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Improving Naturalness of HMM-Based TTS Trained with Limited

Data by Temporal Decomposition

Trung-Nghia PHUNG®, Thanh-Son PHAN'™, Thang Tat VU9, Mai Chi LUONG "%, Nonmembers,

SUMMARY  The most important advantage of HMM-based TTS is its
highly intelligible. However, speech synthesized by HMM-based TTS
is muffled and far from natural, especially under limited data conditions,
which is mainly caused by its over-smoothness. Therefore, the motivation
for this paper is to improve the naturalness of HMM-based TTS trained un-
der limited data conditions while preserving its intelligibility. To achieve
this motivation, a hybrid TTS between HMM-based TTS and the modi-
fied restricted Temporal Decomposition (MRTD), named HTD in this pa-
per, was proposed. Here, TD is an interpolation model of decomposing a
spectral or prosodic sequence of speech into sparse event targets and dy-
namic event functions, and MRTD is one simplified version of TD. With a
determination of event functions close to the concept of co-articulation in
speech, MRTD can synthesize smooth speech and the smoothness in syn-
thesized speech can be adjusted by manipulating event targets of MRTD.
Previous studies have also found that event functions of MRTD can repre-
sent linguistic information of speech, which is important to perceive speech
intelligibility, while sparse event targets can convey the non-linguistics in-
formation, which is important to perceive the naturalness of speech. There-
fore, prosodic trajectories and MRTD event functions of the spectral trajec-
tory generated by HMM-based TTS were kept unchanged to preserve the
high and stable intelligibility of HMM-based TTS. Whereas MRTD event
targets of the spectral trajectory generated by HMM-based TTS were ren-
dered with an original speech database to enhance the naturalness of syn-
thesized speech. Experimental results with small Vietnamese datasets re-
vealed that the proposed HTD was equivalent to HMM-based TTS in terms
of intelligibility but was superior to it in terms of naturalness. Further dis-
cussions show that HTD had a small footprint. Therefore, the proposed
HTD showed its strong efficiency under limited data conditions.

key words: text to speech, HMM-based TTS, hybrid TTS, limited data,
temporal decomposition

1. Introduction

Building a huge speech corpus is a costly task that takes a
long time and requires a great deal of effort by engineers,
acousticians and linguists. Therefore, how to build high-
quality TTS under limited data conditions is important for
practical speech applications, especially for under-resourced
languages.

Two current state-of-the-art TTSs are unit selection
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and HMM-based TTSs. Unit selection is the most natural-
sounding TTS at present. However, since unit selection re-
quires huge data for concatenation, it is a difficult challenge
to use it under limited data conditions. HMM-based TTS
has been widely studied for the two last decades [1]-[6].
The spectral and prosodic features of speech are modeled
and generated in this approach in a unified statistical frame-
work using HMMs. A decision-tree based context clustering
technique has been used to ensure the synthesized trajec-
tory is smooth and stable with a limited amount of training
data[1]. Therefore, the intelligibility of synthesized speech
is still high even under limited data conditions. HMM-
based TTS can simultaneously transform the voice charac-
teristics of synthetic speech into those of a target speaker
using a small amount of target data by utilizing “average-
voice-based” methods [2]. Therefore, it is flexible to adapt
the synthetic voice into different target individual voices or
target speaking styles with limited amounts of target data.
As its trained statistical parameters are small, HMM-based
TTS has a small footprint. The runtime computational load
of HMM-based TTS is also low. As a result, HMM-based
TTS can be easily distributed on different hardware plat-
forms. Although HMM-based TTS has many advantages
as was previously mentioned, HMM-based TTS is still far
from natural, which is mainly due to buzziness and over-
smoothness in synthesized speech. The former is a common
issue with speech coding, which has recently been signifi-
cantly improved, while the latter is caused by “averagely”
statistical processing in HMM-based TTS. Although both
the spectral and prosodic trajectories generated by HMM-
based TTS are over-smooth, the effect of over-smoothness
in a spectral sequence is more serious due to the complexity
of spectral features.

Many studies have attempted to solve over-smoothness
in HMM-based TTS. Using multiple mixtures for modeling
state output probability density can reduce over-smoothness
in synthesized speech [3]. However, these methods cause
another problem with over-training due to the increased
number of model parameters. A method of combining con-
tinuous HMMs with discrete HMMs, and a method of in-
creasing the number of HMM states has also reduced the
over-smoothness in HMM-based TTS [4]. However, these
methods increase the complexity of HMMSs and are not con-
venient in practical synthesis systems. The state-of-the-art
method to reduce over-smoothness is the parameter gener-
ation algorithm that take into consideration global variance
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(GV)[5]. Parameters are generated in this method based
on criteria of not only maximizing the HMM likelihood
for static and dynamic features but also the likelihood for
GV. The experimental results with this method revealed that
the naturalness of synthetic speech was significantly im-
proved [5]. However, over-smoothness was still consider-
able.

