IEICE TRANS. INE. & SYST., VOL.E96-D, NO.12 DECEMBER 2013

2663

| PAPER Special Section on Parallel and Distributed Computing and Networking

A WAN-Optimized Live Storage Migration Mechanism toward
Virtual Machine Evacuation upon Severe Disasters

Takahiro HIROFUCHI'®, Mauricio TSUGAWA ', Hidemoto NAKADA', Nonmembers,
Tomohiro KUDOH', Member, and Satoshi ITOH', Nonmember

SUMMARY Wide-area VM migration is a technology with potential to
aid IT services recovery since it can be used to evacuate virtualized servers
to safe locations upon a critical disaster. However, the amount of data in-
volved in a wide-area VM migration is substantially larger compared to
VM migrations within LAN due to the need to transfer virtualized storage
in addition to memory and CPU states. This increase of data makes it chal-
lenging to relocate VMs under a limited time window with electrical power.
In this paper, we propose a mechanism to improve live storage migration
across WAN. The key idea is to reduce the amount of data to be trans-
ferred by proactively caching virtual disk blocks to a backup site during
regular VM operation. As a result of pre-cached disk blocks, the proposed
mechanism can dramatically reduce the amount of data and consequently
the time required to live migrate the entire VM state. The mechanism was
evaluated using a prototype implementation under different workloads and
network conditions, and we confirmed that it dramatically reduces the time
to complete a VM live migration. By using the proposed mechanism, it is
possible to relocate a VM from Japan to the United States in just under 40
seconds. This relocation would otherwise take over 1500 seconds, demon-
strating that the proposed mechanism was able to reduce the migration time
by 97.5%.

key words: disaster recovery, live migration, virtual machine, virtual ma-
chine monitor

1. Introduction

IT services are indispensable for our daily life and com-
mercial activity, as such, there is a need for robust and de-
pendable IT Infrastructure that can remain operational even
upon severe disasters. On March 11th 2011, the Great East
Japan Earthquake hit Japan as the most powerful known
earthquake to have ever hit the country. In the east area of
Japan, electricity power grid systems were partially dam-
aged. IT services were disrupted due to power blackout,
harming business continuity as well as preventing rapid re-
sponse against the disaster.

In our former study[1], we investigated damages of
datacenters operated by universities and research institu-
tions located in the disaster-struck area. Contrary to our
expectation, physical damages to server computers and net-
work equipments were minimal, thanks to quake-resistant

Manuscript received December 25, 2012.
Manuscript revised May 18, 2013.

"The authors are with Information Technology Research Insti-
tute, National Institute of Science and Technology, Tsukuba-shi,
305-8568 Japan.

"The author is with Advanced Computing and Information
Systems Laboratory, University of Florida, Gainesville, FL32611,
United States of America.

a) E-mail: t.hirofuchi @aist.go.jp

DOI: 10.1587/transinf. E96.D.2663

building constructions and correct installations and opera-
tion of hardware components. Uninterruptible power sup-
plies (UPSs) and power generators kept servers and network
devices operational for tens of minutes. Several servers were
able to maintain Internet connectivity despite the severity of
the disaster. In the academic backbone network of Japan, al-
though some optical fiber cables, close to the eastern coast,
suffered damages, the routing paths of network traffic were
automatically switched to other undamaged routes.

We believe this finding opens alternative opportunities
to the design of IT systems disaster recovery (DR). If IT sys-
tems are operational during a time window of tens of min-
utes after a disaster, we can possibly evacuate services to
safe locations. This contrasts with traditional approaches
of DR that proactively backs-up data assuming that services
are shutdown upon a disaster. In our ongoing project, we
consider live migration of virtual machines (VMs) as an en-
abling technology to evacuate virtualized IT systems to safe
locations. Live migration is implemented in the virtual ma-
chine layer and is not an application-specific mechanism,
transparently supporting the evacuation of unmodified ap-
plications. The evacuation of an entire IT system requires
the transfer of all VM states including CPU, memory, and
storage such that no dependency with the disaster site is left
after migration. Classic live migration mechanisms [2]-[4]
focuses on CPU and memory state transfer, assuming shared
storage among physical servers. Although several studies to
include storage migration exist, they require long periods of
time to relocate virtual disks. In the context of DR, there is
a need for an improved storage migration mechanism that
can complete the evacuation of VMs to a remote site within
a limited time window.

In this paper, we propose a WAN-optimized live stor-
age migration mechanism that can relocate the whole VM
state to a remote site in a short period of time (e.g., tens
of seconds). The proposed mechanism proactively trans-
fers virtual disk state to a backup site while in normal op-
erating conditions. When a disaster strikes, our system per-
forms live storage migration of not-yet-cached blocks con-
currently with the memory and system states relocation. By
transferring the data in advance, the proposed mechanism
can dramatically reduce the amount of data transferred and
consequently the time required to complete the live migra-
tion of the whole VM state. The live storage migration is
implemented by using a postcopy migration technique [5].
The amount of data transferred for storage migration is de-

Copyright © 2013 The Institute of Electronics, Information and Communication Engineers

2664

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.12 DECEMBER 2013

0. Severetearthquake happens. 3. A VM is evacuated to a remote safe location
in a window time of backup power supply.

1. Power grid'is damaged.———
i —_ VM

2. Power supply is switched to backup.

Disaster Site

/ (IT service)

Wide-area Network

VM
(IT service)

4. The VM is kept running in a safe site.

Remote Site

Fig.1 VM evacuation upon disasters.

terministic and does not change depending on the activity
of the VM. Using the proposed mechanism, it is possible to
complete a storage migration in a short period of time, even
for VMs that intensely update disk blocks.

Section 2 motivates this paper in the context of our IT
services recovery project. Section 3 explains the design and
implementation of the proposed mechanism. Section 4 eval-
uates a prototype implementation and presents experimental
results. Section 5 discusses related work and Sect. 6 con-
cludes this paper.

2. VM Evacuation Upon Disasters

Our project studies disaster-resilient IT infrastructure,
which can tolerate severe earthquakes such as the Great East
Japan Earthquake. It is known that severe earthquakes dam-
age power plants and power lines, causing power blackout in
datacenters that continues for days to months. However, just
after an earthquake, backup power systems can supply elec-
tricity to server computers for tens of minutes until running
out of battery or fuel. As illustrated in Fig. 1, our system
evacuates VMs to a safe site during this time window. The
assumption considering the experience of 2011 Earthquake
is that thanks to quake-resistant technologies, server com-
puters and network switches can be kept operational. The
major concern for IT infrastructure is the lack of electricity.

