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SUMMARY Our prior papers proposed a traffic engineering scheme to
further localize traffic in peer-assisted content delivery networks (CDNs).
This scheme periodically combines the content files and allows them to
obtain the combined content files while keeping the price unchanged from
the single-content price in order to induce altruistic clients to download
content files that are most likely to contribute to localizing network traffic.
However, the selection algorithm in our prior work determined which and
when content files should be combined according to the cache states of all
clients, which is a kind of unrealistic assumption in terms of computational
complexity. This paper proposes a new concept of virtual local server to re-
duce the computational complexity. We could say that the source server in
our mechanism has a virtual caching network inside that reflects the cache
states of all clients in the ‘actual’ caching network and combines content
files based on the virtual caching network. In this paper, without determin-
ing virtual caching network according to the cache states of all clients, we
approximately estimated the virtual caching network from the cache states
of the virtual local server of the local domain, which is the aggregated cache
state of only altruistic clients in a local domain. Furthermore, we proposed
a content selection algorithm based on a virtual caching network. In this
paper, we used news life-cycle model as a content model that had the severe
changes in cache states, which was a striking instance of dynamic content
models. Computer simulations confirmed that our proposed algorithm suc-
cessfully localized network traffic.
key words: content delivery network (CDN), peer-assisted network, traf-
fic localization, content combination, content-oriented incentive, news life-
cycle

1. Introduction

Content delivery services such as news, music and soft-
ware application distribution and video-on-demand have
been widely used over the last decade due to the develop-
ment of communication technology. The delivered volume
of content has been increasing since service providers have
provided high-definition images and high-fidelity sound.
Therefore, the increase in traffic generated by delivering
requested content files has become a serious issue and
has destabilized the communications of other existing ser-
vices such as e-mail and Web browsing. Although service
providers and network operators have been under increasing
pressure to increase bandwidth to solve this problem, it is
difficult to deal with traffic that continues to increase with-
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out limits. Therefore, it is important to minimize the amount
of traffic they generate in their transactions. Peer-assisted
content delivery networks (CDNs) have been used as a way
of minimizing traffic based on the concept of CDNs [1]–
[4]; CDNs distribute storage storing content files replicated
from the source server and they direct client requests to the
replicas nearest the clients to localize traffic [5]–[7]. Peer-
assisted CDNs direct client requests to the nearest replicas
as in conventional CDNs, but they can conserve the cost of
deploying or borrowing distributed storage since the replicas
are stored in the cache of one of millions of clients.

Our prior papers [8]–[10] proposed a traffic engineer-
ing scheme for the altruistic clients in peer-assisted CDNs
outlined in Fig. 1, in which each altruistic/non-altruistic
client independently requests content and replaces its cache
using some cache replacement algorithm like first-in/first-
out (FIFO). Our scheme used peer-assisted CDNs and pe-
riodically combined content files that were most likely to
contribute to localizing traffic, while keeping the price equal
to that for single content to induce altruistic clients to re-
quest them. The main advantage of our approach is that we
can expect sustainable contributions from altruistic clients
by using sustainable incentives. The source server in our
content combination mechanism knows the cache states of
all clients in the network, which is a realistic assumption be-
cause the service provider should manage every transaction
associated with their clients. However, the selection algo-

Fig. 1 Example of content combinations. Combination of content A and
B is available for altruistic clients for $5 as content. Combination is likely
to be requested in local networks.
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rithm in our prior work determined which and when content
files should be combined according to the cache states of all
clients, which is a kind of unrealistic assumption in terms
of computational complexity. Therefore, our algorithm had
problems with scalability and feasibility.

This paper proposes a new concept of a virtual local
server to reduce computational complexity in the selection
of combined content. We could say that the source server
in our mechanism has a virtual caching network inside that
reflects the cache states of all clients in the ‘actual’ caching
network and it combines content files based on the virtual
caching network. Without determining virtual caching net-
work according to the cache states of all clients, we approxi-
mately estimated the virtual caching network in this research
from the cache states of the virtual local server of the local
domain, which is the aggregated cache state of only altru-
istic clients in a local domain. Furthermore, we propose a
content selection algorithm based on the virtual caching net-
work. Since the virtual local servers are virtually and dis-
tributively deployed, this approach can reduce the amount
of computational complexity in two points without incur-
ring any additional infrastructure cost: i) the order of calcu-
lations to estimate the virtual caching network, and ii) the
frequency of estimates for the virtual caching network.