Over-smoothness in HMM-based TTS is mainly af-
fected by the accuracy of model estimates [4]. This factor
is affected by the amount of training data[6]. The larger
the amount of training data, the more accurate the model es-
timates, and the lesser the over-smoothness in synthesized
speech. As a result, the effect of over-smoothness becomes
more serious in a situation with limited training data. There-
fore, it is difficult to ensure the naturalness of HMM-based
TTS under limited data conditions.

Hybrid approaches between HMM-based TTS and unit
selection, such as HMM trajectory tiling TTS (HTT)[7],
have recently been studied as another solution to improve
the naturalness of HMM-based TTS and to preserve the high
intelligibility of HMM-based TTS. The HMM trajectory is
used to guide the selection of each 5-ms frame to concate-
nate the waveforms in HTT. The naturalness of HTT is com-
parable to that of unit selection TTS and its intelligibility
is comparable to that of HMM-based TTS. Additionally,
this TTS is language-independent due to the use of short
frames instead of phonetic-level units. However, HTT still
has drawbacks. The major one is the use of short frames,
which requires a perfect selection process. If the selection
process is imperfect due to a limited data corpus, it may be
easy to perceive discontinuities between frames. As a result,
this TTS still requires a huge amount of data for rendering.
Additionally, HTT is not able to preserve other advantages
of HMM-based TTS such as its flexibility for voice adaption
and its small footprint.

Based on the above considerations, the motivation for
this paper is to improve the naturalness of HMM-based TTS
under limited data conditions while preserving its intelligi-
bility. To achieve this motivation, a hybrid TTS between
HMM-based TTS and MRTD [9], named HTD in this pa-
per, was proposed. Here, TD is a sparse interpolation model
that decomposes a spectral or prosodic sequence into two
mutually independent components: static event targets and
corresponding dynamic event functions [8], and MRTD [9]
is one compact but efficient version of TD with a small
interpolation error. With a determination of smooth event
functions close to the concept of co-articulation in speech,
MRTD can synthesize smooth speech and the smoothness in
synthesized speech can be adjusted by modifying event tar-
gets of MRTD. Therefore, MRTD is used to reduce the over-
smoothness in the spectral sequence generated by HMMs
in this research. Previous studies [10] have also found that
event functions of MRTD can represent the “languageness”
or content information of speech, which is important to per-
ceive speech intelligibility, while event targets of MRTD
can convey the non-linguistics of style information such as
speaker individuality, which is important to perceive the nat-
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uralness of speech [10]. Therefore, the factors that are im-
portant to speech intelligibility such as the MRTD event
functions of the spectral trajectory generated by HMM-
based TTS are kept unchanged to preserve the high intelligi-
bility of HMM-based TTS. Whereas the factors that are im-
portant to speech naturalness such as MRTD spectral event
targets are rendered with an original speech database to en-
hance the naturalness of HMM-based TTS.

In the first stage of the proposed HTD, HMM-based
TTS is used to generate spectral and prosodic trajectories.
Previous results [11] show that HMM-based TTS is efficient
on prosodic modeling but needs improvements on spec-
tral modeling, particularly on reducing over-smoothness in
spectral features. Therefore, prosodic features generated
by HMM-based TTS are preserved. To reduce the over-
smoothness in the spectral sequence generated by HMM-
based TTS and to transform it to be close with that of
the original speech, this spectral sequence is analyzed by
MRTD to obtain the corresponding event targets and event
functions. These event functions are also preserved due
to the relations between event functions of MRTD and
the speech intelligibility and since speech synthesized by
HMM-based TTS is already highly and stably intelligi-
ble. However, these event targets are rendered and re-
placed with closest neighbors in an original database to
make the spectral sequence generated by HMM-based TTS
to be transformed to that of the original speech. Then, over-
smoothness in the spectral sequence generated by HMM-
based TTS can be reduced and the detail information in the
spectral sequence of the original speech, related to the per-
ception of the naturalness of speech, can be recovered. The
smoothness of event functions of MRTD ensures the spec-
tral sequence is still smooth after being rendered even with
a limited amount of data for rendering. As a result, speech
synthesized by the proposed HTD can be not only highly in-
telligible but also natural, even when the size of the database
for rendering is limited. Additionally, the footprint size of
the proposed HTD can be small due to the sparse represen-
tation of MRTD.

