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Virtual Halo Effect Using Graph-Cut Based Video Segmentation∗

Sungchan OH†a), Hyug-Jae LEE†b), Nonmembers, and Gyeonghwan KIM†c), Member

SUMMARY This letter presents a method of adding a virtual halo ef-
fect to an object of interest in video sequences. A modified graph-cut seg-
mentation algorithm extracts object layers. The halo is modeled by the
accumulation of gradually changing Gaussians. With a synthesized bloom-
ing effect, the experimental results show that the proposed method conveys
realistic halo effect.
key words: video segmentation, video editing, graph-cut, virtual halo effect

1. Introduction

The recent popularization of portable digital video devices
has drawn attention to video editing methods, such as in-
sertion of subtitles, rearranging video scenes and manipu-
lation of object layers. For an easy access to video object
layering for non-professionals, we introduce a scheme for
video segmentation with simple user interaction only for the
first frame of given video sequences. The effectiveness of
the proposed video segmentation method is demonstrated
by virtual halo effects which place synthetic bright light be-
tween background and object layers to highlight objects of
interest.

An overview of the proposed system is shown in Fig. 1.
Given a video sequence, grouping of pixels into the fore-
ground and the background is done by the proposed sequen-
tial video segmentation algorithm based on graph-cut. The
method constructs a spatio-temporal pixel-wise graph with
two consecutive frames. Temporal connections in the graph
are made from pixel correspondences based on motion. The
motion contributes to video segmentation by propagating
the previous results of segmentation and extracting moving
objects as the foreground layers. To alleviate the problem
of error propagation, the segmentation results from the pre-
vious frame are selectively used in the current segmentation
process.

A halo model is constructed by a mixture of Gaussians
and its variation over time is modeled by introducing ran-
dom parameters and estimated motion vectors. To pre-
vent unnatural transition between object layers and to re-
alize plausible halo-overlaid video sequences, a simplified
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model of blooming effect in CCD/CMOS image sensors is
employed as well.

2. Video Segmentation Based on Graph-Cut

Typical energy function of well-known graph-cut [1], [2]
consists of a data term for a node and a smoothness term for
an edge between nodes as Eq. (1). In the proposed method,
the data term, Edata, measures the preference of a node p
for label Lp. The smoothness term, Esmooth, on the other
hand, encourages neighboring nodes with similar color and
motion to be assigned the same label.

E =
∑
p∈V

Edata

(
Lp

)
+

∑
(p,q)∈E

Esmooth

(
Lp, Lq

)
(1)

Minimization of Eq. (1) is performed by α-expansion algo-
rithm [3]. Specific details of modification in graph-cut are
explained in subsequent sections.

2.1 Spatio-Temporal Graph Construction

In the proposed method, a spatio-temporal graph G =

<V,E> is constructed with two consecutive frames, I(t− 1)
and I(t). The setV is composed of the previous frame node
setVt−1 and the current frame node setVt, where each node
corresponds to each pixel in I(t − 1) and I(t). The edge
set E connects inter- and intra-frame nodes. While intra-
frame edges connect 4-neighbors of intra-frame nodes as
usual graph-cuts do, inter-frame edges link corresponding
inter-frame nodes based on motion V(t − 1) [4] over I(t − 1)
and I(t) as shown in Fig. 2. Pink and blue nodes represent
Vt−1 and Vt, respectively. We designate LFG1 as an object
of interest to be highlighted among other object labels in a
set LFG = {LFG1, LFG2, . . . }, and the background is regarded
as one layer LBG.

2.2 Data Cost

As the labeling process refers to the previous result, the
user-provided seed information for the first frame propa-
gates through video sequences. The label L∗, which is deter-
mined by the segmentation result of the (t−1)-th frame, is in-
cluded in the data cost function. Since false segmentation is
usually observed around boundary between differently mov-
ing objects, confidence of L∗ needs to be diminished as the
distance to the boundary decreases.
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Fig. 1 Overview of the proposed halo-overlaying algorithm.

Fig. 2 Motion based spatio-temporal graph.

In addition, the notion of the local and the global mo-
tion is participated in data cost function for both Vt−1 and
Vt. While data cost for Vt−1 depends on V(t − 1), V(t) is
included in the data cost forVt. Global motion Vglobal is av-
erage motion of nodes connected to nodes Lp

∗ = LBG along
the inter-frame edges.

To take the prescribed ideas into account, the proposed
data cost function in Eq. (2) is formed by sum of two compo-
nents: the location dependent cost N(·) in Eq. (3) and motion
dependent cost γ(·) in Eq. (4).