The four main contributions of this paper are; i) we
present the concept of a virtual local server, ii) we propose
our content selection algorithm based on an approximated
caching network, iii) we present a content model we con-
structed using news life-cycles, and iv) we reports simula-
tions that confirmed that our approximated algorithm has
validity in the news life-cycle model.

The rest of this paper is organized as follows: Sect. 2
describes our assumed service model for the network topol-
ogy and download of content. Section 3 presents the details
on our content combination scheme. Section 4 introduces
the concept of a virtual local server and proposes our ap-
proximated content selection algorithm. Section 5 presents
a content model we constructed by analyzing realistic news
sites by assuming request probabilities. Section 6 gives a
simulation description and simulation results that validate
our proposed algorithm, respectively. Section 7 introduces
related work and compares our scheme with this. We con-
clude the paper in Sect. 8.

2. Our Service Model

There are two main charging structures in general: pay-per-
view (PPV) and fixed rate. Clients in PPV pay every time
they view content, which does not suit our mechanism be-
cause it is not clear how many combined content files there
should be so that the revenues of the service provider are not
decreased. Clients in our assumed service are charged at a
fixed rate and given a fixed number of coupons at each pe-
riod. They can purchase a content file or a set of combined
content files in exchange for a coupon. Even when clients
retrieve their purchased content from their own caches, they
must use a coupon. A fixed charge is essential in our system

so that providing combined content files at a single content
price will not reduce the revenues of the service provider.
We assumed coupons would be provided frequently enough
compared with the average interval between client requests.

Figure 2 outlines the network model we assumed. This
is a hierarchical model where the local domains, global do-
mains, and source servers are at the bottom, middle and top
layers, respectively. The n1 and n2 in Fig. 2 correspond to
the number of local domains and the number of clients in
each domain.

Figure 3 has the flow for our assumed peer-assisted
CDN model. (1) The client first requests content and uses a
coupon. (2) Then, the source server makes a transaction on
the content charge and redirects the request to a cached loca-
tion that minimizes traffic; the request is redirected with four
priorities: a) the client’s own cache, b) the cache at other al-
truistic clients in the local domain to which the requester
belongs, c) the cache at other altruistic clients in the global
domain, and d) the source server. (3) When the requester
retrieves the required content from the redirected locations
of a), b), c), or d), traffic B0, B1, B2, and B3 are generated
(B0(= 0) < B1 < B2 < B3). Each client declares that s/he is
working as an altruistic or non-altruistic client before join-
ing the service. If the requests are redirected to altruistic
clients, they have to forward the requested files.

We have assumed that the system is time-slotted to sim-
plify the discussion in the following section. This supposi-
tion is realistic since in the flow of transactions, all client
requests are handled by the service provider in a central-
ized manner in peer-assisted CDNs. Therefore, only a client

Fig. 2 Network model.

Fig. 3 Peer-assisted CDN model.
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is permitted to request and download a content file at each
unit-time and the unit-time can be considered to be the av-
erage interval between client requests.

3. Our Content Combination Scheme

3.1 Our Incentive Mechanism

As explained in Sect. 1, our basic idea was combined content
that would induce altruistic clients to cache content files that
were likely to be requested in local networks. In this paper,
we have simply considered the request probability of a set
of combined content files at time t, Pcomb(t), to be:

Pcomb(t) =
∑

j∈B
Pj(t), (1)

where B is a set of the combined content files and Pj(t) is
the request probability of content j at time t. Figure 4 has
an example of the request probability for combined content
files. The request probability of the combination of content
B and D equals the sum of the request probabilities of these
files. We have left it for future work to find how we will
model the request probability of combined content files.

3.2 Problem Formulationx

As we mentioned in Sect. 1, to markedly reduce network
traffic, combined content files should be content files that
are expected to contribute to localizing traffic generated by
transfers. Therefore, we have formulated the optimization
of combined content files here.