2. The Proposed HTD
2.1 Outline of HTD

There is a diagram of the proposed HTD in Fig. 1.

The spectral and prosodic trajectories are generated
from HMM-based TTS in the first stage. Since HMM-based
TTS is efficient on prosodic modeling [11], the prosodic tra-
jectories of the FO contour and gain contour of HMM-based
TTS are preserved for the proposed HTD.

A sequence of the line spectral frequency (LSF) or the
line spectral pairs (LSP) generated by the HMM-based TTS
is analyzed in the second stage by MRTD [9]. Assume that
y(n) is this spectral sequence, MRTD decomposes y(#n) into
K dynamic event functions ¢; and K static event targets ay
and k = 1..K, as given in Eq.(1). Here, y(n) is the ap-
proximation of y(rn). There are K event targets in a total of
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N frames and K << N, then MRTD (and TD in general)
is a sparse representation of speech. The event functions
are interpolation functions representing temporal transition
movements between the sparse event targets.

K
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Fig.1  Overview of HTD.
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Equation (1) can be written in matrix notation as Eq. (2),
where P is the dimension of the speech parameter.

Vpun = Apxx @iy 2

Figure 2 draws an example of MRTD with spectral param-
eter y(1 : N), event targets a(l : K), and event functions
o(1 : K).

Event target a and event function ¢ are unknown in
Egs. (1) and (2) and need to be estimated by using some
optimization tasks to minimize interpolation error.

In the first step of the optimization task in MRTD [9],
event targets are set equal to the frame-based vector at the
same locations as given in Eq. (3).

aj = y(n) 3)

Here, ny, is the location of event target ay.

In the second step of the optimization task, event func-
tions in MRTD are estimated as described in Egs. (4) and
(5). Here, (...) and ||.]| correspond to the inner product of
two vectors and the norm of a vector.

L= ¢1(n), if ngy <n <ny

1,ifn=ng
¢e(n) = min(¢e(n — 1), max(0, g(n))), (4)
if mg <n<npg
0, otherwise
Be(n) = () — ars1), (ar — age1)) 5)

llax — ax1ll*
Using the estimation given in Egs. (4) and (5), each event
function ¢(n) is smooth, has only one peak, and two over-
lapped event functions sum up to one as described in Fig. 2
and explained in detail in [9]. These properties of event
functions results in gradual movements of the interpolated
spectral y(n) that are related to the co-articulation of speech.

A phoneme
Interval 1 Interval 2 Interval 3
{a(1: KD} Ay a, amH
{9(:K)} Fes &
{1 N}

Mi-1

Ni+1

An utterance

Fig.2  Anexample of MRTD analysis / synthesis with N frames and K event targets: a bar represents
a frame-based spectral feature or a spectral event target in a specific location. Two bars located at two
locations of the same spectral event target are same in lengths.
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In addition, the modification on sparse event targets ay di-
rectly and gradually affects to all frames inside duration in
which the event function ¢; is non-zero. Hence, speech can
be flexibly modified / transformed at specific events in the
time domain by modifying / transforming MRTD event tar-
gets a as shown in [10].

After the event functions are estimated, the event tar-
gets are re-estimated in the last step of the optimization
task as shown in Eq. (6) to minimize the interpolation error,
where 7 is matrix transpose transformation.

A=Y (@d")! (6)

Note that Eq.(6) is the general form of the re-estimation
of event targets of LSF in the original MRTD that was de-
scribed in details in the original work [9]. For short, Eq. (6)
means that each event target is re-estimated by its initialized
value, which is the frame-based vector at the same location,
and the non-zero estimated event functions at the same loca-
tion with a convergence condition of minimizing the recon-
struction error and ensuring the orders of LSF.

The event functions of the spectral sequence gener-
ated from HMM-based TTS, which are important to per-
ceive speech intelligibility, are preserved in the third stage
of the proposed HTD, because HMM-based TTS is already
stable and highly intelligible. The target vectors are modi-
fied by selection from an original dataset to overcome over-
smoothness in the spectral sequence generated by HMM
and to render the spectral sequence close to that of origi-
nal speech. The procedure for target selection is described
in more detail in the next sub-section.

Finally, the high-quality speech vocoder STRAIGHT
[12] is used to generate speech waveforms.

2.2 Target Selection Procedure

As the proposed method for selection is based on event tar-
gets, the concept behind the proposed selection procedure
can be considered to be a new concept of “target selection”
rather than the conventional concepts “unit selection” and
“frame selection” [7].

