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SUMMARY A virtual machine (VM) migration is useful for improving
flexibility and maintainability in cloud computing environments. However,
VM monitor (VMM)-bypass I/O technologies, including PCI passthrough
and SR-IOV, in which the overhead of I/O virtualization can be signifi-
cantly reduced, make VM migration impossible. This paper proposes a
novel and practical mechanism, called Symbiotic Virtualization (SymVirt),
for enabling migration and checkpoint/restart on a virtualized cluster with
VMM-bypass I/O devices, without the virtualization overhead during nor-
mal operations. SymVirt allows a VMM to cooperate with a message pass-
ing layer on the guest OS, then it realizes VM-level migration and check-
point/restart by using a combination of a user-level dynamic device con-
figuration and coordination of distributed VMMs. We have implemented
the proposed mechanism on top of QEMU/KVM and the Open MPI sys-
tem. All PCI devices, including Infiniband, Ethernet, and Myrinet, are
supported without implementing specific para-virtualized drivers; and it is
not necessary to modify either of the MPI runtime and applications. Us-
ing the proposed mechanism, we demonstrate reactive and proactive FT
mechanisms on a virtualized Infiniband cluster. We have confirmed the ef-
fectiveness using both a memory intensive micro benchmark and the NAS
parallel benchmark.
key words: virtualization, VM migration, HPC cloud, fault tolerance

1. Introduction

Cloud computing is the delivery of computing as a service
rather than a product. Recently, cloud computing is get-
ting increased attention from the High Performance Com-
puting (HPC) community. To meet the demand, several sys-
tems, e.g., the Amazon EC2 Cluster Compute Instances [1],
Google Compute Engine [2], and CycleCloud [3] have been
proposed. Here, we call such an “Infrastructure as a Ser-
vice (IaaS)” model of cloud computing, which provides
users with virtualized HPC clusters on demand, an HPC
Cloud. By introducing cloud computing to high perfor-
mance computing, all the benefits of cloud computing, such
as reduced ownership cost, higher flexibility, and higher
availability can be enjoyed by the users. Computer virtu-
alization is commonly used in cloud computing infrastruc-
ture. By virtualization, each virtual machine (VM) is iso-
lated from others, and higher security can be achieved. In
addition, migration or checkpoint/restart of VMs becomes
easy by virtualization. Those features are useful for realiz-
ing fault tolerance (FT), load balancing, and server consol-
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idations, since VMs can be moved between physical com-
puting nodes, and also intermediate state can be easily snap-
shotted.

Virtualization is not quite suitable for data intensive
scientific computing, which requires high performance I/O
for each computing element. Data intensive computing is a
emerging technology especially in the fields of high energy
physics, astronomy, bioinformatics, and geo science. Many
researchers have reported performance evaluations of HPC
applications on virtualized clusters [4]–[6]. These studies
show virtualized clusters suffer from performance degrada-
tion due to the high overhead of virtualization, especially
for I/O devices. To cope with this problem, Virtual Ma-
chine Monitor (VMM)-bypass I/O technologies have been
introduced. Nathan, et al., reported the effects of PCI
passthrough [5]. Our recent work has demonstrated the I/O
performance of a virtualized Infiniband cluster is compa-
rable to that of a bare metal cluster, and shows the posi-
tive conclusion that HPC clouds are feasible [7]. However,
VM migration and checkpoint/restart mechanisms cannot be
used when VMM-bypass I/O technologies, including PCI
passthrough and SR-IOV, are used. This is because the
VMM-bypass I/O devices are directly assigned to a VM
through the VMM, so the VMM cannot save and load the
state of the I/O devices.

The requirements for achieving practical HPC clouds
are summarized as follows: 1) bare metal comparable I/O
performance during normal operations, 2) migration capa-
bility for VMs with VMM-bypass I/O devices, and 3) easy
deployment.

