1, y + 1)}. Figure 3(a) and
Fig. 3(b) visualize the step patterns of classic DTW and
IDTW.

The objective of relaxing the boundary constraint is to
address the repeat situation. As can be seen from Fig. 1, the
training vector is 1,2,3,4,5 and the test vector is 1,2,2,3,4.
Figure 2(a) and Fig. 2 (b) illustrate the matrix γ and warp-
ing path W of classic DTW and IDTW. The matrix is built
column by column, from left to right and from top down for
each column. We can find after relaxing the boundary con-
straint, idtw (S , I) = γ(4, 5) = 0, which is the right distance
between the two feature vectors.

The target of relaxing monotonicity and continuity con-
straint is to handle the cross and loss situation. For the cross
situation, the latter packet may appear before the former
one. Hence, we can conclude that the warping path is not
monotonically and continuously increasing any more. Now
take a look at Fig. 1 again, the training vector and test vec-
tor are 1,2,3,4,5 and 1,3,2,4,5 respectively. Figure 3(c) and
Fig. 3(d) depict the warping path of classic DTW and IDTW
for cross situation. We can observe idtw (S , I) = 0, and the
warping path reflects the true mapping relationship of train-
ing and test feature vectors. We can handle loss situation by
relaxing continuous constraints as well. Assume the train-
ing vector and test vector are 1,2,3,4,5 and 1,3,4,5,6. We ob-
serve that the second element of test vector should mapping
to the third element of training vector but not the second,

(a) before relax boundary
constraint

(b) after relax boundary
constraint

Fig. 2 Boundary relaxed DTW.



2358
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

(a) step patterns of DTW (b) step patterns of IDTW

(c) before relax mono-
tonicity and continuity con-
straint

(d) after relax monotonic-
ity and continuity con-
straint

Fig. 3 Monotonicity relaxed DTW.

which implies that there exists skip pattern in warping path.

4.3 Construction of DTW Template

An application may have different kinds of behaviors. Since
IDTW is based on template matching, we adopt the K-
Means algorithm to group similar flows into clusters and
use the cluster centers to construct templates of IDTW in
our scheme.

Let T = t1, t2,. . . ,tn be the training set. Each flow ti ∈ T
is described by a feature vector P = p1, p2,. . . ,pm. Let p j be
the payload size of packet j in a flow. We use the direction
of the packet to determine whether pj is positive or negative.
When a packet j is sent by TCP client, then pj is a positive
value. Conversely, if j is sent by the TCP server, then pj is
negative. As for traffic classification, let us assume a set of
M network applications L = l1, l2,. . . ,lM , where each li cor-
responds to the label of each application, such as http, pop3,
etc. We then cluster the training set using the K-Means al-
gorithm. Suppose there are K clusters: C = c1, c2,. . . ,cK , let
O = o1, o2,. . . ,oK represent the corresponding centers. For
each cluster we maintain a tuple {ck,lk}, where ck denotes
center and lk denotes label. Let X = x1, x2,. . . ,xJ denote the
test set of out-of-sequence flows, our objective is to com-
pute the similarity distance between x j and all sets of the
templates, then assign the label l̂ j having the minimum sim-
ilarity distance to x j.

The existing classification methods based on Euclidean
distance will assign the closet cluster label to it, that is:

l̂ j = label
(
arg min

k
d
(
x j, ok

))
(4)

Where d is the standard Euclidean distance which is sensi-
tive to noise and misalignments, thus may impact the per-
formance of existing classification methods.

To overcome the drawbacks of Euclidean distance met-
ric, we use our IDTW distance idtw described above, rather
than the Euclidean distance, to compute the label, as stated
below:

l̂ j = label
(
arg min

k
idtw
(
x j, ok

))
(5)

5. Performance Evaluation

This section presents the performance evaluation of our
IDTW algoirthm versus 5 machine learning approaches and
classic DTW on classifying two real sets of traffic trances,
where one is UNIBS traffic traces [30], and the other one is
LBNL traffic traces [31].