When a severe disaster strikes, our system starts VM
evacuation to a remote site in a safe location. An emergency
earthquake alert broadcasted by a governmental agency, or
power blackout will be possible triggers to start the evacua-
tion. The earthquake alert system has been successfully used
in other real-world systems. For example, when a severe
earthquake is detected, train control systems immediately
broadcast emergency brake commands to all trains in oper-
ation. The speeds of trains are reduced to a safe level before
seismic waves reach the trains. We are confident that inte-
grating IT systems with the alert system could make them
robust against earthquakes.

In our prior work [6], we have developed a transpar-
ent tunneling mechanism exploiting the Mobile IPv6 proto-
col [7], which allows VMs to preserve network reachabil-
ity by keeping the same IP address even after migrating to
different locations. We have also studied a feedback-based

control mechanism to optimize parallel live migration ses-
sions [8]. It enables an evacuation system to migrate a clus-
ter of VMs efficiently to remote sites.

In this paper, we address the performance problem of
storage migration mechanisms that require an extraordinar-
ily long time to complete. Storage migration entails the
transfer of all virtual disk blocks, with the sizes on the order
of Gbytes, and it is challenging to transfer such amount of
data within a limited time window.

3. Proposed Mechanism

Our storage migration mechanism is called xNBD+. As il-
lustrated in Fig. 2, the proposed mechanism is composed of
two daemon programs, both of which run on storage servers
at the source and destination sites. The NBD I/O daemon
handles I/O requests from a VM, and performs read/write
operations on a disk image file. The NBD sync daemon
periodically synchronizes the image file disk between two
sites.

The proposed mechanism is mostly implemented in the
sync daemon, while a VM only interacts with the I/O dae-
mon and sees a storage server of the Network Block Device
(NBD) protocol [9] (i.e., a block-level I/O protocol over IP
networks). The NBD I/O daemon provides a virtual disk to
a VM, which is running on Qemu/KVM [10] or Xen [11].
Qemu/KVM supports the NBD protocol without any ad-
ditional components, and Xen also supports the protocol
through the block device driver of the NBD protocol on a
host operating system.

During normal operation, the NBD sync daemon at the
source site periodically sends written data to a destination
server in a backup site, synchronizing the data of a virtual
disk with cache data on the destination. This synchroniza-
tion is performed only using the excess bandwidth between
the two sites, and completely independent of the disk I/O
operations performed by VMs. Thus, the disk I/O perfor-
mance of VMs is not adversely affected even if WAN con-
ditions change. In disaster operation, the proposed mecha-
nism performs a live storage migration, which does not need
to transfer all the disk blocks but only the blocks that are not
cached. Because pre-caching is performed on a best-effort
basis using the available excess bandwidth, the number of

HIROFUCHI et al.: A WAN-OPTIMIZED LIVE STORAGE MIGRATION MECHANISM TOWARD VIRTUAL MACHINE EVACUATION UPON SEVERE DISASTERS

1. Disk Synchronization ...

I NBD Protocol

XNBD+ " xNBD+ ™

2665

2. Live Storage Migration

NBD Protocol

1/0 Sync
Daemon Daemon |

ke oo)
Daemon LDaem n |

Provide VM disk Send updated
IfO and track dirty/ 'blocks on a best-
blocks o effort basis

Save recejved
block:

Read/Write
Cached
Blocks
Source Destination
(Primary Site) (Backup Site)

xNBD+
Sync
Daemon Daemon
Send the rest of P
blocks 1/0 and trap receive blocks
Read Readerite
Disk | Cached
Image . Blocks
Source Destination

(Disaster Site) (New Primary Site)

Fig.2 Overview of our WAN-optimized storage migration mechanism.

successfully cached blocks depends on the VM disk I/O ac-
tivity and network conditions. However, as shown in later
sections, time to migrate an entire VM state can be dramat-
ically reduced in many situations.

The proposed mechanism builds on a postcopy migra-
tion technique that we previously developed [5] and works
as follows: first, a virtual machine monitor (VMM) per-
forms a regular VM migration, which does not include the
relocation of storage. Then, the destination storage server
starts processing disk I/O requests from the migrated VM.
If a read request to a not-yet-cached disk block is issued,
the destination storage server reads the corresponding block
from the source server, and returns the data of the block to
the VM as well as writes the data to the local storage at the
destination. The other types of requests (i.e., read operations
to already cached blocks, and write operations) are handled
only at the destination, since it is not necessary to read cor-
responding blocks from the source. In parallel with this on-
demand block transfer, the destination server reads the rest
of the blocks in the background. Finally, all the blocks are
transferred to the destination.

In contrast, precopy storage migration used in other
studies works as follows: after a migration is invoked, a
VMM copies all memory pages and disk blocks to the desti-
nation. Since the VM is still running at the source, memory
pages and disk blocks are updated at the source server while
they are copied to the destination. These updated memory
pages and disk blocks are iteratively copied to the destina-
tion, until the data size of remaining pages and blocks is
sufficiently small for an acceptable downtime. Then, the
VMM stops the VM, and copies the rest of VM states (e.g.,
remaining memory pages, disk blocks, VCPU registers, and
device status) to the destination. Finally, the VMM resumes
the VM at the destination. As discussed in Sect. 4.2, the iter-
ative copy phase of the precopy migration is not suitable for
WAN environments. In the worst case, the size of remaining
VM states never reaches a threshold value, which means a
migration does not finish.

 If a block is updated,
mark its offset on the current bitmap

@ * Renew the bitmap every epoch.
000001010101010101 Epoch 1 (frozen)

NBD Protocol 110100000100011100 | Epoch 2

/0 Daemon 100000100000000111 | Epoch N-1 (frozen) =,
\
Read/Write I 111100100000000000 | Epoch N

Disk —
1. Read the latest frozen bitmap

XNBD+ ‘

(frozen)
xNBD+

(updating)

e

2. Read update blocks ‘—“3 Send “Offset, Epoch, Block data”

shown in the bitmap

Fig.3 The sender side mechanism of the disk synchronization in normal
operation.

3.1 Disk Synchronization During Normal Operation

The disk synchronization mechanism has been designed to
meet the following requirements: (1) the synchronization
mechanism must be robust against unstable WAN environ-
ments - this means that the system must prevent data incon-
sistencies in the backup site caused by potential intermittent
network failures; (2) the synchronization activities must not
adversely affect VM performance - i.e., the synchronization
mechanism should not influence the operations performed
by the VM. Traditional DR systems over a WAN need to
sacrifice system performance for strict data synchronization.
Our project, assuming the existence of a time window upon
disasters, aims to explore an alternative approach that can
preserve system performance during normal operation.
Details of the designed synchronization mechanism are
illustrated in Fig. 3 and Fig. 4. The synchronization mecha-
nism periodically searches for updated blocks at the primary
storage server and sends them to the backup storage server

2666

10
11

Update

A& W N B O
©

10)
Write

Save received blocks and XNBD+
update the epoch table Sync Daemon

Receive “Offset, Epoch, Block Data”

Fig.4 The receiver side mechanism of the disk synchronization in nor-
mal operation.

on a best-effort basis. Virtual disk synchronization is car-
ried out concurrently with handling I/O requests for the VM,
using the available bandwidth of a WAN. All synchroniza-
tion messages include an epoch number, which indicates the
freshness of synchronization data. Epoch number is also
used to detect potential data loss in the backup site due to
network connection failures or synchronization bandwidth
shortages. When the connection is recovered, pending syn-
chronization data is transmitted. In addition, our proposed
mechanism does not have any exclusive lock between disk
I/O handling and synchronizing actions. The performance
of disk I/O is completely independent of fluctuating WAN
performance even when network becomes unreachable.