To meet the above requirements, we adopt a gray-box
approach [8], [9], which is a cross-layer technique to im-
prove the performance and the functionality on a virtual-
ized environment by leveraging the knowledge of a guest
operating system (OS). In this paper, we propose a Symbi-
otic Virtualization (SymVirt) mechanism, for enabling VM-
level migration and checkpoint/restart on a virtualized clus-
ter with VMM-bypass I/O devices. It targets Message Pass-
ing Interface (MPI) applications. First, requirements 1) and
2) are satisfied at the same time, by using a technique based
on a combination of a user-level dynamic device configu-
ration and global coordination of distributed VMMs. Sec-
ond, to meet requirement 3), the implementation supports
all PCI passthrough enabled devices without implementing
specific para-virtualized drivers; it also requires no modifi-
cations to applications and an MPI runtime inside a guest
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OS. We have confirmed the proposed mechanism meets
these requirements on a virtualized Infiniband cluster. In
addition, using the proposed mechanism, we have imple-
mented FT mechanisms and evaluated its performance.

The rest of the paper is organized as follows. Sec-
tion 2 describes the background of HPC clouds, especially
focused on fault tolerance. The design and implementation
of the proposed mechanism is presented in Sect. 3. Section 4
shows the experimental results, and we discuss further op-
timization techniques in Sect. 5. In Sect. 6, we mention re-
lated work. Finally, Sect. 7 summarizes the paper.

2. Fault Tolerance on HPC Clouds

In HPC systems, FT is important since a large number of re-
sources are used for a long period of time, and the possibility
of encountering failures during a job is high. Some VM-
level FT mechanisms and optimization techniques that rely
on VM-level snapshot and migration techniques have been
proposed. Traditional process-level checkpoint/restart and
migration have some strict limitations [10]. For instance,
when restarting a process on a different node, we must en-
sure that the OS on all nodes supplies the exact same li-
braries. In contrast, VM-level FT mechanisms do not have
the above limitations, and they can also be implemented in-
dependent of the underlying execution environment.

An HPC cloud provider manages the resources, includ-
ing compute nodes, network, and storage, by using a cloud
management software stack, namely, a cloud controller, e.g.,
CloudStack, OpenStack, or OpenNebula. A cloud controller
allocates physical resources to a user, and builds a virtual-
ized cluster on top of them. The user submits an application
job on the virtualized cluster, and application processes are
invoked on distributed VMs. In response to FT events, e.g.,
hardware failures, a cloud controller re-allocates nodes in
cooperation with VM-level FT mechanisms, to ensure that
the application can survive the failures.

There are two FT approaches: reactive FT and proac-
tive FT. Checkpoint/restart is a popular reactive FT ap-
proach. A set of VM-level checkpoints are taken periodi-
cally. The checkpoint images are stored in the global stor-
age. In response to FT events at any nodes, all VMs are
shutdown, and restored from the latest checkpoint images.
At the time, all nodes running VMs are re-allocated. A re-
active FT approach involves a high-cost overhead for users
as the scale of a system increases. Since the network and
storage I/O throughput and the storage space are limited,
frequent checkpointing can result in longer execution times.
To extend checkpoint intervals, a proactive FT has been pro-
posed by several researchers. It predicts failures, and au-
tomatically migrates VMs from an “unhealthy” node to a
“healthy” node. At the time, only the two nodes involved
are re-allocated, and VMs on the other nodes keep running
after the failure prediction. The assumption that failures can
be predicted with 100% accuracy is not realistic. There-
fore, an approach of combining reactive and proactive FT
is practical. In this paper, a fault detection and prediction

mechanisms are out of scope. However, R.K. Sahoo, et al.,
reported that failures can be predicted with up to 70% accu-
racy [11]. This means the interval between checkpoints can
be extended up to 3.3 times.

VM migration and checkpoint/restart mechanisms can-
not coexist with VMM-bypass I/O technologies, as men-
tioned in Sect. 1. From the view point of FT, we address
this issue.

3. SymVirt: Symbiotic Virtualization

3.1 Approach

The key to implementing migration and checkpoint/restart
for VMs with VMM-bypass I/O devices is to unplug the
devices only when such VM-level functions are required.
VMM-bypass I/O devices can be detached and re-attached
using PCI device hotplugging. For instance, by detaching all
VMM-bypass I/O devices currently attached, it is possible to
migrate a VM. After migration, the devices are re-attached
to the VM.