5.1 Dataset Description

In our experiments, we use two datasets to test classification
methods. Both of the two traces consist of normal flows
and out-of-sequence flows which contain all of the out-of-
sequence situations listed in Sect. 3. We select all the nor-
mal flows as training set, and all the out-of-sequence flows
as test set. To avoid a biased analysis due to unbalanced rep-
resentation of classes, we randomly sample 2000 flows for
each of the application (If an application consist of less than
2000 flows, choose all of its flows). We adopt K-Means
method to cluster the training data. To tradeoff clustering
quality and the scale of the clusters, we empirically set the
number of clusters to be 400.

UNIBS:This trace was collected at the edge router of
the campus network of University of Brescia on three con-
secutive working days in 2009. The traffic are categorized
into the following classes: Web (http and https), Mail (pop3,
pop3s), VoIP (skype) and P2P (bittorrent, edonkey).

Table 1 shows the detail composition of the UNIBS
data set. There are 2777 out-of-sequence flows, account-
ing for 5.4% of all the flows. The overall flow number of the
repeat, cross and loss situations are 2049, 529,199, and cor-
respondingly, their ratios are 73.8%, 19.0%, 7.2% respec-
tively. The repeat situation is the majority, followed by cross
and loss situation. A closer look at Table 1 reveals that the
out-of-sequence flows are quite common in bittorrent and
edonkey applications, which is conform to reality.

LBNL:The LBNL traffic traces were collected at the
Lawrence Berkeley National Laboratory under the Enter-
prise Tracing Project. The traffic traces are completely
anonymized, so all the packets do not have payload. There-
fore, we label each flow according to its TCP destination
port number. The composition of LBNL data set is reported
in Table 2. There are 5922 out-of-sequence flows, account-
ing for 14.2% of all the flows. The flow number of repeat,
cross and loss situations are 4454, 1143, 325, and their ratios
are 75.2%, 19.3%, 5.5%. We observe the ratios are similar
to the UNIBS dataset, which reflects the repeat situation is
the most common situation as well.



YAN et al.: OUT-OF-SEQUENCE TRAFFIC CLASSIFICATION BASED ON IMPROVED DYNAMIC TIME WARPING
2359

Table 1 Composition of traffic of UNIBS data set.

Application Normal
flows

Out-of-
sequence

flows

repeat
flows

cross
flows

loss
flows

pop3s 3504 22 15 6 1
http 26425 554 158 269 127

skype 857 6 5 1 0
bittorrent 3276 950 837 76 37

pop3 843 31 19 9 3
https 995 10 2 8 0

edonkey 12962 1204 1013 160 31

Table 2 Composition of traffic of LBNL data set.

Port Expected
applica-

tion

Normal
flows

Out-of-
sequence

flows

repeat
flows

cross
flows

loss
flows

80 http 22664 4425 3355 827 243
139 netbios 3690 326 260 45 21
25 smtp 4998 164 123 30 11

443 https 6424 825 551 227 47
993 imaps 2771 43 37 5 1
110 pop3 341 91 81 8 2
22 ssh 187 16 15 1 0

995 pop3s 523 32 32 0 0

5.2 Experimental Results

We compare our IDTW approach with five standard ma-
chine learning approaches on the weka platform [32]: De-
cision Trees (J48), Bayesian Networks (BN), Naive Bayes
(NB), K-Nearest Neighbor (KNN, here we use 1-NN), Sup-
port Vector Machines (SVM), and classic DTW algorithm.
All of the five machine learning approaches are based on the
linear alignments between two feature vectors. The IDTW
and DTW can classify data by nonlinear mapping.

Since we choose flows for each application as training
set randomly, the classification result may be unstable. To
avoid the injustice, we select training samples and repeat
each experiment for 10 times, and then report the average
result on all runs.