On a source storage server, the I/O daemon is responsi-
ble for maintaining the epoch counter, which is incremented
periodically. A bitmap keeps track of updated blocks in each
epoch. When the epoch counter is incremented, the 1/O dae-
mon freezes the current bitmap, and creates the next bitmap.
The sync daemon detects the creation of a new bitmap, scans
the bitmap of the previous epoch’, finds updated block off-
sets, and sends synchronization data by reading the offsets
of the disk image file. The data of an updated block is encap-
sulated into a synchronization data frame, where the offset
of the block and the epoch counter of the bitmap are added
to the data.

On a destination storage server, the sync daemon is
responsible for receiving synchronization data frames, and
storing synchronization data in a local storage. It also up-
dates an offset-epoch-pair table (Cache Epoch Table, CET)
based on received frames. CET records the freshness of each
block (represented by an offset number) in the cached image
file. For example, if the CET entry for the block of offset
4 indicates epoch 10, the cached data corresponding to the
block was transferred reading the bitmap of the epoch 10.
Because the sync daemon scans only frozen bitmaps, this
happened in the epoch 11 or later. It should be noted that the
data of the cached block is not a snapshot at a given point of
time. Since there is no exclusive access control between the
I/O daemon and the sync daemon, the sync daemon may po-

Skip the bitmap of the current epoch, which is being updated
by the I/O daemon.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.12 DECEMBER 2013

tentially send data of a block that is being overwritten by the
I/O daemon. Data inconsistencies are resolved in the final
phase of the storage migration.

3.2 Live Disk Migration in Disaster Operation

Upon a disaster, our system starts the process of relocat-
ing the whole VM state to a safe location. The memory
state of the VM is migrated by a mechanism implemented
by the VMM, while the disk state of the VM is migrated by
our mechanism proposed in this paper. For memory migra-
tion, we can use a normal precopy-based migration mecha-
nism that is available in most VMMs([2]-[4]), or the pre-
copy/postcopy hybrid migration mechanism that we have
developed for the latest Qemu/KVM [12].

If normal precopy-based memory migration is used, the
entire migration process works as follows. First, a memory
migration mechanism transfers memory pages to the desti-
nation for a while. After the rest of memory pages become
sufficiently small, the memory migration mechanism tem-
porarily stops the VM and copies the memory and system
states to the destination. In the background, the storage mi-
gration mechanism performs the following steps.

0. The source sync daemon stops the synchronization
operation and prepares for the migration of not-yet-
cached blocks.

1. The source sync daemon scans all bitmaps generated,
and creates an offset-epoch-pair table, called Final
Epoch Table (FET). FET records the epoch number for
each block that indicates when the final update hap-
pened.

2. The source sync daemon sends FET to the destination.

3. The destination sync daemon compares FET and CET
to determine which cached block is valid. For a given
block offset, if the epoch number of FET is equal to
that of CET, the cached block of the offset is consistent
and valid. The destination sync daemon creates Cached
Bitmap, the bitmap of successfully-cached blocks.

4. With cached blocks and Cache Bitmap on hand, the I/O
and sync daemons in the destination initialize postcopy
storage migration.

Then, the memory migration mechanism resumes the
VM at the destination. The I/O daemon serves disk 1/O for
the VM. Concurrently, the sync daemon transfers not-yet-
cached blocks from the source. After all blocks are cached
in the destination, there will be no dependency with the
source, and we can safely shutdown physical servers in the
source site.

Step 3 is explained through an example in Fig. 5. The
block (offset 1) has the epoch number 11 in FET, which
means the block had final updates during the epoch 11 -i.e.,
it was not updated in the epoch 12 and later. At the desti-
nation, the block has the epoch number 11 in CET, which
means the block was cached after the bitmap of the epoch
11 had been frozen, which could only have happened in the
epoch 12 or later. In this case, the cache of the block con-

HIROFUCHI et al.: A WAN-OPTIMIZED LIVE STORAGE MIGRATION MECHANISM TOWARD VIRTUAL MACHINE EVACUATION UPON SEVERE DISASTERS

Scan all bitmaps and
create Final Epoch Table.

Final Epoch Table

Offset_Epoch |}
20
11
15
10
21

000001010101
110100000100

Epoch1
Epoch 2

xNBD+
1/0 Daemon

100000100000
111100100000

Epoch N-1
EpochN

A W N P O

Send Final Epoch Table
to destination

Source

Fig.5

tains the same data as the block at the source disk image.
3.3 Implementation

We have developed the prototype of the proposed mecha-
nism xNBD+, extending our previously developed xNBD stor-
age migration system. Since xNBD only supports storage mi-
gration without pre-caching of disk blocks, we have newly
implemented the sync daemon to synchronize disk data in
advance, and extended the I/O daemon to only transfer the
necessary blocks. We have refactored xNBD and added ap-
proximately 3000 lines of C code.

4. Evaluation

We conducted experiments to confirm that the prototype
works as expected reducing the time required to migrate
the whole state of a VM. We compared our prototype
with the native live storage migration implementation of
Qemu/KVM. We used the latest stable release of Qemu
(gemu-1.2.1) and the KVM driver of Linux Kernel 2.6.32
on the host operating system. The setup can migrate vir-
tual disks as well as the memory and system states of a VM
when the -b option is added to the migrate command of
the Qemu monitor console. It implements a precopy migra-
tion algorithm. Unlike our mechanism, the migration mech-
anism of Qemu does not pre-cache disk blocks in advance
before a migration is invoked. We compared two configura-
tions: (1) we used the Qemu’s migration mechanism without
storage support, and also used our storage migration mecha-
nism xNBD+; (2) we used the Qemu’s migration mechanism
with storage support.

Figure 6 shows the network setting used in experi-
ments. A VM is started at a source node, and then migrated
to a destination node over an emulated WAN. Between the
source and destination nodes, we inserted a network emula-

Final Epoch Table

2667

Start xNBD Server in the proxy mode with
Cache Bitmap and the cached disk image.

19

0 20 0
1 11 Valid Cached 1 —
2 15 2 15

Blocks _] ' e
3 10 "] |/O Daemon
4 21 4 10

Compare Final Epoch Table and poc
ble to check which cached block is valid. Then,
create Cache Bitmap (the bitmap of cached blocks).