However, an existing VM migration has following two
problems. First, VMM does not know the time when VMM-
bypass I/O devices are detached safely. To perform such
migration without losing in-flight data, packet transmission
to/from the VM should be stopped prior to detaching. In the
worst case, applications could be aborted by such communi-
cation errors. With a VMM, it is hard to know the communi-
cation status of an application inside a guest OS, especially
if VMM-bypass I/O devices are used. We also must guar-
antee the ability to create a globally consistent snapshot of
the entire virtualized cluster. Second, VMM cannot migrate
the state of VMM-bypass I/O devices from the source to the
destination. For instance, with Infiniband, VMMs have to
save and restore states of location dependent resources, in-
cluding Local IDs and Queue Pair Numbers before and after
migration.

We tackle above problems by cooperating with a VMM
and an application inside the guest OS. We call this ap-
proach a cooperative VM migration. An existing VM mi-
gration is a black-box approach. The portability is good,
but the performance overhead is high. In contrast, coopera-
tive VM migration is a gray-box approach [8], [9], which is
a cross-layer technique to improve the performance and the
functionality on a virtualized environment by leveraging the
knowledge of a guest OS. Concretely, we transfer two fea-
tures, i.e., VMM-bypass I/O device management and global
coordination of a parallel application from a VMM to inside
the guest OS, as shown in Fig. 1. The former provides a thin
user-level abstraction communication layer of VMM-bypass
I/O devices, and it enables us to dynamically configure de-
vices in cooperation with PCI device hotplugging. The lat-
ter is required to preserve the VM execution and communi-
cation states when the snapshots are restored in the future.
Moreover, this approach enables us to avoid virtualization
overhead during normal operations.
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Fig. 1 A cooperative VM migration.

Fig. 2 An overview of the SymVirt mechanism.

3.2 Design

To realize a cooperative VM migration, we propose a Sym-
biotic Virtualization (SymVirt) mechanism that enables a
VMM to cooperate with a message passing layer on the
guest OS. Our target application is an MPI program. Fig-
ure 2 shows an overview of the proposed mechanism, which
consists of SymVirt coordinator, SymVirt controller, and
SymVirt agent. SymVirt coordinator runs inside an applica-
tion process, and it provides global coordination and VMM-
bypass I/O device management. SymVirt controller is a
master program on the VMM side. SymVirt controller and
SymVirt agents work together to control distributed VMMs.

SymVirt provides a simple and intra-node communica-
tion mechanism between a VMM and the guest OS. That is,
a pair of a VMM from/to the guest OS mode switch calls,
SymVirt wait and SymVirt signal. From the view point of a
guest OS, a SymVirt wait call is considered as a synchronous
call. The execution of the VM is blocked until a SymVirt
signal call is issued on the VMM. During the time between
SymVirt wait and signal calls, VMM monitor commands,
e.g., hot-add, hot-del, and migration, can be issued.

The work-flow of SymVirt is summarized as follows:

1. A cloud controller requests both an MPI runtime and
the SymVirt controller to checkpoint/restart or migrate
a VM. The MPI runtime invokes SymVirt coordinators
at each MPI process.

Fig. 3 The control flow of the SymPFT.

2. SymVirt coordinators synchronize all processes and
create a consistent state for the entire application by
using a coordination protocol.

3. Each SymVirt coordinator issues a SymVirt wait call.
The VM is paused until a SymVirt signal call is re-
ceived.

4. The SymVirt controller spawns SymVirt agent threads.
Each agent connects with the VMM monitor interface,
and executes a procedure corresponding to the event.

5. SymVirt agents issue a SymVirt signal call, and the
VMs are resumed.

We have considered two FT models on HPC clouds,
as described in Sect. 2. The first one is SymVirt
Checkpoint/Restart (SymCR), which enables us to check-
point/restart VMs. The second one is SymVirt Proactive
Fault Tolerance (SymPFT), which enables us to migrate a
VM from an “unhealthy” node before the node crashes.
Both SymCR and SymPFT consist of the following three
phases: 1) hot-del: a SymVirt agent removes a VMM-
bypass I/O device from the VM, 2) checkpointing or migra-
tion, and 3) hot-add: a SymVirt agent re-attaches a VMM-
bypass I/O device to the VM.

Figure 3 shows the control flow of SymPFT. Each
phase involves a VMM from/to the guest OS mode transi-
tion. A SymVirt wait call is issued by a SymVirt coordina-
tor. SymVirt agents do something to control a VM, followed
by a SymVirt signal to wake up the VM. During phases 1)
and 3), SymVirt coordinator needs to recognize the addition
and removal of a device to migrate a VM safely, in coopera-
tion with a PCI device hotplug mechanism on the guest OS.
The period of time is denoted as “confirm” in Fig. 3.