When the requesting client is an altruistic client, the
content file could be a set of combined files. Combined con-
tent files under the time-slotted system are not simultane-
ously provided to multiple altruistic clients. Suppose that a
client makes a request in a unit time and altruistic client u
is going to request a content file at time t. Altruistic client
u obtains a new bundle of combined content files B(u,t) and
removes a set of content files D(u,t) from its cache C(u,t) to
make space for B(u,t). To determine the combination of con-
tent files, the source server solves the optimization problem
written as:

max
B(u,t),D(u,t)

T {ζu (S t) − ζu (S t+1)} − η (B(u,t)
)

(2)

s.t. S t ∩ S t+1 =
(
C(1,t), · · · ,C(u−1,t),C(u+1,t) · · · ,C(N,t)

)

Fig. 4 Example of request probability of combined content.

S t =
(
C(1,t) · · · ,C(u,t), · · · ,C(N,t)

)

S t+1 =
(
C(1,t+1), · · · ,C(u,t+1), · · · ,C(N,t+1)

)

=
(
C(1,t), · · · ,C(u−1,t),C(u,t+1),C(u+1,t), · · · ,C(N,t)

)

C(u,t+1) = C(u,t) + B(u,t) − D(u,t)

ζu (S t) =
∑

i∈N

∑

j∈Q

BijPj(t)

N

η
(
B(u,t)
)
=
∑

j∈B(u,t)

Buj(t) − Bu(t),

where N andN correspond to the total number of clients and
a set of these clients, S t is the state of the cache in the entire
network at time t, ζ(S t) indicates the traffic generated when
the cache state is S t, and Q is the set of all the content files
that can be purchased from the service. The t + 1 means
the time just after the cache of client u has been replaced,
η
(
B(u,t)
)

indicates how much traffic is increased by down-
loading a set of content files B(u,t) compared with download-
ing a single file. Bij(t) represents the traffic generated when
client i requests and retrieves content j, and Bu(t) indicates
the average of traffic generated when client u downloads a
single file. As we can see from the definition in Eq. (2),
the difference between S t and S t+1 is B(u,t) − D(u,t). The
ζ (S t) − ζ (S t+1) is how much traffic will be reduced from
t to t + 1 as a result of caching and discarding B(u,t) and
D(u,t). If the cached content files at clients in the network
do not change during period T , T (ζ (S t)− ζ (S t+1)) indicates
the amount of reduced traffic during T and T equals T unit
times. In fact, cached files in the network change during T .
Therefore, we define T as the approximated period where
the optimality of the combined and discarded content files
is effective. However, downloading B(u,t) instantaneously
generates a large amount of traffic, which is represented as
η
(
B(u,t)
)

in Eq. (2).

3.3 Combined Content Selection

The source server has to know which content files which
client has cached to solve Eq. (2). In our prior work, the
source server knew the cache states of all clients in the net-
work because the service provider managed every transac-
tion associated with their clients. The selection algorithm
for combined content is described in our prior papers [8]–
[10].

Next, we will explain our periodic distribution mecha-
nism that uses our content selection algorithm. This mecha-
nism automatically determines T defined in Eq. (2) accord-
ing to the network cache state and combines content files
every period T . Figure 5 is a flowchart of our mechanism,
where n and tn correspond to the counters for identifying a
retrieved set of combined content files and the time when the
set was retrieved. The n is initialized as 0. A client makes
a content request at time t. Then, this mechanism deter-
mines that the source server should combine content files to
localize traffic. Suppose that at time t, the last of the down-
loads for combined content is that which altruistic client u
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Fig. 5 Flowchart for distribution mechanism.

requested and s/he retrieved combined content at time tn. To
determine T for combinations, we introduced the expected
traffic reduction of combined content as a metric given by:

E(t) =
∑

v∈N

∑

k∈B(u,tn)∩C(u,t)

Pk(t) · ε+vk(t)

N
(3)

s.t. ε+vk(t) = B′vk(t) − Bvk(t),

where ε+vk(t) and B′vk(t) mean how much generated traffic is
increased and how much traffic is generated when client v
requests and obtains content k at time t+1 if altruistic client
u discards content k at time t, respectively. This mecha-
nism calculates the expected traffic reduction of combined
content as a metric to optimize combined content and as-
sesses whether E(t)/E(tn) is still larger than α. If E(t)/E(tn)
is larger, the source server does not offer combined con-
tent files since we can expect the n-th retrieved combined
content to still be working to reduce traffic. If E(t)/E(tn)
is smaller, the expected traffic reduction by the n-th down-
loaded combined content is small because the cache state
has been already changed from tn. Therefore, the source
server offers the next set of combined content files to further
localize traffic by considering the current state of the net-
work cache when a requesting client is altruistic. T is given
by:

T = t − tn, (4)

where T means the period at which a new set of combined
content files is offered. If the offered combined content is
requested by the requesting client, n is incremented and tn is

updated. If the offered combined content is not requested, T
is incremented. The average period where combined content
is offered should be obtained from T by using an averaging
function. A detailed explanation on the construction of this
mechanism is in [10].