We measure the performance of a given algorithm in
terms of the following three metrics:

• Overall accuracy - the ratio of all flows correctly clas-
sified. This metric is used to measure the accuracy of a
clasifier on the whole dataset.
• Recall - the ratio of flows from a given class that are

properly attributed to that class. Recall is used to eval-
uate the per-class performance.
• Precision - the ratio of flows correctly attributed to a

class over the total flows attributed to that class. Pre-
cision is used to evaluate the per-class performance as
well.

5.2.1 Overall Performance

The overall performance is evaluated according to overall
accuracy. Table 3 and Table 4 show the overall accuracy

Table 3 Overall accuracy of UNIBS dataset.

J48 BN NB KNN SVM DTW IDTW
61.0% 61.7% 55.2% 51.3% 64.3% 68.5% 92.3%

Table 4 Overall accuracy of LBNL dataset.

J48 BN NB KNN SVM DTW IDTW
70.8% 72.7% 54.4% 73.5% 68.5% 78.5% 93.4%

on the two datasets obtained by IDTW, DTW and other five
methods.

First, a general observation is that IDTW outperforms
all the other methods in term of overall accuracy. From
Table 3 it can be seen that IDTW is higher than the rest
methods by approximately 24% to 41% percent for UNIBS
dataset, and Table 4 demonstrates that IDTW is higher than
other methods by 15% to 40% for LBNL dataset. All the
traditional machine learning methods degrade sharply. Now
let’s analysis the results of J48 and SVM for instance. As
we know, the out-of-sequence packets will change the time
serial characteristics of feature vectors, thus will affect the
representation of them. However, the J48 method can’t
change the paths within the tree adaptively to handle this
problem. For SVM classification method, the feature vec-
tors of out-of-sequence flows may be mapped to the wrong
space, which will lead to wrong classification result. Our
proposed IDTW method shows better performance, the rea-
son is that: IDTW can adapt to all the out-of-sequence situ-
ations by relaxing constraints of classic DTW, thus achieve
high accuracy.

Second, we find that the result of the classic DTW algo-
rithm is slightly better than the other five machine learning
algorithms, but the result is still not quite acceptable. The
reason is that although the classic DTW algorithm can han-
dle non-linear mapping problem, it is not quite adapt to the
various out-of-sequence situations.

5.2.2 Per-Class Performance

We use recall and precision to measure the per-class perfor-
mance of all the methods on the two datasets.

Figure 4 illustrates the recall of each method on the
UNIBS dataset, which shows that none of the existing ma-
chine learning classification methods and DTW can keep
high accuracy for all of the applications. For example,
NB obtains better performance on http flow classification
in comparison to other methods, however, it can not clas-
sify https, pop3 and skype at all. SVM and J48 have the
same problem with NB. KNN, BN and DTW can classify
all of the applications more or less, but they could not al-
ways achieve the best performances. In contrast, IDTW al-
most achieves better recall than other methods for all of the
applications.

We also observe an interesting phenomenon, that is, all
the approaches can classify http with relatively high accu-
racy. Further investigation shows that most of http flows are
relative persistent to out-of-sequence packets. For example,
a sequence of the first 5 packets of a normal flow is 504,
−1460, −1460,−1460,−1460. Assume the third packet re-
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Fig. 4 Recall of UNIBS dataset. Fig. 5 Precision of UNIBS dataset.

Fig. 6 Recall of LBNL dataset. Fig. 7 Precision of LBNL dataset.

transmits or reorder, then the out-of-sequence flow is still
504, −1460, −1460,−1460,−1460, which does not change
the mapping relationship, thus the accuracies of existing
classification methods still remain at a high level. Pop3,
pop3s, skype, edonkey and bittorrent are not quite easy to
classify for existing machine learning methods. For these
applications, IDTW can greatly improve the classification
results. It contrast, it is hard to classify https for all the meth-
ods including IDTW, since https flows have similar patterns
of http flows.