3.3 Implementation

We implemented the proposed mechanism on top of the
QEMU/KVM [12] and Open MPI [13]. We can use all PCI
devices, including Infiniband, Ethernet, and Myrinet, if the
device supports PCI passthrough. We have confirmed it
works on a virtualized cluster with VMM-bypass I/O de-
vices including Infiniband, Open-MX (Myrinet over Ether-
net), and 10 Gigabit Ethernet. Open-MX [14] is a software
implementation of the Myrinet Express (MX) protocol that
allows MPI processes to communicate with MX over Ether-
net. The details of the implementation are described below.

A SymVirt wait is implemented by using a VMCALL
Intel VT-x instruction. VMCALL allows a guest OS to call
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the VMM for services. The execution of VMCALL causes
a transition from a guest OS mode to a VMM mode, called
a VM Exit. We extended QEMU/KVM slightly for han-
dling SymVirt calls. QEMU/KVM handles VMCALL ex-
ceptions, and suspends the VM issued a SymVirt wait. A
SymVirt signal is implemented by a QEMU/KVM monitor
command. The SymVirt signal command resumes the VM.

A SymVirt coordinator is implemented by using the
checkpoint/restart support of an MPI runtime so as to reuse
an available and reliable implementation. Most of MPI
implementations provide process-level checkpoint/restart.
SymVirt coordinator exploits this for VM-level check-
point/restart and migration.

Open MPI provides a modular checkpoint/restart
framework [15], which consists of a checkpoint/restart co-
ordination protocol framework called the OMPI CRCP
(Checkpoint/Restart Coordination Protocol), and a single
process checkpoint/restart service framework called the
OPAL CRS (Checkpoint/Restart Service). The OPAL
CRS supports the user-level checkpoint feature (SELF) and
BLCR [10] checkpoint/restart systems.

To ensure easy deployment, a SymVirt coordinator is
required to work without modification of either an MPI
library or applications. OMPI CRCP can be used with-
out modification. Instead of implementing a new OPAL
CRS component for SymVirt, we used a SELF component.
A SELF component supports application level checkpoint-
ing by providing the application callbacks upon checkpoint,
restart and continue operations. A SymVirt coordinator uses
checkpoint and continue callbacks to issue SymVirt wait
calls; SymVirt does not use a restart callback. SELF handler
routines for SymVirt are implemented as a shared library.
Using the LD PRELOAD environment variable, the library is
loaded into an MPI process at runtime.

OMPI CRS releases all resources allocated on Infini-
band devices in the pre-checkpoint phase. OMPI Byte
Transfer Layer (BTL) provides an interconnect agnostic ab-
straction, used for MPI point-to-point messages on several
types of networks. BTL modules are reconstructed and
connections are re-established in the continue and restart
phases. Therefore, there are no problems even if Local
IDs (port addresses) or Queue Pair Numbers are changed
after a migration. This design can be considered because
BLCR does not support mechanisms to save and restore net-
work connections, i.e., sockets.

The ompi-checkpoint command is launched, and a
checkpoint message is delivered to all MPI processes via
the checkpoint callback function. At the time, a SymVirt co-
ordinator is invoked. Note that the invocation of a SymVirt
coordinator is delayed until an application executes any MPI
communication functions, e.g., MPI Send and MPI Recv,
because the OMPI CRCP starts only when the application
is running inside an MPI function. The restart function is
realized by loading a VM image from the checkpoint im-
ages, instead of launching the ompi-restart command.

A SymVirt agent controls virtual machines by using
QEMU monitor commands, including savevm, migrate,

Fig. 4 SymPFT script.

device add, and device del. The SymVirt controller and
the SymVirt agent are implemented in Python. The SymVirt
controller invokes SymVirt agent threads for each QEMU.
Each agent communicates with a QEMU process via the
QEMU Monitor Protocol (QMP) or a telnet connection.