3.4 Computational Complexity Problem

As explained in the previous section, to determine
(B(u,t),D(u,t)) and T : which and when content files should
be suitably combined in our mechanism for the caching net-
work, the source server knows the cache states of all clients
in the network, which is a realistic assumption because the
service provider should manage all transactions associated
with their clients. In other words, the source server has a
virtual caching network inside as we mentioned in Sect. 1,
which reflects the cache states of all clients in the ‘actual’
caching network and the source server combines content
files based on the virtual caching network. Our prior selec-
tion algorithm determined a virtual caching network accord-
ing to the cache states of all clients. However, this method
involves high degrees of computational complexity, i.e., i)
frequent estimates to determine when content files should
be combined, and ii) computational cost O (N ·C) in esti-
mating the virtual caching network to determine which and
when content files should be combined, where C indicates
the extent of cache capacity. Therefore, this approach is kind
of unrealistic in terms of computational complexity and be-
comes a bottleneck in scalability and feasibility.

4. Proposed Method

4.1 Virtual Local Server

This section describes the proposed method and the key con-
cept underlying it is the virtual local server. As we men-
tioned in Sect. 3.4, the source server has a virtual caching
network inside that reflects the cache states of all clients in
the ‘actual’ caching network and the source server combines
content files based on the virtual caching network. A virtual
local server is introduced into each local domain in the vir-
tual caching network.

Figure 6 is an example of the virtual caching network
with virtual local servers. The virtual local server has its
own cache state, which reflects the cache states of the clients
in its local domain. However, the caching state of the virtual
local server is updated according to a simple rule; if either
of the altruistic clients in the local domain has a content file
in its cache, the virtual local server has the same content in
the cache; if no altruistic client in the local domain has a
content file in their caches, the virtual local server does not
have that content in the cache. In the actual caching net-
work in Fig. 6, there exist only a source server and clients
and the source server manages the cache state of the caching
network, which is the same assumption as in Figs. 1 to 3.
Therefore, actual interactions occur only between the source
server and the clients. Virtual local servers are used for the
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Fig. 6 Example of actual caching network and approximated virtual
caching state inside source server. We can assume that all clients cache
content A, B, and D because of cache state of virtual local server.

Fig. 7 Virtually approximated service model from source server’s stand-
point.

source server to manage the network cache state internally.
Each altruistic/non-altruistic client requests content and re-
places its cache independently using some cache replace-
ment algorithm like FIFO whether virtual local servers are
used or not. If the requesting client is altruistic, the cache
state of the virtual local server is updated. As presented in
the example in Fig. 6, the virtual local server has content A,
B, and D in its cache, while it does not have content C and
E, which are only cached by non-altruistic clients.

The redirection flow in Fig. 3 has been changed to that
in Fig. 7 by introducing virtual local servers as: (1’) The
source server receives a client’s request. (2’) Then, this
server redirects the request to the source location that can
minimize traffic with three priorities: a) the virtual local
server in the domain of the requesting client, b) the virtual

local server in the other local domains, and c) the source
server. (3’) When the requester retrieves the required con-
tent from the redirected locations of a), b), or c), traffic
B′1, B′2, and B′3 are generated (B′1 < B′2 < B′3). Note that,
since virtual local servers exist only in the virtual caching
network, they could not forward and receive actual con-
tent files. However, the source server assumes that clients
retrieve their requested content files from the virtual local
server as described above. Our selection algorithm intro-
duced in Sect. 4.3 was designed based on this assumption.

4.2 Benefits and Drawbacks

As we explained in the previous section, we presented the
concept of a virtual local server and a method of approx-
imately creating a virtual caching network with the cache
states of virtual local servers. This server can reduce the
computational complexity presented in Sect. 3.4; this ap-
proach can especially lower the computational cost from
O (N ·C) to O (n1 ·C). Furthermore, the deployment of vir-
tual local servers does not incur additional infrastructure
costs since they are virtually and distributively deployed.

