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Generalized Pyramid is NP-Complete∗

Chuzo IWAMOTO†a), Member and Yuta MATSUI†, Nonmember

SUMMARY Pyramid is a solitaire game, where the object is to remove
all cards from both a pyramidal layout and a stock of cards. Two exposed
cards can be matched and removed if their values total 13. Any exposed
card of value 13 and the top card of the stock can be discarded immediately.
We prove that the generalized version of Pyramid is NP-complete.
key words: NP-complete, computational complexity, one-player game,
pyramid

1. Introduction

Pyramid is a solitaire game, where the object is to remove all
cards from both a pyramidal layout and a stock of cards (see
Fig. 1). The pyramidal layout is composed of seven layers,
where seven cards of the first layer cover six cards of the sec-
ond layer, which further cover five cards of the third layer,
and so on. The remaining cards are piled up, which are the
stock.

A card is exposed if no cards cover it. Two exposed
cards can be matched and removed if their values total 13.
Initially, seven cards in the first layer and the top card of the
stock are exposed. The cards of value 13 (Kings) can be
removed immediately if they are exposed. The top card of
the stock can be matched only with an exposed card in the
pyramid. If no match is made, then the top card of the stock
can be discarded. Once the stock is exhausted or no more
pairs can be made, the game ends. The aim of the game is
to remove all of the cards of the pyramid and stock.

In Fig. 1, two cards ♦6 and ♣7, a card ♥13, and two
cards ♦4 and ♠9 can be removed. After the removal of five
cards, ♣11 and ♠2 can be removed, but ♦3 and ♠10 cannot be
removed, since ♠10 is not exposed. At this point, there are
no pair of cards totaling 13. Fortunately, if the top card ♠12
of the stock is discarded, then ♣5 matches ♠8.

In this paper, we consider the generalized version of
Pyramid. The generalized 4k-card deck includes k ranks of
each of the four suits, spades (♠), hearts (♥), diamonds (♦),
and clubs (♣). A card r ∈ {1, 2, . . . , �k/2�}matches a card k−
r when k is odd, while a card r ∈ {1, 2, . . . , k/2} matches a
card k−r+1 when k is even. The instance of the Generalized
Pyramid Problem is the initial layout of cards consisting of
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Fig. 1 Initial layout of pyramid.

an l-layer pyramid and a stock of s cards, where s = 4k −
l(l + 1)/2. The problem is to decide whether the player can
remove all of the 4k cards from the initial layout.

We will show that the Generalized Pyramid Problem is
NP-complete, even if the number s of stock cards satisfies
s ∈ {1, 2, 3, 4}. (Note that if s = 0, the player never re-
moves the last two cards.) It is not difficult to show that the
Generalized Pyramid Problem is in NP, since the player can
remove at most 4k cards.

There has been a huge amount of literature on the com-
putational complexities of games and puzzles. In 2009, a
survey of games, puzzles, and their complexities was re-
ported by Hearn and Demaine [8]. Recently, Block Sum [7],
Hashiwokakero [1], Kaboozle [2], Kurodoko [10], Magnet
Puzzle [11], Pandemic [12], and Zen Puzzle Garden [9] were
shown to be NP-complete. Furthermore, it is known that
a single-player (resp. two-player) version of UNO is NP-
complete (resp. PSPACE-complete) [5], and Rolling Block
Maze is PSPACE-complete [3].

2. Reduction from 3SAT to Generalized Pyramid

2.1 3SAT Problem

The definition of 3SAT is mostly from [6]. Let U =

{x1, x2, . . . , xn} be a set of Boolean variables. Boolean vari-
ables take on values 0 (false) and 1 (true). If x is a variable
in U, then x and x are literals over U. The value of x is
1 (true) if and only if x is 0 (false). A clause over U is a
set of literals over U, such as {x1, x3, x4}. It represents the
disjunction of those literals and is satisfied by a truth assign-
ment if and only if at least one of its members is true under
that assignment.
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Fig. 2 3 × 4 cards transformed from variable xi.

An instance of 3SAT is a collection C = {c1, c2, . . . , cm}
of clauses over U such that |c j| ≤ 3 for each c j ∈ C. The
3SAT problem asks whether there exists some truth assign-
ment for U that simultaneously satisfies all the clauses in C.
This problem is known to be NP-complete. For example,
U = {x1, x2, x3, x4}, C = {c1, c2, c3, c4}, and c1 = {x1, x2, x3},
c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, c4 = {x2, x3, x4} provide
an instance of 3SAT. For this instance, the answer is “yes”,
since there is a truth assignment (x1, x2, x3, x4) = (1, 0, 1, 1)
satisfying all clauses. It is known that 3SAT is NP-complete
even if each variable occurs exactly once positively and ex-
actly twice negatively in C [4].