Figure 5 shows the precision of each classifier on the
UNIBS dataset. We find that the precisions of classify-
ing https, pop3, pop3s and skype are lower than that of
other applications. We think the possible reason is the
test set of these applications contain less out-of-sequence
flows(Table 1 shows that the test set only contains 10 https
flow, 31 pop3 flows, 22 pop3s flows and 6 skype flows in
the test set). Therefore, even if only a small amount of
other flows are misclassified as them, precision will decline
greatly. Nevertheless, IDTW achieves best precision for all
applications. Although some classifiers obtain high preci-
sion with an application, but the recall rate is low, thus pre-
cision does not make sense. For example, BayesNet classi-
fier achieves good precision of edonkey, but a lot of edonkey
flows are classified as http, which reduces the recall of edon-
key and precision of http.

Figure 6 and Fig. 7 depict the recall and precision
on LBNL dataset respectively. Similar to the situation of
UNIBS dataset, the recall and precision of http are satis-
factory for all the existing machine learning methods, and
thus the improvement space for IDTW is small. For other
applications such as https, pop3, pop3s, smtp, ssh, netbios
and imaps, the recall and precision of IDTW are consis-
tently higher than other approaches. In sum, the results show

Fig. 8 Overall accuracy of different out-of-sequence ratio of UNIBS
dataset.

IDTW has a superior performance comparing with other ex-
isting machine learning methods.

5.2.3 Classification of Both Normal and Out-of-Sequence
Flows

To further validate the effectiveness of IDTW, we classify
the data contains both normal flows and out-of-sequence
flows. We evaluate on UNIBS dataset, choose 1/2 of the
normal flows as the training set, and 5000 normal flows plus
different number of out-of-sequence flows as the test set.
The ratio of the out-of-sequence flows increases from 0%
to 40%. Figure 8 depicts the overall accuracies of different
approaches versus IDTW approach on UNIBS dataset.

As shown in Fig. 8, with the growth of the ratio of the
out-of-sequence flows, the accuracies of existing machine
learning classifier decline sharply, which decrease about
15% on average. On the contrary, the accuracy of IDTW
declines quite slowly (from 97.44% to 94.68%), which is no
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Fig. 9 A special case of classification of normal flow by IDTW.

more than 3%. We can also observe that the slope of IDTW
curve is flattest, which means that IDTW is the most robust
out-of-sequence traffic classification approach.

It is noteworthy that when there are no out-of-sequence
flows, the accuracy of IDTW is small than that of DTW
and KNN. As shown in Fig. 8, the accuracies of IDTW,
DTW and KNN are 97.44%, 97.56% and 97.64% respec-
tively. We observe that the accuracy of IDTW is 0.12% and
0.2% lower than that of DTW and KNN. We analyze the
classification procedure of IDTW in depth to study this phe-
nomenon. Suppose there is a normal flow x which belong-
ing to application l1, and the most similar training template
is o1. Suppose by computing the Euclidean distance based
on linear mapping, KNN finds the most similar template is
o1 and obtains the right label l1. While IDTW calculates
idtw distance which is based on nonlinear mapping and re-
laxation of classic DTW. Thus it may consider the most sim-
ilar training template is o2 and assigned flow x a label of l2.
Therefore IDTW fails to get the right classification result.
For instance, suppose there is a normal bittorrent flow (210,
−87, −80, 124, −117). KNN selects the corresponding tem-
plate is (177 , −48, −135, 123, −103), and the label of this
template is “bittorrent”. While IDTW finds the most similar
template is (208, −85, 128, −104, 10), and the label of this
temple is “edonkey”. Therefore IDTW classifies a bittorrent
flow as edonkey mistakenly. This special case is demon-
strated in Fig. 9.