However, the main drawback of the virtual local server
is that the aggregated cache states into the cache state of the
virtual local server are only altruistic clients’, i.e., they are
only a part of the clients’ cache states. Therefore, we have to
approximately estimate the whole virtual caching network
from the aggregated cache states of the virtual local servers.
Moreover, the expected traffic reduction of combined con-
tent is totally overestimated. This is due to the weight of
traffic as defined in Sect. 4.1. Overestimating the expected
traffic reduction with content that no altruistic client has
cached in a local domain is much higher than underestimat-
ing it with content that even one altruistic client has cached
in a local domain. Therefore, we cannot actually reduce
traffic as much as the expected traffic reduction.

4.3 Selection Algorithm

This section briefly describes how we find the sets of com-
bined and discarded content files B(u,t) and D(u,t) that satisfy
Eq. (2) using three main steps. The generated traffic is cal-
culated from the source server’s standpoint and uses B′1, B′2,
and B′3 defined in the previous section. Suppose that a client
makes a request in unit time and altruistic client u is going
to request a content file at time t.

Step 1: Optimization of B(u,t)

Step 1-(a): We calculate the expected traffic reduction dur-
ing period T with every content j ( j ∈ Q) given by:

E−luj(t) =

∑
l

{
B
′C
lj (t) − B

′C
lj (t)
}

n2Pj(t)

N
T − B′luj(t), (5)

where B
′C
lj (t) represents the expected amount of traffic gen-

erated when a client joining virtual local server l requests
and retrieves content j at time t + 1 if altruistic client u re-
quests and retrieves content j at time t; B

′C
lj (t) represents
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if altruistic client u does not request and retrieve content j
at time t. Suppose that altruistic client u does not request
content j at time t. A client joining virtual local server l
requests and retrieves content j at time t + 1. If the request-
ing client is delivered from (a) the virtual local server in the
domain of the requesting client, B

′C
l j = B′1, (b) the virtual

local server in the other local domain, B
′C
l j = B′2, (c) the

source server, B
′C
l j = B′3. In the same way, B

′C
l j (t) can be

given when altruistic client u requests content j at time t.
Here, Pj(t) is the request probability of content j at time t,
and B′luj(t) indicates the traffic generated when client u join-
ing virtual local server lu requests and retrieves content j.{
B
′C
lj (t) − B

′C
lj (t)
}

n2 means the total amount of traffic that is
expected to be reduced by every client’s request in virtual
local server l at time t + 1 if altruistic client u requests and
retrieves content j at time t. Because the cache state is iden-
tical for clients in the local domain, we multiply n2 as ap-
proximated in Sect. 4.1. The first term is used to calculate
the amount of traffic that is expected to be reduced during
period T if the amount of traffic that is expected to be re-
duced at time t + 1 remains unchanged during T . Subtract-
ing B′luj(t) in Eq. (5) takes into consideration the fact that,
as we increase the number of combined content files, more
instantaneous traffic is generated.

Step 1-(b): We score every content Pj(t)E−luj(t) and sort
them in descending order. This is because Pcomb(t) defined
in Eq. (1) should also be considered because content j will
not be effective if it is not actually requested and cached
by altruistic client u. This step works to increase the request
probability of combined content files that will reduce a large
amount of traffic at time t + 1.

As explained in Sect. 4.2, as the request probability
from Eq. (5) is high, the expected traffic reduction is greatly
overestimated. Therefore, our proposed algorithm is likely
to make virtual local servers obtain or retain content files
that are very popular.

Step 2: Optimization of D(u,t)

Step 2-(a): Next, we calculate the expected traffic increase
during period T when a virtual local server discards content
k given by:

E+luk(t) =

∑
l

{
B
′+
lk (t) − B

′−
lk (t)
}

n2Pk(t)

N
T, (6)

where B
′+
lk (t) and B

′−
lk (t) represent the expected amount of

traffic generated when a client joining virtual local server l
requests and retrieves content k at time t+1 if altruistic client
u does or does not discard content k at time t, respectively.
Similarly to B

′C
l j , B

′+
lk (t) can be given when altruistic client u

discards content j at time t. B
′−
lk (t) can be given when altru-

istic client u does not discard content j at time t. However,
this only happens when no altruistic clients except request-
ing client u cache content k and client u is going to discard
content k (k ∈ C(u,t)) at time t. Similarly to that in Eq. (5),
Eq. (6) is used to calculate the amount of virtual traffic that
is expected to be increased during period T when altruistic

client u discards content k at time t.
Step 2-(b): We score the cached content of altruistic

client u Pk(t)E+luk(t) and sort it in ascending order. Pk(t)
needs to be considered because, in our model described in
Sect. 2, altruistic client u can request the content cached in
his or her cache space; we can increase Pcomb(t) by attach-
ing content already cached at client u with larger Pk(t) to the
combined files while discarding content with smaller Pk(t).