2.2 Transformation from an Instance of 3SAT to an Initial
Layout of Cards

We present a polynomial-time transformation from an arbi-
trary instance C of 3SAT to an initial layout of cards such
that C is satisfiable if and only if all cards can be removed.

Let n and m be the numbers of variables and clauses
of C, respectively. The generalized 4k-card deck includes
k ranks of each of the four suits. In the proof, we assume that
k is an even number. In this case, a card of rank r matches a
card of rank k−r+1 for each r ∈ {1, 2, . . . , k/2}. (If k is odd,
then a card r matches k − r for each r ∈ {1, 2, . . . , �k/2�}. In
this case, the following transformation is modified so that
the four cards of rank k are used as A, A′, B, B′ in Fig. 4.)

Each variable xi ∈ {x1, x2, . . . , xn} is transformed into
3×4 cards shown in Fig. 2. (See also Fig. 4 when n = m = 4
and k = 102. The 3 × 4 cards for x1 are ♠102, ♠1, ♥102, α;
♠5, ♠6, ♠7, γ; and ♦1, ♦102, ♣1, ♣102.)

In Fig. 2, the value of k depends on n and m; we will
fix k later. The first three cards of the first layer of Fig. 2
are ♠k − i + 1, ♠i, and ♥k − i + 1 (and they are labeled with
“xi = 1”, “xi”, and “xi = 0”, respectively). If variable xi

appears in clause c j1 positively and in c j2 and c j3 negatively,
then the first three cards of the second layer have ranks n+ j1,
n+ j2, and n+ j3, respectively. If this is the first (resp. second,
third) appearance of a card of rank n + j, the suit is ♠ (resp.
♥, ♦). (For example, ♠5, ♥5, and ♦5 labeled with c1 appears
in that order in the second layer of Fig. 4, since variable x1

appears clauses c1, c2, and c3 in that order.)
Blue and red cards of Fig. 2 are dummy so that the set

of cards forms a 3×4 layout. (Blue (resp. red) dummy cards
will be arranged so that they can be removed trivially at the
start (resp. end) of the game. We will explain them later.)

Fig. 3 An m-layer pyramid transformed from clauses c1, c2, . . . , cm.

If ♠i is matched with ♠k− i+1, then card n+ j1 (labeled
with c j1 ) will be exposed. If ♠i is matched with ♥k − i + 1
(and if the blue dummy card has already been removed),
then cards n + j2 and n + j3 (labeled with c j2 and c j3 ) are
exposed. Later, one can see that matching ♠i with ♠k − i + 1
(resp. ♥k−i+1) implies the assignment xi = 1 (resp. xi = 0).

The set of clauses {c1, c2, . . . , cm} is transformed into an
m-layer pyramid shown in Fig. 3, where cards labeled with
cm, . . . , c2, c1 are piled up. Grey cards are dummy so that
m(m+1)/2 cards form a pyramidal layout. It should be noted
that card ♠k−n−m+1 (labeled with cm) can be removed only
if all of the m− 1 cards ♠k− n, ♠k− n− 1, . . . , ♠k− n−m+ 2
(labeled with c1, c2, . . . , cm−1) have been removed.

Figure 4 is the bottom n + m + 1 layers of the initial
layout of the pyramid transformed from C = {c1, c2, c3, c4},
where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4},
and c4 = {x2, x3, x4}. The m-layer pyramid of Fig. 3 is fol-
lowed by a pile of cards

♥1,♥2, . . . ,♥n

so that there are four cards {♠r,♥r, ♦r,♣r} for each rank r ∈
{1, 2, . . . , n} (see Fig. 4). For the same reason, (i) the cards
of rank r ∈ {n + 1, n + 2, . . . , n + m} not used in the second
layer and (ii) the following 3m cards are piled up.

♥k − n, ♥k − n − 1, . . . , ♥k − n − m + 1,
♦k − n, ♦k − n − 1, . . . , ♦k − n − m + 1,
♣k − n, ♣k − n − 1, . . . , ♣k − n − m + 1.

In Fig. 4, the cards of (i) are {♣5,♣6,♣7,♣8}. The cards of (i)
and (ii) are piled up so that they can be removed trivially at
the end of the game. (In Fig. 4, those cards are piled in the
following order: ♥98, ♥97, ♥96, ♥95; ♦98, ♦97, ♦96, ♦95;
and ♣98, ♣97, ♣96, ♣95. We will explain them later.)