Destination

The way of validating cached blocks upon a live migration.

/" Virtual =
Disk

Physical Host
(Source)

Physical|Host
(Destination)

Fig. 6

The network setting of experiments.

tor node that adds a network latency and a bandwidth limita-
tion. It uses the traffic control mechanism of Linux (i.e., the
tc command). In both configurations with or without using
the proposed storage migration mechanism, xNBD+ provides
disk I/O for the VM at the source and destination nodes.

The VM is configured to have 1VCPU, 512MB mem-
ory, and a 4GB virtual disk. The network between the source
and destination nodes is configured to emulate a long-fat
network such as a network between Japan and US in mind.
The network emulator node sets a 100ms RTT on a 1Gbps
network link. The migration code of Qemu allows users
to configure the acceptable downtime of a migration. In
the experiments, we have set the acceptable downtime to
1 second. We consider that the default value of the accept-
able downtime, 30ms, will be unachievable in WAN envi-
ronments, as long as the precopy-based migration algorithm
is used in Qemu/KVM. Note that this limitation is not im-
posed nor is due to the proposed storage migration mecha-
nism. In this paper, we chose 1 second for the parameter,
which will not visibly affect applications in most of situa-
tions. We are currently working on this issue by introducing
a precopy/postcopy hybrid algorithm to Qemu/KVM. Fur-
ther details will be reported in our future work.

The system has been configured to increment the epoch
value every 10 seconds. This interval is a configurable pa-

2668

VM Disk Read Throughput

(Kbytes'/s)
N
o
S
)

1000 : ‘_L

0 O —
0 20 40 60 80 100
Time (s)

- PO W

Fig.7 VM disk read throughput. The red area shows disk I/O performed
in the source host and the green area shows disk I/O performed in the des-
tination.

rameter of the prototype. A smaller value will reduce migra-
tion time when evacuating VMs, but will increase synchro-
nization traffic during normal operation. As justified below,
10-seconds interval is an appropriate trade-off point for the
situations we tested.

4.1 Basic Tests

First, we conducted experiments to confirm the basic func-
tionality of the prototype. During this experiment, the Linux
kernel compilation was executed on the guest operating sys-
tem. As shown in Fig. 7 and Fig. 8, the VM was sporadically
reading source files from the virtual disk and writing back
object files to it. Figure 9 shows disk synchronization traf-
fic produced by the proposed mechanism. It periodically
transfers updated blocks to the destination. Figure 11 shows
the number of the updated blocks that are not yet synchro-
nized with the destination node, which was always lower
than 0.2% of the total disk blocks. This means that the pend-
ing data size, which must be transferred upon a migration,
was lower than 8Mbytes at any given point in time.

At the time of 50 seconds, we started the VM live mi-
gration. Figure 10 shows the migration traffic produced by
VM memory migration. The first spike was the iterative
copy phase of the migration algorithm, and then the sec-
ond, tiny spike was the final phase where the rest of memory
pages and VM states except disk blocks were transferred.
As shown in Fig. 9, not-yet-synchronized disk blocks were
transferred at the time of 58 seconds, which took only ap-
proximately 1 second. In total, this live migration including
storage migration was completed in about 10 seconds. In
another experiment, we used the Qemu’s migration mecha-
nism with storage support instead of our proposed mecha-
nism. In this case, the total migration time of memory and
disk blocks took over 200 seconds.

The results confirm that the proposed mechanism can
significantly reduce the VM migration time by means of pre-
synchronization of virtual disk storage. The migration time
was reduced to 5.4% of the case without our mechanism.

It should be noted that in the current implementation
of Qemu, only one thread handles both the data transfers of
disk I/O and migration. Since migration traffic tends to be
much burstier than disk I/O traffic, the thread consumes a
substantially large CPU time around the migration code. As
shown in the above experiment, while the memory migra-
tion was on-going, the read/write performance of the virtual
disk was suppressed. This problem is not specific to our mi-

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.12 DECEMBER 2013

VM Disk Write Throughput

— 5000

¥ 4000 ¢ 1
o 3000 r 1
% 2000 1
¥ 1000 1
= 0

0 20 40 60 80 100
Time (s)

Fig.8 VM disk write throughput. The red area shows disk I/O performed
in the source host, and the green area shows disk I/O performed in the
destination.

Storage Synchronization & Migration Traffic

—~ 5000

£ 4000

o 3000 -

> 2000

Q

¥ 1000

¥ oo |

0 20 40 60 80 100

Time (s)

Fig.9 Storage synchronization traffic and storage migration traffic. The
red area shows storage synchronization traffic, and the green area shows
storage migration traffic.

VM Migration Traffic

—~ 60
@
8 40
3 20t
=
S ‘ . o
0 20 40 60 80 100
Time (s)
Fig.10 Migration traffic of VM memory.
Pending Updated Disk Blocks
0.2
£ o1 Wﬂfﬁ
0 L L L L
0 20 40 60 80 100
Time (s)
Fig.11 Pending updated disk blocks.

gration mechanism, and will be resolved in a future release
of Qemu/KVM.

4.2 Application Workloads

After validating the prototype, we performed experiments
with other types of applications running on the guest oper-
ating system. Table 1 summarizes the results. idle repre-
sents the case without active applications. kernel means that
the Linux kernel compilation process was running (i.e., the
same as Sect. 4.1). pgbench is the case running the pgbench
database benchmark program.

In all cases, our mechanism drastically reduced the mi-
gration time. For the idle workload, our mechanism was
able to migrate the entire VM in 7.4 seconds, which was
a dramatic reduction from 197.8 seconds required by the
Qemu’s migration mechanism. Similarly, for the kernel
compile workload, it achieved 11.3 seconds in contrast to
206.4 seconds by the Qemu’s mechanism. Remarkably,

HIROFUCHI et al.: A WAN-OPTIMIZED LIVE STORAGE MIGRATION MECHANISM TOWARD VIRTUAL MACHINE EVACUATION UPON SEVERE DISASTERS

Table 1

2669

Total migration time under idle, kernel compile, and pgbench workloads. The proposed

mechanism (migrate & xNBD+), the Qemu’s migration mechanism with storage support (migrate
-b), and the mechanism without pre-caching (migrate & xNBD) are compared. (Seconds)

migrate & xNBD+ migrate & xNBD

workload (proposed mechanism) migrate -b (no pre-caching)
total | memory | disk total | memory disk
idle 7.4 7.3 0.1 197.8 | 185.0 5.0 | 180.0
kernel 11.3 9.8 1.5 2064 | 184.8 7.3 | 1775
pgbench 16.5 14.9 1.6 not finished | 201.0 13.6 | 187.4

our mechanism successfully finished the live migration with
the pgbench workload, while the Qemu’s migration mech-
anism has failed. The pgbench program continuously up-
dated disk blocks; the disk write throughput was always over
2Mbytes/s and sporadically went up beyond 10Mbytes/s.
The Qemu’s storage migration mechanism, which is based
on a precopy algorithm, was unable to reduce the pending
blocks below the threshold value. In contrast, our proposed
storage migration mechanism, which is based on a postcopy
algorithm, can always finish a migration in a finite period of
time.