Step 3: Optimization of Eq. (2)
We can simplify the optimization of Eq. (2) to the follow-
ing discrete optimization problem as a function of x, which
represents the number of content files included in B(u,t):

max
x

Gcomb(t)Pcomb(t) (7)

s.t. Gcomb(t) =
x∑

g=1

(
E−lubg

(t) − E+ludg
(t)
)
+ B′lub1

(t)

Pcomb(t) =
x∑

g=1

Pbg (t) +
C∑

h=C−x

Pdh (t),

where Gcomb(t) represents the amount of traffic reduced by
combined content files, bg is the identification number of the
content with the g-th largest Pj(t)E−luj(t), dh is the identifica-
tion number of content with the h-th smallest Pk(t)E+luk(t).
Here, C is the cache capacity of altruistic client u. We de-
termine the combination of B(u,t) and D(u,t) on the basis of
Eq. (7) as:

B(u,t) = D(u,t) = φ (i f GcombPcomb < 0)

B(u,t) = (b1, b2, · · · bx) ,D(u,t) = (d1, d2, · · · dx) (else) .

Since bg and dh are sorted, Gcomb(t)Pcomb(t) becomes a con-
vex function. Therefore, we can easily solve the discrete
optimization problem and obtain the optimal number of con-
tent files to be combined.

When we use a virtual local server in our periodic dis-
tribution mechanism, the expected traffic reduction of com-
bined content, as we defined in Eq. (3), can be approximated
as.

E(t) =
∑

k∈B(u,tn)∩C(u,t)

Pk(t)E+luk(t). (8)

5. News Content Model

We evaluated the performance of our scheme in our prior
work [8]–[10] with only a static content model, which did
not change the request probability or generate new content
files. In reality, the content model should be dynamic. Here,
we used a news life-cycle as the content model as it is a strik-
ing instance of dynamic content models. Since many news-
worthy events are generated in a day [11]–[13] and instanta-
neous reports are important for news articles [14], [15], the
frequency of generation of news content is higher and the
change in the popularity of content is much more frequent
those for entertainment.
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5.1 Number of Generated News Articles

We analyzed news articles treated as headlines on the top
page of “Yahoo! Japan News” from July 2004 to July
2012 [11] to study the number of news articles generated in
a day. Yahoo! Japan is one of the largest portal sites in Japan
and Yahoo! Japan News is a headline service that distributes
topical news that newspaper publishing companies provide.
News content distributed as headlines are selected by how
many users are interested in them. Therefore, we can expect
all articles listed on the top page as headlines to have been
accessed more than a certain number of times.

Figure 8 plots the total number of days as a function
of the number of news articles at the top page of Yahoo!
Japan News generated in a day. The minimum and maxi-
mum number of news articles generated in a day in Fig. 8
have been 20 for the former and 82 for the latter in the last
eight years. Furthermore, the range from 50 to 64 includes
the top three ranges of the number of news articles generated
in a day. We found that the average number of news articles
generated in a day was 51.2 and their dispersion was 11.1; if
news articles are generated at equal intervals, they are gen-
erated every 28.1 minutes.

5.2 Request Probability

It is generally well-known that the request probability of en-
tertainment content such as music and movies follows Zipf’s
law [16]. The request probability of content that has the i-th
highest popularity is:

Pi =

1
i∑

j∈Q 1
j

. (9)

However, unlike entertainment content, clients prefer
real-time news articles to old ones since immediacy is im-
portant for news articles. Therefore, the rate of decline in
the request probability of news content is sharper than that in
entertainment content and does not follow Zipf’s law. Some

Fig. 8 Total number of days as function of number of news articles gen-
erated on the top page of Yahoo! Japan News per day.

conventional research has analyzed and reported the life cy-
cle of news articles [14]–[18]. Most of them can be approxi-
mated by monotonic decrease models. In this paper, we can
approximate the request probability of news contents by a
power law:

Pi =
abi

∑
j∈Q ab j

(0 < a < 1, 0 < b < 1) . (10)

Figure 9 compares request probabilities following Zipf’s
law and a power law. As we can see from Fig. 9, the request
probabilities following the power law have more rapidly de-
clined than Zipf’s law. Furthermore, the power law has a
feature that the rate of decline of request probability de-
creased as parameter a decreased or parameter b increased
as seen in Eq. (10).