In Fig. 4, blue cards are labeled with α, α′, β, β′, · · ·. For
every χ ∈ {α, β, . . .}, blue cards χ and χ′ have such ranks that
χ matches χ′. Thus, every such pair can be removed at the
start of the game. (Without loss of generality, we can assume
that the number n of variables is even.)

Grey cards are labeled with A,A′,B,B′, . . ., where
card A matches A′, card B matches B′, and so on. All gray
cards except {S,T} can be removed trivially at the start of the
game. (Figure 5 is the layout after the removal of those blue
and gray cards.)
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Fig. 4 The bottom n + m + 1 layers of the initial layout of the pyramid transformed from C =
{c1, c2, c3, c4}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}. A
pair of cards of rank u and v match if u + v = k + 1 (= 103).

Fig. 5 Assignment (x1, x2, x3, x4) = (1, 0, 1, 1).

Fig. 6 All clauses c1, c2, . . . , cm are satisfied if and only if at least one of the three literals of every
clause c j ∈ {c1, c2, . . . , cm} has value 1.

The number b of cards in the bottom layer is b = 5n +
m + 4 (= 28 when n = m = 4). Thus, the total number p of
cards of the pyramid is p = b(b+1)/2 (= 406). Let k′ be the
integer such that p = 4k′ + s′, where s′ ∈ {0, 1, 2, 3}. Now
we fix the value of k as k = (p + (4 − s′))/4 (= 102). The
number s of cards in the stock is s = 4k − p (= 2). We can
match a pair of cards of rank u and v if u+ v = k+1 (= 103).

2.3 NP-Completeness of Generalized Pyramid

In this section, we will show that the instance C of 3SAT is
satisfiable if and only if all the cards of the pyramid and the
stock can be removed.

Assume that the instance C of 3SAT is satisfiable. Each
card of label “xi” can be matched with either card “xi = 1”
or “xi = 0” (see Fig. 5). If we match card “xi” with “xi =

1”, then card c j1 is exposed. If we match card “xi” with
“xi = 0”, then cards c j2 , c j3 are exposed. (Recall that we
assumed that xi appears in clause c j1 positively and in c j2 ,
c j3 negatively.)

Since C is satisfiable, we can remove card “xi” so that
at least one of the three c j-cards of rank n + j (in the sec-
ond layer) is exposed for every j ∈ {1, 2, . . . ,m} (see Fig. 5).
Therefore, all of the cards c1, c2, . . . , cm of Fig. 3 can be re-
moved (see Fig. 6).

Once all those m cards are removed, we can trivially re-
move pairs of dummy cards S, S′ and T, T′ of Fig. 4. Then,
we remove all pairs of green cards of rank r ∈ {1, 2, . . . , n}
and the remaining yellow cards in the first layer (for exam-
ple, ♥1 and ♥102 in Figs. 4 and 6, respectively). Finally, we
trivially remove (i) all pairs of red cards in the second layer,
(ii) all pairs of red ♥-cards and red ♣-cards, (iii) all pairs of
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Fig. 7 The last four cards and the stock when s = 4. The cases when
s ∈ {1, 2, 3} are similar and omitted.

the remaining green cards and yellow cards, (iv) all pairs of
red cards in the third layer, and (v) all pairs of white cards.
(For example, (i) γ and γ′, (ii) ♥98 and ♣5, (iii) ♦98 and ♥5,
(iv) ♦1 and ♦102, and (v) a and a′ in Figs. 4 and 6.) The
last s of the white cards are removed by using the stock (see
Fig. 7). Hence, if the instance C of 3SAT is satisfiable, then
all the cards of the pyramid and the stock can be removed.

Assume that the player can remove all the cards of the
pyramid and the stock. The card ♥1 (see Fig. 4) can be re-
moved only if all the m cards labeled with c1, c2, . . . , cm of
Fig. 3 can be removed. Those m cards can match yellow
cards in the second layer (see Fig. 6). Any yellow card in
the second layer is exposed only if the corresponding pair of
yellow cards in the first layer are removed. The set of pairs
of cards removed from the first layer indicates the truth as-
signment satisfying all clauses of C. (From Fig. 6, one can
see that x1 = 1, x2 = 0, and x3 = 1 satisfy all the clauses of

C = {c1, c2, c3, c4}.) This completes the proof.
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