We list all misclassification cases of normal flows on
UNIBS dataset in Table 5. The first two columns declare
the test flow and the corresponding label. The third column
states the classification methods: IDTW, KNN, DTW. The
forth columns lists the template flow chosen by these meth-
ods. For IDTW, we add a indicator to state the specific out-
of-sequence situation which is mistaken for by IDTW. For
instance, (r) means IDTW considers the normal test flow
as repeated flow, (c) and (l) represents the cross and loss
situation respectively. The last column represents the cor-
responding predicted label obtained by the above methods.
If the predicted label is different from the original label, we
mark it with italic type, which means the result is wrong.
From Table 5, we find that due to the non-linear mapping
properties and relaxation constraints of classic DTW, IDTW
may considers normal flows as out-of-sequence flows. The
DTW method may meet the similar situations as IDTW be-
cause of its non-linear mapping characteristics. While it
should subject to boundary constraint, continuity constraint
and monotonicity constraint. Thus it won’t classify normal
flows as out-of-sequence flows as frequently as IDTW.

To further confirm the effectiveness of IDTW, we carry

Table 5 Misclassification cases on UNIBS dataset.

Test flow Label Method Template flow Predicted
label

210,−87,−80,
124,−117

bittorrent
IDTW 208,−85, 128,−104, 10 (r) edonkey
KNN 177,−48,−135, 123,−103 bittorrent
DTW 208,−78, 67, 62,−108 edonkey

144,−126, 6,
41, 148

https
IDTW 68,−131,−357,−5, 1448 (l) bittorrent
KNN 155,−48,−135, 123,−103 https
DTW 155,−48,−135, 123,−103 https

88, 94,−94,
−78, 109

bittorrent
IDTW 93,−92, 128,−91, 98 (c) edonkey
KNN 123,−38, 17,−117, 106 bittorrent
DTW 129,−129,−83, 111, 131 edonkey

281,−224,−78,
−78,−78

pop3
IDTW 329,−211, 910,−83,−83 (l) http
KNN 296,−328,−78,−78,−65 pop3
DTW 296,−328,−78,−78,−65 pop3

155,−122, 6,
37, 506

skype
IDTW 76,−31,−436, 20, 460 (l) bittorrent
KNN 149,−132, 5, 45, 638 skype
DTW 149,−132, 5, 45, 638 skype

260,−83,−121,
122,−99

bittorrent
IDTW 252,−83, 127,−108, 70 (c) edonkey
KNN 177,−48,−135, 123,−103 bittorrent
DTW 177,−48,−135, 123,−103 bittorrent

68,−97,−724,
−7, 17

bittorrent
IDTW 102,−67,−1448,−669, 139 (l) pop3s
KNN 74,−41,−599, 54, 104 bittorrent
DTW 74,−41,−599, 54, 104 bittorrent

160,−122, 6,
37, 1460

https
IDTW 68,−131,−357,−5, 1448 (l) bittorrent
KNN 155,−128, 48, 82, 1292 https
DTW 155,−128, 48, 82, 1292 https

272,−98,−73,
124,−97

bittorrent
IDTW 254,−85, 129,−103, 49 (r) edonkey
KNN 177,−48,−135, 123,−103 bittorrent
DTW 235,−100, 126,−107,−15 edonkey

151,−106,−237,
124,−101

bittorrent
IDTW 129,−121, 44,−215,−122 (c) edonkey
KNN 283,−75,−130, 123,−104 bittorrent
DTW 283,−75,−130, 123,−104 bittorrent

Fig. 10 Overall accuracy of different out-of-sequence ratio of LBNL
dataset.

out the the same experiment on LBNL dataset. The experi-
mental result is is depicted in Fig. 10. From Fig. 10, we can
also find that with the increase of out-of-sequence ratio, the
accuracies of existing machine learning methods degrade
significantly, while the accuracy of IDTW declines slowly
(from 96.52% to 94.11%). When the out-of-sequence ratio
is 0%, the accuracies of IDTW, DTW and KNN methods
are 96.52%, 96.7% and 96.76% respectively. We find that
accuracy of IDTW is 0.18% and 0.24% lower than DTW
and KNN. The reason of this inversion is as same as that of
UNIBS dataset. We list the misclassification cases of nor-
mal flows on LBNL DATASET in Table 6.
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Table 6 Misclassification cases on LBNL dataset.
Test flow Label Method Template flow Predicted

label

186,−948,−948,
−948,−140

http
IDTW 142,−968,−968,−151, 204(r) imaps
KNN 264,−998,−998,−998,−272 http
DTW 264,−998,−998,−998,−272 http