As we mentioned in Sect. 5.1, headlines, which are
likely to attract more than a certain number of accesses, have
comparatively higher initial request probabilities than other
news articles. Therefore, every news content file on head-
lines can be assumed to similarly trace the transition of re-
quest probability and can be estimated in advance. In this
paper, the popularity of all news content files are lowered
one rank in Eq. (10) when a new content file is generated
while the popularity of newly generated content is set at the
highest rank. This is because recent news content that has
real time information is mostly accessed. Figure 10 has an
example of the change in request probabilities when a news
content file is newly generated. When content H is gener-
ated at time t+1, all content except for content H is lowered

Fig. 9 Comparison of request probabilities following Zipf’s law and
power law.

Fig. 10 Example of change in request probabilities when news article is
newly generated.
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one rank while content H reaches the highest rank. Then,
the change in the request probability of content is:

PA(t) = P1, PB(t) = P2, PC(t) = P3, · · ·
→ PH(t + 1) = P1, PA(t + 1) = P2, PB(t + 1) = P3 · · · .

6. Simulation Descriptions

We used simulations to verify that our scheme, which used
the approximated selection algorithm proposed in Sect. 4
could effectively reduce the amount of network traffic. The
parameters we used are listed in Table 1. We used the scale
of distribution in our prior work [8]–[10]. The generation
interval of news content was found from the results of anal-
ysis from Yahoo! Japan News in Sect. 5.1. Furthermore, we
used the number of news articles placed on the top page of
Yahoo! Japan as the number of news articles a client views
per day. In this simulations, we set B′1 equal to B0. It de-
pends on the number of altruistic clients in the domain and
the number of cached files of the client how likely a client
retrieves the requested content from other altruistic client in
the same local domain or from its own cache. However, the
traffic weights B3 and B2 are much larger than B1 and B0,
i.e., B3 > B2 � B1 ∼ B0. Therefore, it would not change
any results essentially if we use B1 for B′1 instead of B0.

We observed how much more traffic was reduced with
peer-assisted CDNs by using our scheme than when it was
not used. The only difference between these cases is that
our scheme periodically provided combined content files to
control the request probabilities of altruistic clients and a set
of combined content files could be made available by only
using a coupon. We used the evaluation metric defined as:

Ψ =
τC − τC
τC

, (11)

where τC and τC correspond to how much traffic is generated
in the entire network when we use or do not use our scheme.

We also observed how many content files were com-
bined and from which cached location they were retrieved

Table 1 Our parameters used in simulation.

No. of purchasable content files 1000
No. of local domains (n1) 50

No. of clients in 40
each local domain (n2)
Total no. of clients (N) 2000

Ratio of altruistic clients (r) 10%
Cache capacity at each client (C) 10

Cache replacement algorithm first-in/first-out (FIFO)
Traffic weight (B3,B2,B1,B0) (2000,50,1,0)

Virtual traffic weight (B′3,B′2,B′1) (B3,B2,B0)
Interval for content generation (I) 30min

Parameters a and b in Eq. (10) 0.5
Threshold (α) 90%

No. of news articles 8
every client views per day

Observation period 25 days

from by an altruistic client, i.e., the cache of the altruistic
client, the local domain, the global domain, or the source
server.

6.1 Dependence on Cache Characteristics

6.1.1 vs. Threshold α

Let us first analyze the performance of our scheme for dif-
ferent thresholds α defined in Sect. 3.3. Figure 11 (a) plots
the gain defined in Eq. (11) and the number of combined
content files as a function of threshold α with our proposed
algorithm. “Global” and “server” mean the number of com-
bined content files from the global domain and the source
server in Fig. 2. We can see that our proposed algorithm can
effectively reduce network traffic. Here, let us compare how
much traffic our approximated selection algorithm proposed
in Sect. 4 generated with the our prior selection algorithm
presented in [8]–[10].