Figure 4 shows a SymPFT script. This script con-
sists of three phases: hot-del (lines 5–9), migration (lines
11–16), and hot-add (lines 18–23). The wait all waits
until all given VMs issue the SymVirt wait call. In the
case of SymPFT, only the source VM is suspended. The
signal resumes all VMs. The other methods, including
device detach, migrate, device attach, correspond to
QEMU monitor commands. We assume that the cloud con-
troller provides information, including the source and des-
tination nodes of migration, the PCI ID of a VMM-bypass
I/O device, and the names of snapshots. This is a reasonable
assumption on HPC cloud environments.

SymCR consists of SymCR-checkpoint and SymCR-
restart scripts. A SymCR-checkpoint script has the same
structure as SymPFT, and an difference is only in the second
phase. It executes a savevm command instead of a migrate
command. Upon restarting a VM, the QEMU command is
launched with the -loadvm option, and a SymCR-restart
script executes only device add.

4. Experiment

4.1 Experimental Setting

We used a 16 node-cluster, which is a part of the AIST Green
Cloud cluster. The cluster consists of Dell PowerEdge M610
blade servers, and is comprised of 2 quad-core Intel Xeon
E5540/2.53GHz CPUs, 48 GB of memory, a 300 GB SAS
disk, and a Mellanox ConnectX QDR Infiniband HCA. The
Dell M1000e blade enclosure holds 16 blade servers and a
16 port Infiniband QDR blade switch. This cluster also has
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a 10 Gigabit Ethernet (GbE) network for using the network
file system and for remote access with SSH. The MTU size
is set to 9000 bytes. Hyper Threading was disabled.

We set up a virtualized cluster on top of the physical
cluster. A single VM, which had 8 CPU cores and 20 GB of
memory, was run on a physical machine. The host OS and
the guest OS are the Debian GNU/Linux 7.0 (testing) and
the Scientific Linux 6.2, respectively. The VM image is cre-
ated using the qcow2 format which enables us to make snap-
shots internally. Live migration is required for the shared
storage among the source and destination nodes. In this ex-
periment, we used NFS version 3.

The proposed mechanism was implemented based on
the Linux kernel version 3.2.18 and QEMU/KVM version
1.1-rc3. The virtual CPU model was set to “host” to allow
the guest OS to use all available host processor features, in-
cluding the SSE instruction set. To configure NUMA affin-
ity, “-smp” and “-numa” options were also set at boot time.

On the VM environment, the OpenFabrics Enterprise
Distribution (OFED) version 1.5.4.1 was used. The bench-
mark applications were compiled with gcc/gfortran version
4.4.6, and the optimization option was set to “-O2”. We
used Open MPI version 1.6.0 [13] as an MPI implementa-
tion, and the option was set to “–mca mpi leave pinned 0
-am ft-enable-cr”.

4.2 The Overhead of SymVirt

To demonstrate the proposed mechanism, we evaluate
the overhead of SymVirt using two benchmark programs:
memtest and NAS Parallel Benchmarks. We used 8 VMs,
and an MPI process ran on each VM. The overhead of
SymVirt is divided into three parts: hotplug, link-up, and
checkpointing/migration, as shown in Fig. 3. The hotplug
time is the sum of the detach, re-attach, and confirm times.
The link-up time is a wait time until a link is active on a
guest OS. Theoretically, both the hotplug and link-up times
are constant; checkpointing/migration time is dependent on
the memory footprint.

4.3 Memtest Micro Benchmark

Memtest is a simple memory intensive micro benchmark,
which sequentially wrote data to a memory array that ranged
from 2 GB to 16 GB. Figure 5 shows the total execution
overhead of SymPFT. We have confirmed that the variation
of the overhead is within 2 seconds in other experiments.
Most of the variation is caused by a migration part. Ana-
lyzing the breakdown of the overhead, the migration time is
dependent on the memory footprint; both hotplug and link-
up times are approximately constant. The migration time
is not exactly proportional to the memory footprint. This
is because QEMU/KVM traverses the whole of the guest
OS’s memory during a migration. The migration mecha-
nism compresses pages that contain uniform data, e.g., “zero
pages,” to reduce the amount of transferred memory pages.
The migration time can be also affected by network condi-

Fig. 5 The overhead of SymPFT on a memtest benchmark [seconds].