The event targets of the speech trajectory generated
by HMM are modified in the proposed HTD by replac-
ing them with the most-matched event targets of original
speech. Therefore, an alignment procedure in the time do-
main is required.

Dynamic time wrapping (DTW) or the nearest neigh-
bor search (NNS) can be used in the frame-based voice
transformation to align the transformation in parallel form
for the former and in non-parallel form for the latter. A
technique of using a fixed number of equally-spaced event
targets for each phoneme has been shown to be flexible
and efficient for TD-based voice transformations [10]. This
method involves non-parallel transformation for a sylla-
bles or an utterance but is a parallel transformation for
each phoneme when each ordered event target of a source
phoneme is transformed into a corresponding ordered event
target of a target phoneme. Developing from this method,
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each phoneme is divided into three equally-spaced intervals
in this work. One event target is located at the center of
each of the three intervals. Therefore, there are three event
targets in one phoneme. The number of event targets in
one phoneme can be from one as in the original MRTD [9],
or five in [10]. There are two reasons for choosing three
event targets in one phoneme in this work. The first one is
that increasing the number of event targets in one phoneme
larger than three does not improve the quality of synthesized
speech in our experiments, but increases the size of stored
data for rendering. The second one is that we want to set
the number of equally-spaced intervals as well as the num-
ber of event targets in one phoneme same as the number of
HMM states in each phoneme, which is three in this work,
with an expectation that all HMM states are rendered by the
original data. Although the method of locating event targets
at center frames in each HMM state in Viterbi alignment
is straightforward and may increase the accuracy of the se-
lection procedure, this method has not implemented in this
research at present. This is one of our future works.

The event targets are searched and replaced as de-
scribed in Fig.3. Each event target of the source spectral
sequence generated by HMM is replaced by an event target
of the original speech.

Using MRTD analysis, each event target is re-estimated
by the frame-based vector at the same location, and the es-

Interval 1 |Interva| 2| Interval 3

B e — et
Spectral Sequence
Generated by HMM

TD Analysis

N i Event Targets N\~ ]
H of LSF -

Select Most Matched Tri-frames

Database for Rendering

Three Targets

Tri-frames at Locations of
H HM Event Targets
- Return Targets at Found Location
V11—
H - H . H ™ "
I Hﬂ DHH | | Synthesis
N : " Event Functions among

Three Targets

iy e B o
. Rendered
Spectral Sequence
M

Fig.3  Target Selection: Single bars represent spectral event targets lo-
cated at centers of equally-spaced intervals; triple bars represent frame-
based features in tri-frames where their central frames are located at the
same positions as event targets. Input synthetic tri-frames color yellow-
red-yellow, selected original tri-frames with the same colors are marked
by red circles, and green event targets are the event targets of the original
speech selected for replacing.

Event Functions among



PHUNG et al.: IMPROVING NATURALNESS OF HMM-BASED TTS TRAINED WITH LIMITED DATA BY TEMPORAL DECOMPOSITION

timated event function at the same location, as explained in
sub-section 1. Therefore, event targets depend on the wide-
range context and sensitive to its locations. As a result, to
directly use event targets for alignment may reduce the ac-
curacy of the alignment procedure. Instead of that, three
consecutive frames, referred to as tri-frames in this research,
located at same positions of event targets, are used to align
the source and target event target pairs.

The matched tri-frames of the source - target pairs s — ¢
are searched by NNS with a summed cost as defined in
Egs. (7), (8), (9), (10), and (11) with the sub-costs of fun-
damental frequency (FO), LSF with order P, and power gain
(PL).

d = N(dro) + N(drsr) + N(dpL) (N
dro = [log(F0,) — log(FO,)| (8)
L&
disr = | 5 ; (LSF;; — LS F;,)? 9)
dpr = [log(PL,) — log(PL,)| (10)
Ny = L Hd (11)
o

Each component cost is normalized by normal distribution
similarly to that with HTT to avoid of weighting the com-
ponent costs [7], as shown in Eq. (11), where y, and o4 cor-
respond to the mean and standard deviation of the sample
distances of all candidates.

In our implementation, the “target selection” is super-
vised by label data to ensure its accuracy and reduce the
length of searching time, in which each ordered target in a
phoneme is replaced by the selected targets with the same
order and in the same phoneme.

In the offline stage, the database for rendering is pre-
pared with two steps. First, all utterances with labels are
analyzed by MRTD. Then, analyzed event targets and tri-
frames at the same locations are extracted from the parame-
ters of the whole utterances by using label data, and stored
for each distinct phoneme.