Table 1 also shows the elapsed times of the memory
part and the storage part of a migration. Since our pro-
posed mechanism periodically synchronized disk blocks in
advance, the elapsed time of the storage migration was only
1.6 seconds for the pgbench workload. In this case, the data
size of pending disk blocks at the beginning of the storage
migration was only 2.9Mbytes, which allowed the prompt
completion of the storage migration.

Without pre-caching, approximately 180 seconds was
needed to complete the disk migration in all tested work-
loads. The time required to transfer a disk using postcopy
storage migration can be roughly calculated by dividing the
size of the disk with the available TCP bandwidth - the trans-
ferred data size is deterministic, and most disk blocks are
transmitted through data bursting. In theory, the type of
workload running on a VM has no influence in this stor-
age migration. Without pre-caching, migration times were
basically smaller compared to those of the Qemu’s mecha-
nism, but much larger than those with pre-caching, clearly
showing that pre-caching mechanism greatly contributed in
the reduction of migration times.

4.3 I/O-intensive Workloads

In order to properly benchmark the storage migration pro-
cess without having the influence of memory updates, we
developed a micro benchmark program that intensively up-
dates disk blocks. We carefully designed the program to
only touch disk blocks with minimum updates to memory
pages. The program creates a 1Gbytes scratch file with
the DIRECT_IO option, which forces the kernel to bypass
the page cache operation. It repeatedly updates disk blocks
from the first to the last offset of the scratch file. The updates
frequency is controllable through parameter settings.

While running the micro benchmark program in the
guest operating system, we performed a VM migration by
using our proposed mechanism. Figure 12 shows the total

Migration Time

total
memory -

0 10 20 30 40 50 60 70

Disk Write Speed (MBytes/s)
Fig.12 Migration time under different disk write speeds in the case of
our proposed mechanism. total means the total migration time including
both the memory and storage parts. memory means the migration time of
only the memory part. Note that the Qemu’s migration mechanism with
storage support could not finish any migrations tested with the disk write
speed of 13Mbytes/s and more. Without pre-caching, approximately 180
seconds was needed to complete the disk migration part in all tested work-
loads.

migration time and the memory migration part of it. As ex-
pected, the time required for memory migration was approx-
imately constant at 8 seconds in all experiments. The time
taken by the storage migration increased as the disk write
speed went up. However, even in the case of the highest
write speed (69Mbytes/s), the total migration time was only
40 seconds, showing that the synchronization mechanism
greatly contributed to the reduction of the total migration
time.

Thanks to the postcopy approach of our storage mi-
gration mechanism, the maximum size of unsynchronized
blocks will be capped by that of the disk blocks of the cur-
rent working set independently of the disk write speed. In
this experiment, the size of the scratch file was 1Gbytes
and the average throughput of storage migration traffic was
around 200Mbps. The ceiling of the storage migration time
will be around 40-50 seconds; this is a rough estimate con-
sidering 40 seconds (1Gbytes / 200Mbps) of the storage mi-
gration part, plus 8 seconds of the memory migration part.
It should be noted that the Qemu’s migration mechanism
with storage support could not finish any migrations with
the tested disk write speeds over 13Mbytes/s.

Through the above experiments, we confirmed that 1)
the pre-caching mechanism greatly contributes to the re-
duction of migration time and 2) the postcopy mechanism
keeps migration time at manageable values even under I/O
intensive workloads. We also observed that the CPU uti-
lization of the NBD sync daemon was approximately 5 even
in the case of the highest write speed (69Mbytes/s). The
CPU of the physical machine is an Intel Core2 Quad Q9400

2670

2.66GHz and the memory size is 16Gbytes. The overhead
of synchronization is relatively small considering the mod-
ern hardware, and the impact on VM performance will be
negligible in most cases. Storage read operations periodi-
cally performed by the NBD sync daemon can potentially
incur resource contention of disk I/O. However, through the
experiments, we observed that the disk contents requested
by the sync daemon tended to exist in the page cache of
the host operating system, because these blocks were re-
cently written by the VM (through the host operating sys-
tem/hypervisor). Thus, these read operations would hit the
page cache avoiding the risk of disk I/O contention. Al-
though performance impacts are not zero, we believe they
will be minimal in most practical use-cases.

4.4 Different Network Conditions
4.4.1 Emulated Network Conditions

In order to evaluate the proposed mechanism under different
network conditions, experiments using the kernel compile
workload were conducted using a variety of network laten-
cies. Figure 13 shows total migration times with different
network latencies. Our proposed mechanism successfully
reduced the total migration times under any network laten-
cies. Even in the case that the round-trip time was 150ms,
the total migration time was only 16 seconds, which was far
less than 283 seconds in the case of the Qemu’s migration.
The Qemu’s migration mechanism required at least 150
seconds even for the cases of low network latencies. Be-
cause the kernel compile workload continuously updates
disk blocks, the precopy algorithm repeatedly performed the

Migration Time

300 —k
250 b P

200
150
100
50

(s)

0 20 40 60 80 100 120 140 160
RTT (ms)
migrate & xNBD+ (proposed mechanism) —+—

migrate -b -
migrate & xNBD (no pre-caching) -

Fig.13 Total migration time under different RTTs. The kernel compile
workload was used. Our proposed mechanism (migrate & xNBD+), the
Qemu’s migration mechanism with storage support (migrate -b), and the
proposed mechanism without pre-caching (migrate & xNBD) are com-
pared.

Table 2

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.12 DECEMBER 2013

iterative copy phase. Even without pre-caching, the post-
copy algorithm achieved shorter migration times compared
to the Qemu’s migration. However, these migration times
were much larger than those when pre-caching was enabled,
highlighting the importance of the pre-caching mechanism
to reduce the migration times in all the tested conditions.

We also compared the different link speeds of the em-
ulated network by adding the experiments with the net-
work link speed of 100Mbps. The kernel compile workload
was used, and the RTT of the network was set to 100ms.
As shown in Table 2, our mechanism dramatically reduced
the total migration time in the 100Mbps experiments, from
407.8 seconds to 21.5 seconds. Since the size of not pre-
cached blocks was quite small, our storage migration was
able to promptly complete in both link speeds.

The memory migration times of the proposed mech-
anism were slightly longer than the cases without pre-
caching, e.g., 2.5 seconds in the 1Gbps condition. After
stopping the synchronization operation, our proposed mech-
anism generates Cache Bitmap as explained in Sect. 3.2. As
for Table 2, the elapsed time of this procedure is included in
the memory migration time field.