Table 1 The overhead of SymCR and SymPFT on a 16 GB-memory
access memtest benchmark over Infiniband [seconds].

chckpointing
hotplug link-up total

/migration
SymCR 258.7 4.2 31.5 294.4
SymPFT 53.7 11.3 28.6 93.6

Table 2 The overhead of SymPFT on a 1.6 GB-memory access memtest
benchmark over Open-MX [seconds].

migration hotplug link-up total
SymPFT (GbE) 17.6 5.1 3.7e-05 20.4
SymPFT (10GbE) 6.9 5.5 4.9e-05 9.5

tion. Network contention can increase the migration time.
In this experiment, however, the effect is negligible because
there is no network contention.

Table 1 shows the overhead of both SymCR and
SymPFT. The throughput of SymCR and SymPFT are
61.8 MB/s and 298.0 MB/s, respectively. Note that the
throughput is given by dividing the transferred data size,
i.e., 16 GB, by the checkpointng or migration time. This is
caused by a difference of write access throughput between
the local disk and the 10 GbE network. Therefore, the larger
the memory footprint, the larger the gap in performance.

The link-up time costs about 30 seconds. This is not a
negligible overhead. We have confirmed how long another
device takes the link-up time. Table 2 shows the results of
the memtest benchmark on the Open-MX network. Unfor-
tunately, at the moment, Broadcom NetXtreme II does not
support PCI passthrough, so we have equipped the other two
machines with Intel Xeon X5650/2.66GHz, 6 GB memory,
an Intel X520 SR-IOV supported 10 GbE NIC, and a Broad-
com NetXtreme II on-board GbE NIC. A single VM, which
has 6 CPU cores and 2 GB of memory, was run on a physical
machine. We measured on two configurations: the on-board
GbE NIC used only for migration and the 10 GbE shared
for both migration and MPI communication. In the latter,
we used the SR-IOV feature. The physical function is used
for migration; the virtual function is assigned to a VM. The
amount of memory access is set to 1.6 GB. The result shows
the link-up time is negligible for Ethernet as contrasted with
Infiniband. This issue will be discussed in Sect. 5.
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Table 3 Execution time of NPB 3.3 class D [seconds (difference from the baseline in seconds)].

BT CG FT LU
Baseline 1075.5 (-) 634.1 (-) 451.2 (-) 882.2 (-)
SymCR 1172.4 (96.9) 761.2 (127.1) 1040.1 (588.9) 989.7 (107.5)
SymPFT 1166.6 (91.1) 722.4 (88.3) 615.5 (164.3) 977.3 (95.1)
Bare metal 915.7 (−159.8) 616.6 (−17.5) 403.5 (−47.7) 885.2 (3.0)

Fig. 6 The overhead of SymCR and SymPFT on NPB 3.3 class D.

4.4 NAS Parallel Benchmarks

We evaluate the proposed mechanism with more a prac-
tical application benchmark, the NAS Parallel Bench-
marks (NPB) version 3.3.1. The problem size is class D.
We used the following four benchmark programs from NPB:
BT (Block Tridiagonal), CG (Conjugate Gradient), FT (Fast
Fourier Transform), and LU (LU Simulated CFD Applica-
tion). Eight processes were executed on every node. We
used eight nodes, and the total number of processes was 64.
A SymPFT or SymCR script is launched once at three min-
utes after each benchmark start time.

Table 3 shows the results of the execution time, in order
of increasing overhead. Figure 6 breaks down the overhead
caused by SymPFT. The “baseline” indicates the execution
without SymVirt. For information, we also measured the
performance of “bare metal,” i.e., a physical cluster. First,
both SymCR and SymPFT have no performance overhead
during normal operations. In Fig. 6, the application portions
increase by about 1% compared with baseline. To be exact,
this performance degradation should be included the over-
head of SymCR or SymPFT instead of that of normal oper-
ations. Note that in both cases of SymCR and SymPFT, the
execution paths are exactly same as baseline during normal
operations. There can be some reason that have a negative
impact on the application performance, including cache pol-
lution after restarting and the overhead of checkpoint helper
threads of Open MPI. Second, the checkpoint and migra-
tion times depend on the memory footprint, where the mem-
ory footprints of BT, CG, FT, and LU are 4.4 GB, 3.4 GB,
16 GB, and 2.3 GB, respectively; both hotplug and link-up
times are constant.