255, 605,−17,
−1181,−468

http
IDTW 125,−80, 782,−1351,−514(c) netbios
KNN 46, 514,−269,−1368,−421 http
DTW 46, 514,−269,−1368,−421 http

850,−708, 689,
−1460,−1460

http
IDTW 880,−684, 688,−1380,−724(r) pop3s
KNN 825,−910, 842,−1437,−1420 http
DTW 825,−910, 842,−1437,−1420 http

176,−128, 48,
−512,−512

imaps
IDTW 110,−114, 40, 834,−437(l) https
KNN 240,−512,−170,−512,−512 imaps
DTW 94,−146, 27, 325,−590 https

4,−4, 20,
−26, 16

netbios
IDTW −15, 33,−21, 12,−21(r) telnet
KNN 25,−4, 25,−10, 27 netbios
DTW 25,−4, 25,−10, 27 netbios

−120,−138, 624,
−612,−527

smtp
IDTW −120,−138, 1445, 547,−595(l) pop3
KNN −54,−61, 639,−410,−412 smtp
DTW −98,−139, 25, 518,−628 pop3

1073, 184,−112,
−1460,−1348

http
IDTW 1138,−201, 118,−1372,−10(c) netbios
KNN 1040,−43,−160,−1428,−1348 http
DTW 971, 352,−61,−181,−1393 http

137,−177, 210,
−452, 370

pop3
IDTW 102,−146, 290, 343,−337(c) https
KNN 130,−141, 310,−297, 371 pop3
DTW 130,−141, 310,−297, 371 pop3

111,−882, 139,
47,−47

pop3s
IDTW 104,−63,−903, 208,−6(l) https
KNN 109,−1014, 119, 52,−50 pop3s
DTW 109,−1014, 119, 52,−50 pop3s

120,−146, 735,
−517,−1380

https
IDTW 125,−80, 782,−1351,−514(c) netbios
KNN 119,−128, 730,−350,−1360 https
DTW 119,−128, 730,−350,−1360 https

958,−4,−8,
−1368,−173

netbios
IDTW 971, 353,−61,−181,−1393(c) http
KNN 1138,−201, 118,−1372,−10 netbios
DTW 994, 115,−1426,−1440,−131 https

408,−239, 667,
−1460,−1460

https
IDTW 516,−300, 552,−1448,−256(r) http
KNN 395,−173, 466,−1413,−1421 https
DTW 395,−173, 466,−1413,−1421 https

By summarizing the above experimental results, we
find that the accuracy of IDTW is slightly lower than other
methods such as KNN and DTW when there are no out-
of-sequence flows. The difference is quite small since the
special situations which lead to this phenomenon are not
very common. While in the cases when there exist out-
of-sequence flows, especially the ratio of out-of-sequence
flows should not be ignored, IDTW is significantly better
than other approaches. The whole analysis described here
confirms that the IDTW approach proposed in this paper is
very effective.

It is worth noting that, although the IDTW approach
proposed in this paper is based on the analysis of TCP traf-
fic, it can be applied to UDP traffic classification as well.
Generally speaking, UDP protocol is an unreliable protocol,
thus the out-of-sequence situations will happen quite often.
Therefore, IDTW method is an effective solution for robust
UDP traffic classification as well.

5.3 Discussion

In this section, we provide some discussions on computa-
tional complexity of our algorithm and the influence of num-
ber of packets to classification accuracy.

5.3.1 Computational Complexity of Proposed Algorithm

Suppose Running our classification method requires extract-

ing feature of test flow x, and computing the similarity dis-
tance between x and training flow t. Since our method only
extracts the packet size of the first N packets of a flow,
the computational complexity for feature extracting is O(N).
For an input feature size of N and template size of N, the
complexity of classic DTW algorithm is O(N×N) [29], [33],
and it is not difficult to see that the computational complex-
ity of our IDTW is the same as the classic DTW algorithm.
The classical machine learning method based on Euclidean
distance have a cost of linear complexity, which is O(N). We
can conclude the total computational complexity of IDTW
algorithm is O(N+N×N), and the classical machine learning
method based on Euclidean distance is O(N + N).