In the online rendering stage for each phoneme, the
matched original tri-frames are selected from the original
data and the event targets of the spectral sequence generated
by HMM-based TTS in the previous stage are replaced by
the original event targets located in the same positions as
the selected original tri-frames. The “target selection” will
be run with the whole database if the target phoneme for
rendering is not found. Therefore, the selection procedure
can still work if the number of phonemes in the database for
rendering is not sufficient, such as under some limited data
conditions, for instance.

2.3 Differences between HTD and HTT

Although the proposed HTD shares some common proce-
dures with HTT, their concepts are completely different.
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These differences are presented and discussed in this sec-
tion. There are four main differences:

(1) HTT can be considered to be one kind of unit selec-
tion that uses HMM-based TTS to compute the target cost,
resulting in improved stability in synthesized trajectory of
speech. However, HTT shares several common disadvan-
tages with unit selection TTS, e.g., their requirements for
huge amounts of data for selection or rendering, their huge
footprints, and their inflexibility for voice transformations.
The proposed HTD is one kind of HMM-based TTS that
uses MRTD and a “target selection” procedure to reduce
over-smoothness, resulting in the improvement of synthe-
sized speech in terms of naturalness while other advantages
of HMM-based TTS can be still preserved.

(2) HTT requires a huge database for rendering to en-
sure the smoothness of the synthesized speech since lim-
ited data may cause mismatches and discontinuities between
consecutive frames. The smoothness of the synthesized tra-
jectory in HTD is ensured by the smoothness of event func-
tions and the stability and smoothness of the trajectory gen-
erated by HMM-based TTS. Therefore, the matching level
of the “target selection” task does not strictly require preci-
sion as in HTT. As a result, HTD can synthesize stable and
smooth speech even under limited data conditions.

(3) HTT has a large footprint because it requires a huge
database for “frame selection”. HTD can have a small foot-
print because the sparse “target selection” can be used with
small databases for rendering. Even when the same database
is used for rendering, the sparse “target selection’ also stores
a smaller footprint compared with the “frame selection” in
HTT.

(4) HTT can be combined with voice transformation
by using multiple huge target databases for rendering [7].
The requirement for huge target databases is not convenient
for practical voice transformations where only a few tar-
get data are available. TD-based voice transformations [10]
could efficiently transform speaker individuality by preserv-
ing the event functions of source speech and transforming
its event targets to those of target speech. This manner
is similar to the proposed HTD, when event functions of
speech synthesized by HMM-based TTS are preserved and
its event targets are selected from an original database. As
aforementioned, the “target selection” does not require a
huge database. Therefore, HTD can be flexibly combined
with voice transformation by using multiple small target
databases for rendering.

3. Performance Evaluations
3.1 Data Preparation

TTS under limited data conditions is more practical for
under-resourced languages, where huge public speech cor-
pora are missing, compared with highly-resourced lan-
guages. Vietnamese is a language spoken by about 100 mil-
lion people throughout the world. However, as there is no
huge public speech corpus with labeling for Vietnamese at
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present, it is an under-resourced language.

Vietnamese is a tonal monosyllabic language. There
are about 7000 distinct Vietnamese tonal syllables. There
are totally 20 consonants and 250 tonal vowels in Viet-
namese. More detail on Vietnamese can be found in [13].
In this research, we used the small Vietnamese corpus DE-
MENS567, including 567 utterances. This corpus was also
called TTSCorpus in [14]. The total time interval of this
dataset is approximately one hour. The sampling frequency
of the corpus is 11025 Hz.

The objective for this research is to propose an effi-
cient TTS under limited data conditions. In this research, a
dataset in this study is considered to be under “limited data
conditions” if it reaches a threshold when the phoneme cov-
erage is approximately 100 %. All phonemes exist but their
frequencies are small due to this requirement. Therefore,
the estimation of HMM for one phoneme may be inappro-
priate since there is small amount of training data for this
phoneme. Over-smoothness in HMM-based TTS is signifi-
cant in this case and improvements to the proposed HTD are
more important. A “limited data condition” was simulated
by taking this requirement into account with a dataset of
300 utterances extracted from DEMENS567. This dataset is
close to the threshold where the phoneme coverage reaches
approximately 100%. Although some monophones are still
missing, most of widely used tonal phonemes appear in this
dataset. The size of this dataset in PCM 16 bits format is ap-
proximately 30MBs and the duration is approximately 20
minutes. This dataset was used to train the HMM-based
TTS, which was used as input of HTT and the proposed
HTD, and was used for comparisons.