For the FT benchmark, SymCR suffers from large over-

head compared with SymPFT. The write I/O throughput
with a VM image, in which QEMU/KVM accesses via NFS,
might obviously decrease due to some reasons. We need to
investigate this behavior in detail. The performance analysis
of VM-level checkpointing is an open issue.

5. Discussion

This section disscusses the experimental results and open
issues. We also present some ideas for optimization to im-
prove the efficiency.

During checkpointing and migration using SymVirt, an
application is completely frozen. Therefore, the execution
time of SymPFT is exactly equal to the service down time.
Although the impact depends on applications and the fre-
quency of migrations, reducing overhead costs is another
important open issue.

The link-up time of Infiniband devices costs about 30
seconds. It is not a negligible overhead. During that time,
the hardware state keeps “polling,” which indicates the port
is not physically connected. We need to investigate what is
happening. We do not consider it is a fundamental flaw of
the design, and we believe the overhead can be reduced sig-
nificantly. In contrast, Open-MX, which relies on Ethernet,
does not have the same problem, as shown in Table 2. In the
case of Ethernet, moreover, the down time can be reduced
by redirecting accesses from VMM-bypass devices to a vir-
tual network with a bonding driver, as mentioned in [16].

In our experiment, the network throughput of migra-
tion is less than 2.5 Gbps, and it can not fully utilize a
10 GbE network. This is because of CPU bottleneck at the
source node. During the migration, the utilization of one
CPU core is saturated at 100%. The current QEMU mi-
gration implementation, based on TCP/IP, has a high pro-
cessing overhead. RDMA-based migration [17] can reduce
CPU utilization and improve the throughput, compared with
TCP/IP-based migration.

SymPFT relies on VM migration technologies. There
are two types of VM live migration, precopy and postcopy.
In our experiment, we used an existing precopy live migra-
tion in QEMU/KVM. We have developed a postcopy live
migration for QEMU/KVM, called Yabusame [18]. Post-
copy live migration can be effective to reduce the down time
of SymPFT. Processes of SymPFT include a) hot-del, b)
migration, c) hot-add, and d) waiting for link-up of the de-
vice. In precopy migration, the down time of an application
is given by a + b + c + d. This means that a precopy live
migration is essentially the same as a stop and go, i.e., cold
migration, because the application is resumed after phase
d is finished. In contrast, a postcopy migration enable us
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to execute phases c and d in the background of migration,
that is to say, we can overlap phase b with phases c and
d. Therefore, the down time can be reduced. We have pre-
liminary evaluated an integration of postcopy migration into
SymPFT [19].

The strategy of memory page transfer leaves much
room for improvement. A hybrid migration, which is an
approach combining with precopy and postcopy migration,
can be promising to address the issue. Before a hot-del,
most memory pages are transferred to the destination in ad-
vance in the background of an executing application. Up-
dated/dirty pages are transferred just before the hot-add.
This results in reducing the period that VMM-bypass I/O
devices are disconnected.

6. Related Work

High availability systems, Remus [20] and Kemari [21],
have modified the VM live migration mechanism to en-
able highly frequent synchronization between primary and
backup nodes. These systems focus on indivisual VMs
whereas SymVirt focuses on a virtualized cluster. The large
overhead of synchronization at high frequency rate is unac-
ceptable for HPC applications. Some VM-level reactive and
proactive FT systems have been proposed for HPC systems.
VM-level proactive FT, i.e., checkpoint/restart, exploits a
mature VM migration mechanism [22], [23]. VNsnap [22]
focuses on distributed snapshots of a virtualized cluster, like
the proposed mechanism. Unlike the proposed system, the
coordination is executed by a software switch outside the
VMs, and the mechanism assumes that VMs communicate
via virtualized Ethernet. Therefore, it cannot coexist with
VMM-bypass I/O devices. A.B. Nagarajan and F. Mueller
have proposed a proactive FT system based on Xen [24].
This system supports only para-virtualized Ethernet drivers.