Edata

(
Lp

)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wprevγ

∗ (p) + wseedN (p), p ∈ Vt−1, Lp = L∗p
wprevγ

∗ (p) + wseed, p ∈ Vt−1, Lp � L∗p
wcurrγ (p), p ∈ Vt

(2)

where wseed, wprev, and wcurr are weights for seeds, Vt−1,
andVt, respectively.

N (p) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
d2 (p)

2
(
σbdmax

(
L∗p

))2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

γ (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 −
(
|Vglobal−Vp|

max
p
|Vglobal−Vp|

)α
, Lp ∈ LFG

(
|Vglobal−Vp|

max
p
|Vglobal−Vp|

)α
, Lp = LBG

(4)

N(·) reflects low confidence of near boundary nodes and
σb controls the size of the region. Distance from label
boundary to a node p is measured by quasi-Euclidean func-
tion d(p) [5] and is normalized by the maximum distance

Fig. 3 (a) L∗, (b) V(t − 1), (c) V(t); data cost for LBG (d) and LFG1 (e),
and (f) LFG2 ofVt−1; data cost for LBG (g) and (h) LFG1&LFG2 ofVt .

dmax = maxLp∈L d(p). Moreover, a node with distinct mo-
tion from Vglobal is likely to be assigned LFGi through the
motion dependent cost γ(p). The vector Vp in Eq. (4) de-
notes the motion vector of a node p and α is a user defined
exponent.

Figure 3 illustrates the data costs described in Eq. (2).
LFG1, LFG2, and LBG are represented in red, blue, and green,
respectively. Motion vectors in Fig. 3 (b) and (c) are dis-
played by color coding representation [6]. Increase of the
data cost around boundary for node in Vt−1 is shown in
Fig. 3 (d)∼(f). Since the data cost of Vt is calculated based
on V(t) only, LFG1 and LFG2 share the identical data cost as
in Fig. 3 (h).

2.3 Smoothness Cost

Color coherency of nodes connected by any edge needs to
be preserved. Motion coherency, on the other hand, is not
guaranteed for an inter-frame edge, since an abrupt change
in motion is quite commonplace between frames. Therefore,
the proposed smoothness cost function is defined as Eq. (5),
where wcolor and wmotion are weights for the color and the
motion, respectively. And Cp represents the color vector of
a node p. The indicator function λ(p, q) is given as Eq. (6).
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(a) (b) (c)

Fig. 4 (a) Selected frame of video sequence ‘Owl’, (b) Corresponding
segmentation results without considering confidence of L∗, (c) Segmenta-
tion result by the proposed energy function.

(a) (b)

Fig. 5 (a) Proposed halo model by mixing Gaussian and hemi-
Gaussians, and (b) examples of synthesized halos.

Esmooth

(
Lp, Lq

)

=

⎧⎪⎪⎨⎪⎪⎩
wcolor

1
|Cp−Cq| − wmotion

λ(p,q)

|Vp−Vq| , Lp � Lq

0, Lp = Lq

(5)

λ (p, q) =

{
1, p, q ∈ Vt or p, q ∈ Vt−1

0, otherwise
(6)

Final segmentation results of selected frames from a
video sequence Owl are presented in Fig. 4. The input
frames including user interaction for the first frame are in
the left column. In the middle column, we can observe that
fully trusting L∗ leads to false segmentation and its propa-
gation over frames. However, in the right column, despite
of several motion components within and among layers, the
proposed method achieves fair results by suppressing the
propagation of errors.

3. Virtual Halo Effect

3.1 Halo Synthesis

The halo effect is synthesized as Eq. (7), mixture of an
isotropic Gaussian and Nr hemi-Gaussians of Eq. (8). Main
circular body of a halo is centered at µ and its size is deter-
mined by user-defined σm in Eq. (7). Brightness gain factor
G needs to be very large for realistic saturation of pixel in-
tensity.

Nr emitting subordinate rays are elongated in axial di-
rections as in Fig. 5. A hemi-Gaussian, as an emitting subor-
dinate ray, elongates in direction of a unit vector θi ∈ [0, 2π),
θi ∈ [0, 2π) with length li and width wi. Roles of the pa-
rameters and examples of synthesized halos are depicted in
Fig. 5.

Fig. 6 Evolution of halo over time by modifying the parameters.

h (x)

= G

⎡⎢⎢⎢⎢⎢⎢⎣1
2

exp

(
−|x − µ|

2

σ2
m

)
+

1
2N

Nr∑
i=1

g (x − µ, ei, li,wi)

⎤⎥⎥⎥⎥⎥⎥⎦
(7)

g (x, ei, li,wi)

=

⎧⎪⎪⎨⎪⎪⎩ exp
[
−

(∣∣∣∣ x·ei

li

∣∣∣∣2 +
∣∣∣∣ x×ei

wi

∣∣∣∣2
)]
, x · ei ≥ 0

0, otherwise

(8)

Temporal transformation of the halo is simulated by
updating the parameters as φi ← φi + δφi, where φi ∈
{li,wi, θi}. The parameters li, wi, θi and their temporal vari-
ations δli, δwi, δθi are initialized randomly within limited
ranges. When the magnitude of the parameter exceeds the
range, it and its temporal variation are reinitialized to stay in
the range.