We used three datasets including 100, 300, and 500
utterances, extracted from DEMENS567, for rendering HTT
and the proposed HTD to investigate the dependence of the
performances of HTT and HTD on the sizes of the databases
used for rendering. Note that HMM-based TTS was just
trained one time with the dataset of 300 utterances, simu-
lated to be an “under limited data condition”.

3.2 Experimental Parameters

We compared five versions of speech in our evalua-
tions: speech synthesized by a HMM-based TTS for Viet-
namese [15] trained with 300 utterances, speech synthesized
by HTT, speech synthesized by the proposed HTD, speech
analyzed / synthesized by MRTD-STRAIGHT, and the orig-
inal speech. HTT and our proposed HTD used 100, 300,
and 500 utterances for rendering. Speech analyzed / syn-
thesized by MRTD and STRAIGHT can be considered as
the ideal limitation of HTD obtained when using a huge
amount of data for rendering. Due to reconstruction errors
of MRTD and STRAIGHT, this ideal limitation of HTD is
different from the original speech. The original speech can
be considered as the ideal limitation of HTT when using a
huge amount of data for rendering since HTT is one kind of
waveform concatenation TTS used the original speech. Al-
though these two ideal limitations of HTD and HTT can be
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never reached, they were used for evaluations in this paper
instead of evaluating HTD and HTT with a real large-scaled
speech corpus because the latter solution is expensive, time-
consuming, and not available for us at present.

All experimental parameters were controlled to be
equivalent for all TTSs to enable them to be fairly evalu-
ated. The spectral features for the TTSs were LSF with an
order of 24. The HMM-based TTS also used the deltas of
LSFE. The excitation parameters for HMM-based TTS were
composed of logarithmic FO and their corresponding delta
coefficients. The frame length was 20-ms and the update in-
terval was 5-ms. The context-dependent HMM used three
states for one phoneme, which was same as the number of
event targets for one phoneme that was used in the proposed
HTD. Other parameters of the HMM-based TTS for Viet-
namese were adopted from the original work by Vu et al.
[15], while those of HTT were adopted from the original
work by Qian et al. [7].

STRAIGHT version 4 [12] was used as a vocoder to
generate the output waveforms. All parameters used for ex-
tracting FO, aperiodicity (AP), and spectral envelope with
STRAIGHT were default parameters except for f;, frame
size and frame step.

3.3 Subjective Evaluations

Subjective tests on intelligibility and naturalness were con-
ducted to evaluate the TTSs. Five subjects who were native
Vietnamese with normal hearing participated in these tests.

Semantically unpredictable sentences (SUSs) have
been used as a standard measure to evaluate the intelligi-
bility of a TTS, but there are no designs on Vietnamese
SUS lists at present. Therefore, 20 testing sentences were
chosen with four restricted rules (rules 1-4) to prevent the
subjects from easily predicting the meanings, and two re-
stricted rules (rules 5-6) were chosen to ensure the evalua-
tions were reliable. The six rules were: (1) the Vietnamese
words in the testing sentences were all low frequency, (2)
only sentences composed of monosyllabic words were used
to prevent subjects from predicting the meaning of com-
pound words with only their constituent parts, (3) repeating
the words between testing sentences was avoided to prevent
subjects from remembering words that they had heard pre-
viously, (4) sentences with fewer semantic relations were
selected to prevent subjects from predicting the meaning of
sentences, (5) sentences covering all Vietnamese tones and
minimizing the repetition of tonal phonemes were selected,
and (6) only short sentences were selected to avoid the dif-
ficulty for subjects to remember the syllables that they had
heard in the testing sentences. In this research, the intelligi-
bility scores were measured by word error rates (WER) of
SUS sentences.

The naturalness of TTS has been widely evaluated by
mean opinion scores (MOS). Therefore, MOS scores were
used to evaluate the overall impression of naturalness of
TTSs with a testing dataset that contained 20 long sentences
with an average length approximately 25 syllables. Evalua-
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tions with long sentences were used to measure the speech
naturalness in terms of both voice quality and segmental du-
ration and timing.

The two testing datasets for intelligibility and natural-
ness evaluations were chosen from the set of sentences that
were not used for training the HMM-based TTS and were
not used for rendering with HTT and the proposed HTD.