Some para-virtualized Infiniband drivers for Xen and
VMWare ESXi have been proposed [25]–[27]. In contrast
to these studies, the proposed mechanism relies on VMM-
bypass I/O technologies and hotplugging mechanisms in-
stead of implementing a para-virtualized driver for a spe-
cific VMM. Therefore, there is no performance overhead
and no limitation in supported devices, e.g., Myrinet and
other devices. Nomad, in particular, supports migration
of virtual machines with an Infiniband device [26]. No-
mad virtualizes location dependent resources, including Lo-
cal IDs (port addresses), Queue Pair Numbers, and mem-
ory keys for RDMA operations. The proposed system does
not need such virtualization because it relies on Open MPI’s
checkpoint/restart framework to re-establish all connections
after a migration. This contributes the simplicity and easy
deployment of our implementation. Another advantage of
SymVirt is a great potential for extensions by leveraging co-
operation between a VMM and a communication middle-
ware inside the guest OS. For instance, our ongoing work
achieves VM migration between an Infiniband cluster and
an Ethernet cluster, as shown in paper [28]. To the best of
our knowledge, it is the first successful attempt of an inter-

connect transparent migration. However, the disadvantage
of SymPFT is large overhead of migration. SymPFT cur-
rently suffers from the large service down time at a migra-
tion, as mentioned in Sect. 5.

Although VMM-bypass I/O technologies are effective
in improving the I/O performance of a guest OS, it is still un-
able to achieve the levels of bare metal due to the overhead
of VM Exits, which increases the communication latency.
This is because a guest OS cannot selectively intercept phys-
ical interrupts. Exit-less interrupt (ELI) [29] addresses this
issue. It is a software-only approach for handling inter-
rupts within guest VMs directly and securely. We expect
that next-generation hardware virtualization, e.g., APICv,
will significantly reduce the number of VM Exits at a vir-
tual interrupt injection. As another approach to achieve the
combination of performance and dependability, H.B. Chen,
et al., have proposed a self-virtualization technique [30],
which provides an OS with the capability to turn virtualiza-
tion on and off on demand. It enables migration and check-
point/restart to avoid virtualization overhead during normal
operations. However, it lacks a coordination mechanism
among distributed VMMs.

Para-virtualization is an optimization technique using
an implicit commnication between a guest OS and the VMM
via a traditional OS interfaces such as a device driver inter-
face. Some explicit communication mechanisms have been
proposed. SymCall [9] provides an upcall mechanism from
a VMM to a guest OS, using a nested VM Exit call. In con-
trast, Socket outsourcing [31] and SymVirt provide a sim-
ple hypercall mechanism from a guest OS to the VMM.
SymVirt does not require such a complicated upcall mech-
anism, assuming it works in cooperation with a cloud con-
troller. Socket outsourcing offloads a guest OS’s functional-
ity, like TCP/IP communication, to the VMM.

7. Conclusion

We have proposed a symbiotic virtualization mechanism,
called SymVirt, for enabling VM migration and check-
point/restart on a virtualized cluster with VMM-bypass I/O
devices. To be able to disconnect the devices only when
such functions are needed, SymVirt provides a mechanism
offering a combination of a user-level dynamic device con-
figuration and coordination of a parallel application on dis-
tributed VMMs. The proposed mechanism is implemented
on top of both the QEMU/KVM and the Open MPI system.
For easy deployment, it supports all PCI devices without
implementing any para-virtualized drivers; it also requires
no modification to applications and an MPI runtime inside a
guest OS. Using the proposed mechanism, we have demon-
strated the feasibility of a proactive FT system. We have
confirmed the effectiveness using both a memory intensive
micro benchmark and the NAS parallel benchmark, on a vir-
tualized Infiniband cluster. As a result, we have confirmed
that 1) the proposed mechanism has no performance over-
head during normal operations, 2) the overhead depends on
both the memory footprint and the media access speed, and
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3) the link-up time after re-attaching an Infiniband device is
not negligible. SymPFT is three times faster than SymCR.
This is caused by a difference of write access throughput
between the local disk and the 10 GbE network.

We plan to design and implement a generic communi-
cation layer supporting the SymVirt mechanism, which does
not rely on an MPI system. Other future tasks include an-
alyzing the performance impact of SymVirt on real appli-
cation, integrating the SymVirt mechanism and failure de-
tection/prediction mechanisms to a cloud controller, and a
demonstration of the effectiveness on a realistic failure con-
dition. In this paper, although we focused on fault tolerance,
the proposed mechanism can also be applied to server con-
solidations and load balancing on a virtualized cluster.
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