Location of the halo µ for the first frame is defined by
the user and updated using the estimated motion. Since mo-
tion estimation errors are caused around object boundaries
by occlusion and disocclusion, motion of the halo is com-
puted with a bilateral filter assigning more weight to the
center of the halo and inner region of the object. Update
of µ and the bilateral weight η(x) are given in Eqs. (9) and
(10), respectively.

µ← µ +
∑

x∈ob j
η (x) V (x) /

∑
x∈ob j
η (x) (9)

η (x) = exp

⎛⎜⎜⎜⎜⎝−|x − µ|
2

σ2
1

⎞⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎣1 − exp

⎛⎜⎜⎜⎜⎝−d2 (x)

σ2
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (10)

As shown in Fig. 6, temporal variations of the halos
are perceptually convincing to be suitable for video appli-
cations.

3.2 Overlaying the Halo

A halo is overlaid through two steps. Firstly, I(x) is blended
with h(x) straightforwardly to generate I′(x) as in Fig. 7 (a)
by Eq. (11). I′(x), however, is not natural and shows artifacts
around the object boundary.

I′ (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 − h (x)) I (x) + h (x) Imax,
L (x) � LFG1, h (x) < 1

Imax, L (x) � LFG1, h (x) ≥ 1
I (x) , L (x) = LFG1

(11)

In Eq. (11), Imax denotes the saturated pixel intensity, i.e.,
Imax = 255 for 8-bit encoded images.

Secondly, blooming phenomenon [7] is applied to cre-
ate a natural and visually pleasing image. A new halo-
overlaid image I′′(x) in Fig. 7 (b) is obtained by diffusing
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(a) (b)

Fig. 7 Halo-overlaid images (a) I′: without halo diffusion process
(b) I′′: with the halo diffusion.

Table 1 Computational time for 640 × 360 video sequences.

Function blocks Time (sec./frame)

motion estimation 1.33
graph-cut segmentation 2.49
synthesis and overlay of the halo 1.17
Total 4.99

Fig. 8 Selected frames of halo-overlaid video sequences.

h(x) in the background region toward the foreground as
Eq. (12).

I′′ (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 − h′ (x)) I (x) + h′ (x) Imax,
L (x) = LFG1, h′ (x) < 1

Imax, L (x) = LFG1, h′ (x) ≥ 1
I′ (x), L (x) � LFG1

(12)

h′ (x) = max
L(x′)=LBG

exp

⎛⎜⎜⎜⎜⎝−|x′ − x|
2σ2

d

⎞⎟⎟⎟⎟⎠ h (x) (13)

The diffused halo map h′(x) is defined as Eq. (13) and the
diffusion strength is controlled by a parameter σd.

4. Experimental Results

Figure 8 demonstrates halo-overlaid real-world sequences
by the proposed method. Despite of cluttered background
and complex motions of camera and objects, the synthesized
halos are merged into video frames without visible artifacts.
The third column of Fig. 8 shows that colored halos can be
synthesized by simply assigning different gain factor G to

each color channel.
Processing time of the proposed algorithm is shown in

Table 1. The time was measured in a PC with Intel Core
i7 3.2 GHz and 6 GB RAM. The motion is estimated using
multigrid scheme [8] for speed-up. Almost half of time is
spent in graph-cut segmentation since the labeling process is
performed for two consecutive frames to avoid error propa-
gation. The synthesis and overlaying the halo consumes also
large amount of time due to several per-pixel computations
of exponentials.

5. Conclusion and Future Works

In this letter, we present a scheme of overlaying halo ef-
fect as a new visual experience by highlighting an object of
interest in a video sequence. The requirements of user inter-
action is limited to the first frame. The halo is overlaid au-
tomatically for the following frames by utilizing graph-cut
based video segmentation and motion estimation algorithm.
Our static and dynamic modeling of halos produces realistic
and visually pleasing effects in video sequences. Although
the work described in this letter is devoted to a video edit-
ing, the proposed algorithm is instantly applicable to a still
image editing by excluding the motion estimation.

In a point of user-convenience, introduction of object
detectors can be very helpful for implementation of fully-
automated halo effects without user intervention.

An additional improvement in quality of overlaid halo
is expected by applying detailed modeling of an optical phe-
nomenon, such as a lens flare.
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