3.3.1 Results of the Intelligibility Evaluation

The results obtained from the intelligibility evaluations are
listed in Table 1. They indicate that the WERs of orig-
inal speech are zeros and those of speech synthesized by
HMM-based TTS were small and were equivalent to those
of speech analyzed / synthesized by MRTD-STRAIGHT.
Both HTT and HTD reduced the intelligibility of speech
synthesized by HMM-based TTS. A statistical F-test was
conducted to investigate how much HTT and HTD reduced
the intelligibility in three conditions for rendering. The re-
sults are given in Tables 2 and 3, which indicate that HTT
significantly reduced the intelligibility of HMM-based TTS
while the reduction with HTD was not significant. With 500
utterances for rendering, the intelligibility of HTD was even
equivalent with that of HMM-based TTS and of MRTD-
STRAIGHT. As a consequence, the proposed HTD was suc-
cessful to preserve the intelligibility of HMM-based TTS
under limited data conditions.

3.3.2 Results of the Naturalness Evaluation

The results from the naturalness evaluations are presented
in Fig.4, in which the MOS scores of speech synthesized

Table 1  Means of WERs (%): HMM-based TTS was only trained with
300 utterances, speech analyzed / synthesized by MRTD-STRAIGHT and
the original speech were independent with the datasets for rendering.

100 300 500
Utterances | Utterances | Utterances

Original - 0 -
MRTD-STRAIGHT - 0.25 -
HMM-based TTS - 0.25 -

HTD 0.64 0.51 0.25

HTT 7.13 3.82 3.69

Table 2 F-test to show differences in the intelligibility of HMM-based

TTS and HTD in three conditions for rendering: No difference when using
500 utterances for rendering HTD.

100 300 500
Utterances | Utterances | Utterances
21.008 17.049 -
P < 0.001 < 0.001 -
Table 3  F-test to show differences in the intelligibility of HMM-based
TTS and HTT in three conditions for rendering.
100 300 500
Utterances | Utterances | Utterances
523.213 151.545 234.607
p < 0.001 < 0.001 < 0.001
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by HMM-based TTS, analyzed / synthesized by MRTD-
STRAIGHT, and the original speech were drawn as the
same values in the three conditions, for convenience to com-
pare all conditions for rendering. These results indicate that
HTT improved the naturalness of HMM-based TTS trained
under limited data conditions with 300 sentences when us-
ing a sufficient amount of data for rendering, i.e 300 and 500
sentences. However, HTT reduced the naturalness of HMM-
based TTS when using 100 utterances for rendering. These
results also indicate that HTD improved the naturalness of
HMM-based TTS trained under limited data conditions with
300 sentences when using all three datasets for rendering.

A statistical F-test was conducted to measure the sig-
nificance of the improvements and reductions on natural-
ness of HTT and HTD compared with the HMM-based TTS
trained with 300 sentences. The results are shown in Tables
4 and 5. They indicate that HTT significantly reduced the
naturalness of the HMM-based TTS when using 100 utter-
ances for rendering and insignificantly improved the natu-
ralness of the HMM-based TTS when using 300 and 500
utterances for rendering. They also indicate that HTD sig-
nificantly improved the naturalness of HMM-based TTS in
all three datasets used for rendering.

Consequently, the proposed HTD demonstrated its effi-
ciency compared with HMM-based TTS and HTT in terms
of naturalness in all conditions for rendering. Especially,
the proposed HTD could improve the naturalness of HMM-
based TTS even when using an ultra-small dataset for ren-
dering, i.e. a dataset of 100 utterances.

Il HMM-based TTS

[EEMRTD-STRAIGHT

4 Il Original |-==-1: 95% Confidence Interval

MOS Scores (1-5)

1.5

100 Utterances

300 Utterances 500 Utterances

Fig.4  Mean MOSs for naturalness evaluations and their 95% confidence
intervals in three conditions for rendering HTT and HTD.

Table 4  F-test to show differences in the naturalness of HMM-based
TTS and HTT in three conditions for rendering.
100 300 500
Utterances | Utterances | Utterances
18.751 4918 6.424
p < 0.001 0.028 0.012
Table 5  F-test to show differences in the naturalness of HMM-based
TTS and HTD in three conditions for rendering.
100 300 500
Utterances | Utterances | Utterances
31.749 45.213 84.644
p < 0.001 < 0.001 < 0.001
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LSF sequences: (a) synthesized by a HMM-based TTS trained with 300 utterances, (b) synthe-

sized by a HTD rendered with 300 utterances, (c) synthesized by a HTT rendered with 300 utterances,

(d) of the original speech.

3.4 Discussions

3.4.1 Discussions on Intelligibility and Naturalness

One sample of an LSF sequence synthesized by HMM-
based TTS, HTD, HTT, and one of the original speech are
given in Fig.5. It reveals that both HTD and HTT can
sharpen the LSF sequence generated by HMM-based TTS.
However, the frame-based method in HTT may have ex-
cessive sharpening and may increase the discontinuities be-
tween frames under limited data conditions, resulting in de-
creased intelligibility and naturalness of HTT under limited
data conditions.