4.4.2 The Real Internet between Japan and US

Finally, we conducted experiments using the real Inter-
net between Japan and United States. We migrated the
same VM with the kernel compile workload from the AIST
Tsukuba site to University of Florida. The round-trip la-
tency was approximately 180ms, and the TCP network
throughput measured by iperf was fluctuating from 2Mbps
to 32Mbps.

Our proposed mechanism completed a live migration
of the whole VM state in just 39.7 seconds, while the
Qemu’s migration with storage support required 1590.5 sec-
onds (i.e., 26 minutes and 30.5 seconds). Without pre-
caching, a live migration took 394.0 seconds. While the ab-
solute values depends on network conditions and are likely
to change, our proposed mechanism achieved a dramatic re-
duction of migration time in a real experimental setup with
a very high-latency network. The migration time was only
2.5% of the Qemu’s migration case. The pre-caching mech-
anism contributed the further 90% reduction (i.e., 394.0 to
39.7 seconds) of the migration time.

Conducting the same experiments with the pgbench
workload, we observed that the Qemu’s migration could
not successfully live-migrate a VM. Because the disk write

Total migration time under different link speeds. The kernel compile workload was used.

RTT was 100ms. The proposed mechanism (migrate & xNBD+), the Qemu’s migration mechanism
with storage support (migrate -b), and the mechanism without pre-caching (migrate & xNBD) are

compared. (Seconds)

migrate & xNBD+

migrate & xNBD

link speed (proposed mechanism) migrate -b (no pre-caching)
total | memory | disk total | memory disk
1Gbps 11.3 9.8 1.5 2064 | 184.8 7.3 | 1775
100Mbps | 21.5 19.3 2.2 407.8 | 386.8 17.2 | 369.6

HIROFUCHI et al.: A WAN-OPTIMIZED LIVE STORAGE MIGRATION MECHANISM TOWARD VIRTUAL MACHINE EVACUATION UPON SEVERE DISASTERS

speed of the VM was higher than that of the migration band-
width, the precopy migration algorithm could not reduce the
remaining size of the VM states to a sufficiently small value
in order to finalize the migration process. On the other hand,
our proposed mechanism was able to complete the migra-
tion under the same conditions in 88.9 seconds. Without
pre-caching, the migration process took 654.1 seconds.

On the real Internet, we confirmed that the postcopy
storage migration algorithm enables a finite migration time
for the tested workloads, and that the pre-caching mecha-
nism can further reduce the migration time.

5. Related Work
5.1 Disk Synchronization for Wide-Area Migration

CloudNet [13] studied a software platform of wide-area VM
migration, which shares some technical aspects with our
study. For storage migration, they utilize DRBD [14], a disk
mirroring system over a network. In normal operation, their
system works without a secondary node of DRBD, not per-
forming disk mirroring. All written blocks are stored only
in its primary server at a source site. When initializing the
whole state migration, the system adds a secondary DRBD
node at a destination site, and starts disk mirroring between
them. This disk mirroring is performed in the background of
disk I/O of the VM. Once disk blocks are completely syn-
chronized, the system performs memory migration. After
the memory migration is finished, the system stops disk mir-
roring and remove the primary storage node at the source.

In our project, it would be possible to exploit DRBD
for synchronizing disk blocks in normal operation. If a VM
requires strict data backup as well as minimizing an evac-
uation time, we consider that DRBD is a good option to
be used. However, many use-cases of [aaS clouds will not
require strict data backup at the sacrifices of performance
degradation. Assuming that there is a time window to evacu-
ate VMs upon a disaster, we can take more relaxed synchro-
nization approach, which does not strictly synchronize but
pre-caches disk blocks on a best-effort basis. Our proposed
mechanism is intended to minimize performance degrada-
tion in normal operation and safely evacuate as many VMs
as possible in disaster operation.

5.2 WAN-Optimized Migration Systems

There are several studies that enables the migration of the
whole VM state, including virtual disks, to a remote site.
[15] and [16] implemented a precopy-based block migra-
tion for Xen. After a migration is initialized, disk blocks
and memory pages are transferred to the destination. When
the size of VM states becomes lower than a threshold value,
the VM is stopped, the rest of the states are transferred, and
the VM is resumed at the destination. The downside of the
precopy approach is that a migration time depends on how
intensely the VM updates memory pages and disk blocks.
Updated memory pages and disk blocks during a migration

2671

must be transferred repeatedly. As stated in Sect. 3, we took
a postcopy approach for storage migration in disaster oper-
ation, which reduces the migration time and network traffic.

In order to reduce the data size of storage migration,
[17] employs a copy-on-write disk mechanism. A template
disk image is stored at both source and destination nodes
in advance. All written blocks by a VM are saved in other
disk spaces than the template image. Upon a storage mi-
gration, only updated blocks are transferred to destination.
Obviously, this mechanism will effectively reduce migration
traffic and a migration time, if the number of updated blocks
is small. However, if normal operation continues for a long
time, the number of updated blocks will be large, which re-
sults in a long migration time. Our proposed mechanism
allows a system to periodically update cached blocks at des-
tination in response to VM activity during normal operation.

CloudNet also implemented a data compression mech-
anism in the iterative memory copy phase of a precopy live
migration. In the iterative copy phase, if a memory page that
has already been transferred is updated, only the updated
part of the page is transferred to destination. [18] studied a
scheduling algorithm that reduces storage migration times.
It computes an efficient ordering of disk block transfers by
analyzing I/O locality of workloads. Shrinker[19] devel-
oped a data deduplication mechanism for virtual cluster mi-
gration. It calculates a content-based hashing value for each
memory page and disk block of all VMs, and skips to trans-
fer the memory page or disk block with the same hash value
between two sites. The use of these techniques would fur-
ther improve our project.

5.3 High Availability Systems

High availability (HA) systems using VM technologies have
been developed to provide uninterruptible IT services upon
sudden hardware and power failures([20], [21]). They syn-
chronously replicate software states between primary and
backup servers. When a primary server fails, they promptly
activate the backup server. In an ideal case, this fail-over op-
eration is not noticeable from the outside of this HA system.
However, they require a low-latency and high-bandwidth in-
terconnect between primary and backup servers, in order to
synchronously replicate software states.

Several studies developed a mechanism that reduces
synchronization traffic over a WAN ([22], [23]). They re-
laxed checkpointing intervals and exploited a logging-replay
technique. For example, [23] captures disk I/O operations at
a primary server and replays them in a backup server. It is
not necessary to transfer memory states updated by disk read
operations. Instead, it transfers read requests to the backup
server, e.g., read 10 blocks from disk offset 100 to memory
page Ox12345. In most cases, the size of transferred mes-
sages is much smaller compared to memory states.