Although the cost of our algorithm is higher than clas-
sical machine learning method based on Euclidean distance,
our algorithm can still run fast enough since it is based
on packet-level classification method. Now let’s analysis
the computational complexity of flow-level classification
method. Computing flow-level features such as mean packet
size often may require memory complexity O(L) (where L
is the total number of packets of a flow). To collect K fea-
tures of the whole flow, the computational complexity of
feature extraction is O(K × L). Suppose we still use clas-
sical machine learning method based to classify a flow, the
whole cost is O(K × L + K). For the most situations N � L,
N ≈ K. In this paper we only use the first 5 packets, which
is a very small value. Compared with flow-level classifica-
tion method, our method is still superior on computational
complexity.

The IDTW algorithm presented in this paper is fast and
effective, thus it suitable to implement in customized hard-
ware. Such devices only need to collect the first n number
of a flow, and compute the idtw distance with several tem-
plates. It is hoped to straightforwardly implemented in high-
speed routers.

5.3.2 Influence of Number of Packets to Classification Ac-
curacy

In this subsection, we will make discussion about the effects
of the number of packets to classification accuracy. We cal-
culate the accuracies of the above classification methods as
the number of packets increases from 1 to 10.

Figure 11 presents the classification accuracies with re-
spect to the changes of number of packets in UNIBS dataset.
This figure shows the IDTW method outperforms all the ex-
isting machine learning approaches. As we see, all existing
machine learning classifiers present relative low and unsta-
ble accuracies, which are between 60% to 75%. This means
that they can not classify out-of-sequence flows satisfacto-
rily no matter how many packets are used. Figure 11 shows
that the accuracy of IDTW improves obviously as the num-
ber of packets increases from 1 to 5, while the accuracy be-
comes stable when more than 5 data packets are considered.
From Fig. 11, we can find that using the first 5 packets can
achieve sufficient high accuracy for the IDTW method.

To further study the influence of number of packets,
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Fig. 11 Influence of the number of packets on classification accuracy of
UNIBS dataset.

Fig. 12 Influence of the number of packets on classification accuracy of
LBNL dataset.

we conduct the same experiment on LBNL dataset, and the
result is demonstrated in Fig. 12. From this figure we obtain
similar conclusion with Fig. 11: Using the first 5 packets
gives satisfactory performance for IDTW algorithm, while
adding more packets doesn’t improve accuracy significantly.

As described in Sect. 5.3.1, the number of packets de-
termines the computational complexity of IDTW algorithm.
Therefore, we choose the number of packets which obtains
the best trade-off between accuracy and computational com-
plexity. Based on the above experimental results, we only
use the first 5 data packets of a flow for classification in our
experiment.

6. Conclusions

In this paper, we addressed the traffic classification problem
with out-of-sequence packets and proposed an improved
DTW algorithm. To our best knowledge, this is the first
comprehensive work in online traffic classification with out-
of-sequence packets. The result on two real traces showed
that IDTW performs better than other approaches with com-
parable quality. Specifically, IDTW obtained an overall ac-
curacy of 92.3% on UNIBS dataset and 93.4% on LBNL
dataset. Compared with existing machine learning methods,
the IDTW approach is more effective and robust to classify

traffic with out-of-sequence packets. We attribute this ad-
vantage to the fact that the IDTW can find the nonlinear
mapping relationship between traffic packet series and adapt
to various out-of-sequence situations.

There are numerous research approaches that can be
used to improve the speed of DTW, by using lower bound-
ing techniques and global constraint techniques [34]. In our
future work, we intend to study how to speed up IDTW cal-
culation by utilizing these techniques.
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