Results from evaluations demonstrated that the pro-
posed HTD with a new rendering method preserved the in-
telligibility and improved the naturalness of HMM-based
TTS by reducing the problem with over-smoothness. The
outperformance of the proposed HTD compared with the
HTT confirmed that the proposed HTD is specifically ef-
ficient under limited data conditions. However, the results
from intelligibility and naturalness evaluations of MRTD-
STRAIGHT, which is the ideal limitation of HTD, and the
original speech show that HTT can be superior to HTD if a
huge amount of data is used for rendering HTT and HTD.

The results from the intelligibility evaluation were con-
sistent with the results from HMM-based TTS [15] where
the intelligibility scores of a Vietnamese TTS could reach
100%. The intelligibility of the mono-syllabic Vietnamese
speech seems to be higher than that of other languages.
MOS score of 3.8 for the original speech was quite low
since corpus DEMENS567 was not well recorded due to a
low sampling frequency of 11025 Hz and the recording en-
vironment. The MOS scores for all HMM-based TTS, HTT

and the proposed HTD were not high compared with those
of the original speech since they were implemented under a
“limited data condition”.

3.4.2 Discussions on the Footprint Size

The footprint size of the proposed HTD is the sum of the
size of the trained HMM model’s parameters and the size of
the stored data for rendering. The size of the trained HMM
model’s parameters is up to about 1 —2M B if an appropriate
fixed-point representation is used.

The experimental frame period was 5 — ms and f;
11.025 KHz. If each sample is represented by N bytes with
fixed-point representation, the size of each original frame
period is 5 x 11.025 X N = 55 X N bytes. The experimental
event rate was approximately one target in eight frames on
average by following the method of determining event lo-
cations presented in sub-section 2.2. Three parameters, 24-
ordered LSF, FO, and PL, were used. Each event target of
each of the three parameters was stored together with their
corresponding tri-frames. If each value is represented by
N bytes with fixed-point representation, the size of each en-
coded event target is 26 X (3+1)/8XN = 13X N bytes. Thus,
the compression rate rt ~ 55/13 ~ 4. The sizes of the three
original waveform databases of 100, 300, and 500 utterances
for rendering were approximately 10 MBs, 30 MB, and 50
MBs, respectively. Therefore, the actual size of the smallest
database for rendering was approximately 10/4 = 2.5 MB,
and the footprint of the proposed HTD was approximately
4 — 5 MB. Although the proposed HTD increases the size
of footprint compared with that of HMM-based TTS, it was
still small enough for most limited-resourced hardware plat-
forms. If further compression techniques are used such as
vector quantization to quantize LSF, FO, and PL, the size of
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the compressed footprint can be reduced even further.
3.5 Future Works

Due to time-consuming, only one single-speaker small Viet-
namese speech corpus was used for evaluations. Therefore,
the speaker-independence and language-independence of
the proposed HTD were not investigated in this research. We
plan to implement and to evaluate the proposed HTD with
different multi-speaker databases in different languages to
confirm whether this new approach is speaker-independent
and language-independent.

The implementations of the proposed HTD still have
remaining issues that should be improved. For example,
event targets should be located at center frames in each
HMM state in order to render speech synthesized by HMM-
based TTS in all HMM states. Since it is possible to de-
velop the proposed HTD to synthesize multiple voices with
limited target data, voice transformations combined with the
proposed HTD will be implemented and evaluated in the fu-
ture.

4. Conclusion

The motivation for this paper is to improve the naturalness
of HMM-based TTS trained under limited data conditions
while preserving its intelligibility. To achieve this motiva-
tion, a hybrid TTS between HMM-based TTS and MRTD
named HTD in this paper was proposed. Prosodic trajec-
tories and event functions of the spectral trajectory gener-
ated by HMM-based TTS were kept unchanged to preserve
the high intelligibility of HMM-based TTS. Whereas event
targets of the spectral trajectory generated by HMM-based
TTS were rendered with an original speech database to en-
hance the naturalness of HMM-based TTS. The experimen-
tal results under limited data conditions show that the intel-
ligibility of speech synthesized by the proposed HTD was
reduced insignificantly, whereas the naturalness of speech
synthesized by the proposed HTD was improved signifi-
cantly, compared with those by HMM-based TTS. Further
discussions also show that HTD has small footprint. There-
fore, the proposed HTD showed its strong efficiency under
limited data conditions.
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