These studies contribute to alleviating performance
degradation. However, it is not easy to deploy these systems
in a WAN environment where network latencies are over
tens of milliseconds. Although there are use-cases where

2672

HA systems need to be used in a WAN at the sacrifices of
performance degradation, our project aims to cover other
use-cases where HA systems do not meet economical or per-
formance requirements.

6. Discussion
6.1 Design Decisions

In this section, we present the design decisions made for
our storage migration mechanism. Before our project, live
storage migration was available only in LAN environments.
[24] describes the storage migration techniques used in their
hypervisors. Dirty block tracking was used to implement
a precopy-based storage migration. In the later version of
their hypervisor, the /O mirroring mechanism was used dur-
ing storage migration; concurrently to bulk transfer of the
entire disk image, update disk blocks are iteratively com-
mitted to destination storage. These mechanisms, however,
were designed for LAN environments. With WAN environ-
ments and disaster recovery scenarios in mind, we carefully
considered whether we should exploit or not these tech-
niques.

6.1.1 Dirty Block Tracking v.s. Optimistic Best Effort
Synchronization

The dirty block tracking mechanism of [24] is intended to be
working only during a migration. It is designed to finish data
transfer as soon as possible, using as much as possible the
available network bandwidth. On the other hand, our pre-
caching mechanism works 24/7 until a disaster happens. It
is important not to adversely affect daily performance of a
VM.

The dirty block tracking mechanism is typically imple-
mented as a busy loop composed of dirty bitmaps scanning
and data transfer processes. On the other hand, our pre-
caching mechanism sporadically scans dirty bitmaps and
transfers update data periodically (e.g., every 10 seconds).
This behavior mitigates an impact on the available band-
width of a WAN and the CPU resource of the host operating
system during regular operation.

In addition, our pre-caching mechanism is designed to
be robust against unstable WAN environments. All syn-
chronization messages include an epoch number, which is
used to detect potential data loss in the backup site due to
network connection failures or synchronization bandwidth
shortages. When the connection is recovered, synchroniza-
tion is restarted with already pre-cached blocks. On the
other hand, the dirty block tracking is designed for stable
LAN environments. If network connectivity is lost during
data transfer, all pre-cached data is discarded.

6.1.2 1/O Mirroring v.s. Postcopy Storage Migration

We consider that the I/O mirroring technique of [24] can be
potentially used in our disaster operation. It intercepts all

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.12 DECEMBER 2013

storage write requests and commits them also in the desti-
nation storage. In parallel, the disk image is copied to the
destination. The disk I/O speed of the VM is throttled down
to that of write commits on the destination. The migration
time does not increase even for an IO-intensive workload.
This characteristic contributes to a shorter migration time in
the same manner as postcopy storage migration does.

A potential downside of the I/O mirroring technique is
that its application to WAN environments has not been dis-
cussed in [1]. Probably, the synchronous write commits over
a WAN will greatly degrade the disk I/O performance of the
VM. Although there will be potential performance degra-
dation also in postcopy storage migration over a WAN, we
observed that in some cases disk I/O performance was re-
covered promptly because of the affinity of disk I/O offsets;
most disk 1/O requests are issued for particular regions of a
disk image (i.e., hot spots), and once host spots are copied
by the postcopy mechanism, performance degradation will
be greatly alleviated. Further discussion will be given in fu-
ture work.

The I/O mirroring technique itself is reliable for dis-
connection of a network. However, we consider that more
discussion would be necessary to study how a storage mi-
gration mechanism contributes to the reliability of a disaster
recovery system.

There is a potential risk that the network reachability
to the disaster site is lost during a migration. If the postcopy
storage migration is on-going, the disk I/O of the VM will
be blocked until the network connection is recovered. In this
case, we can suspend the VM and save the state of the VM to
non-volatile storage. After the network is recovered, we can
resume the execution of the VM. This assumption is based
on the results of our former study [1], where we observed IT
systems of data centers were not physically damaged due to
a severe earthquake.

Even though the I/O mirroring technique is used, this
kind of fallback solution is necessary. If the network is lost
before all VMs are evacuated, we need to save remaining
VMs to non-volatile storage on the disaster site before a
power backup system gets down.

In this paper, we have discussed about our storage mi-
gration mechanism. We are also working on a feedback
control mechanism optimizing concurrent wide-area migra-
tions. We are also developing a programming framework
that can simulate the evacuation of thousands of VMs. More
realistic feasibility study integrating these technologies will
be done in our future work. Detail of how our storage migra-
tion mechanism is integrated with a VM management sys-
tem will be discussed there.

To the best of our knowledge, the I/O mirroring mech-
anism is not available for Qemu/KVM, and our postcopy
storage migration mechanism is the only one that provides
such a short migration time.

6.1.3 Data Backup v.s. Server Evacuation

Our system is intended to provide a mechanism to evacuate

HIROFUCHI et al.: A WAN-OPTIMIZED LIVE STORAGE MIGRATION MECHANISM TOWARD VIRTUAL MACHINE EVACUATION UPON SEVERE DISASTERS

VMs upon a disaster and continue IT services on safe loca-
tions. It does not cover data loss due to a misoperation by an
administrator or a program bug. We assume that an admin-
istrator will make a backup of his system to save important
data, e.g., daily backup of a database. Our system is basi-
cally independent of backup systems. An administrator can
use any backup system as well as our system.

It is possible to extend our system to save a consistent
disk image at a point of time. We want to investigate a fea-
sible design for this feature through future development.

7. Conclusions

In this paper, we propose a WAN-optimized live storage mi-
gration mechanism that can relocate the entire VM state to
a remote site just in tens of seconds. During normal oper-
ation, it proactively caches the state of a virtual disk to a
backup site. When VM migration is triggered, our system
performs live storage migration of not-yet-cached blocks
concurrently with the memory and system state relocation.
By transferring the data in advance, the proposed mecha-
nism can dramatically reduce the amount of data transferred
and consequently the time required to complete the live mi-
gration of the whole VM state. We developed a prototype
of the proposed mechanism extending our postcopy-based
storage migration system. Through experiments, we con-
firmed that the proposed mechanism dramatically reduced
the live migration time of the whole VM state running vari-
ous workloads under different network conditions. Using a
real system, it was possible to relocate a VM from Japan to
the United States in just 39.7 seconds - a 97.5% reduction of
migration time from the case without our mechanism.

This research project is partially supported by
JST/CREST ULP, KAKENHI 23700048, and NSF/JST
RAPID.

References

[1] M. Tsugawa, R. Figueiredo, J. Fortes, T. Hirofuchi, H. Nakada, and
R. Takano, “On the use of virtualization technologies to support un-
interrupted IT services,” ICC2012 Workshop on Re-think ICT in-
frastructure designs and operations (Accepted), pp.1-5, June 2012.

[2] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, 1.
Pratt, and A. Warfield, “Live migration of virtual machines,” Proc.
2nd Symposium on Networked Systems Design and Implementa-
tion, pp.273-286, 2005.

[3] M. Nelson, B.H. Lim, and G. Hutchins, “Fast transparent migration
for virtual machines,” Proc. USENIX Annual Technical Conference,
pp.25-25, 2005.

[4] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers check-
pointing and live migration,” Proc. Linux Symposium, pp.85-92,
July 2008.

[5] T. Hirofuchi, H. Nakada, H. Ogawa, S. Itoh, and S. Sekiguchi,
“A live storage migration mechanism over wan and its perfor-
mance evaluation,” Proc. 3rd International Workshop on Virtualiza-
tion Technologies in Distributed Computing, pp.67-74, Press, June
20009.

[6] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Kagemusha:
A guest-transparent mobile IPv6 mechanism for wide-area live VM
migration,” Proc. IEEE/IFIP Network Operations and Management
Symposium 2012, pp.1319-1326, April 2012.

(71

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

2673

D.B. Johnson, C.E. Perkins, and J. Arkko, “Mobility Support in
IPv6,” RFC 3775 (Proposed Standard), June 2004.

T.S. Kang, M. Tsugawa, J.A. Fortes, and T. Hirofuchi, “Reducing
the migration times of multiple vms on wans,” SC12 ACM Student
Research Competition Poster Session, Nov. 2012.

P.T. Breuer, A.M. Lopez, and A.G. Ares, “The network block de-
vice,” 1999.

A. Kivity, Y. Kamay, D. Laor, and A. Liguori, “kvm: the Linux vir-
tual machine monitor,” Proc. Linux Symposium, pp.225-230, 2007.
P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtual-
ization,” Proc. Nineteenth ACM Symposium on Operating Systems
Principles, pp.164—177, 2003.

I. Yamahata and T. Hirofuchi, ““Yabusame update on postcopy live
migration for QEMU/KVM,” KVM Forum 2012, Nov. 2012.

T. Wood, P. Shenoy, K.K. Ramakrishnan, and J. van der Merwe,
“CloudNet: Dynamic pooling of cloud resources by live wan migra-
tion of virtual machines,” Proc. 7th ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments, pp.121-132,
March 2011.

P. Reisner and L. Ellenberg, “Drbd v8: Replicated storage with
shared disk semantics,” Proc. 12th International Linux System Tech-
nology Conference, pp.1-11, May 2005.

R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg, “Live
wide-area migration of virtual machines including local persistent
state,” Proc. 3rd International Conference on Virtual Execution En-
vironments, pp.169-179, 2007.

Y. Luo, B. Zhang, X. Wang, Z. Wang, and Y. Sun, “Live and in-
cremental whole-system migration of virtual machines using block-
bitmap,” Proc. Cluster 2008: IEEE International Conference on
Cluster Computing, 2008.

C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S. Lam, and
M. Rosenblum, “Optimizing the migration of virtual computers,”
ACM SIGOPS Operating System Review, vol.36, no.SI, pp.377-
390, 2002.

J. Zheng, T.S.E. Ng, and K. Sripanidkulchai, “Workload-aware live
storage migration for clouds,” Proc. 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments,
pp-133-144,2011.

P. Riteau, C. Morin, and T. Priol, “Shrinker: Improving live migra-
tion of virtual clusters over wans with distributed data deduplication
and content-based addressing,” Proc. 17th international conference
on Parallel processing - Volume Part I, pp.431-442, 2011.

Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual ma-
chine synchronization for fault tolerance,” USENIX08 Poster, 2008.
B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A.
Warfield, “Remus: high availability via asynchronous virtual ma-
chine replication,” Proc. 5th USENIX Symposium on Networked
Systems Design and Implementation, pp.161-174, 2008.

S. Rajagopalan, B. Cully, R. O’Connor, and A. Warfield, “Sec-
ondsite: disaster tolerance as a service,” Proc. 8th ACM SIG-
PLAN/SIGOPS conference on Virtual Execution Environments,
pp-97-108, 2012.

0. Kei, “Rapid VM synchronization with I/O emulation logging-
replay,” KVM Forum 2011, 2011.

A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai, “The de-
sign and evolution of live storage migration in VMware ESX,”
Proc. USENIX conference on USENIX annual technical conference,
pp-14-14,2011.

2674

and network technologies.

ization technologies.

Takahiro Hirofuchi is a researcher of Na-
tional Institute of Advanced Industrial Science
and Technology (AIST) in Japan. He is work-
ing on virtualization technologies for advanced
cloud computing and Green IT. He obtained a
Ph.D. of engineering in March 2007 at the Grad-
uate School of Information Science of Nara In-
stitute of Science and Technology (NAIST). He
obtained the BS of Geophysics at Faculty of Sci-
ence in Kyoto University in March 2002. He is
an expert of operating system, virtual machine,

Mauricio Tsugawa received his BS and
MS degrees in Electrical Engineering from the
Universidade de Sao Paulo in 1998 and 2001
respectively, and his PhD degree in Electrical
and Computer Engineering from the Univer-
sity of Florida in 2009. He joined the fac-
ulty of the Department of Electrical and Com-
puter Engineering at the University of Florida
as Research Scientist in 2009. His research in-
terests include computer networks, distributed
computing, computer architecture and virtual-

Hidemoto Nakada received his Ph.D. de-
gree from the University of Tokyo in 1995. He
joined the Electrotechnical Laboratory in 1995,
which was merged into the National Institute
of Advanced Industrial Science and Technology
(AIST) in 2001. He also served as a visiting as-
sociate professor at the Tokyo Institute of Tech-
nology from 2001 to 2005. His interests lie in
the area of parallel / distributed computing, in-
cluding Grid and Cloud technologies. He is a
member of ACM and IPSJ.

Tomohiro Kudoh received his Ph.D. de-
gree from Keio University in Japan in 1992. He
joined the National Institute of Advanced Indus-
trial Science and Technology (AIST) in 2002.
He currently serves the deputy director of the In-
formation Technology Research Institute, AIST.
In the past few years his research has focused on
the network as a Grid infrastructure. His recent
work also includes the G-lambda project, which
is attempting to define an interface to manage
the network as a Grid resource.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.12 DECEMBER 2013

Satoshi Itoh obtained a Ph.D. in physics
from University of Tsukuba, Japan, in 1987.
From 1987 to 2002 he worked for high-
performance and parallel computing in the both
area of material science and business applica-
tion at Central Research Laboratory, Hitachi,
Ltd. In 2002, he moved to National Institute
of Advanced Industrial Science and Technol-
ogy (AIST), Japan and has researched on Grid
computing, Cloud computing, and Green IT. He
is currently the Deputy Director of Information

Technology Research Institute, AIST.