Figure 11 (b) plots the gain and the total number of
combined content files with our prior algorithm. As we can
see from Figs. 11 (a) and 11 (b), the gain and the total num-
ber of combined content files with the proposed algorithm
basically became larger than those with the prior algorithm.

(a) With proposed algorithm

(b) With prior algorithm

Fig. 11 Number of combined content files and gain as function of thresh-
old α. These graphs compare evaluation metrics between (a) our proposed
and (b) prior selection algorithm. Bar graphs indicate number of combined
content files, while line graphs indicate gain.



2692
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

Our prior algorithm determines which content files should
be combined by the network cache state at time t. There-
fore, the optimality of combined content files at time t is de-
creased as the time passes. If the combined content files con-
tain popular content files, the optimality can be sustained be-
cause popular content files are not likely to disappear from
the network.

Our proposed algorithm also uses the network cache
state at time t to choose combined content files. However,
unlike our prior algorithm, it considers only the cache state
of altruistic clients. Suppose that all non-altruistic clients in
a local domain have a specific popular content file in their
caches. Our prior algorithm tends not to put the specific
content in the combined content because we could not ex-
pect a large amount of traffic reduction in the local domain.
However, our proposed algorithm does that because it does
not consider the cache state of non-altruistic clients and still
expect the popular content would reduce a large amount of
traffic. Thus, our proposed algorithm caches popular content
files more likely than our prior algorithm. If we discuss only
the optimality at time t, our prior algorithm is better. How-
ever, since, as we explained above, cached popular content
files results in the sustained optimality after time t, our pro-
posed algorithm works better.

We have plotted the theoretical request probability of
combined content defined in Eq. (1) as a function of thresh-
old α in Fig. 12 where we can see that the theoretical re-
quest probability of combined content with our proposed
algorithm was actually higher than that with our prior al-
gorithm. This is also why our proposed algorithm further
reduced traffic in Fig. 11 (a).

Next, we will discuss what we obtained by varying
threshold α. We can see that the gain increased as α in-
creased. This is because of the period where combined con-
tent was distributed. In reality, Fig. 12 plots the value of
T defined in Eq. (2) as a function of threshold α, and we
can see that T increased as α decreased. Therefore, al-
though more content files were combined as α decreased,

Fig. 12 Theoretical request probability of combined content and T as
function of threshold α. On Axis 1, solid and dashed lines correspond to
theoretical request probability of combined content files with our proposed
and prior selection algorithm. On Axis 2, line indicates T with our pro-
posed algorithm.

our scheme was less likely to combine content files while the
expected traffic reduction of previously downloaded com-
bined content largely decreased. Setting a large α means
the optimality of combined content largely decreases even
if cached files are just partly replaced.

6.1.2 vs. Cache Replacement Algorithm

Figures 11 (a) and 13 compare the gains and the number of
combined content files between FIFO and the least-recently
used (LRU) algorithm as a function of threshold α. The
line of gain in Fig. 13 and the bar graph for the number of
combined content files in LRU coincide with those in FIFO.
This is because although LRU operates so that popular con-
tent files are more likely cached, LRU behaves similarly to
FIFO since new and old content files are much more likely
to be requested and discarded in the news life-cycle model.

6.1.3 vs. Ratio of Altruistic Clients r

Figure 14 plots the gain and the number of combined con-
tent files as a function of the ratio of altruistic clients r.
We can see here that our proposed algorithm reduces traf-

Fig. 13 Number of combined content files and gain as function of thresh-
old α when we used LRU algorithm. Bar graphs indicate number of com-
bined content files, while line graphs indicate gain.

Fig. 14 Number of combined content files and gain as function of ratio
of altruistic clients r. Bar graph indicates number of combined content
files, while line graph indicates gain.
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(a) Varying parameter a

(b) Varying parameter b

Fig. 15 Number of combined content files and gain as function of pa-
rameter of request probability (a) a and (b) b. Bar graphs indicate number
of combined content files, while line graphs indicate gain. Solid and dashed
lines correspond to gains when request probability follows power law and
Zipf’s law.

fic by 60.9% when r = 1%. As the ratio of altruistic clients
increases, traffic has already been more localized without
our scheme since many content files requested by clients are
found in the caches of altruistic clients. Therefore, the gain
and the number of combined content files decrease.

6.2 Dependence on Popularity Model

6.2.1 vs. Parameters of Request Probability a and b

Figures 15 (a) and 15 (b) plot the gains and the number of
combined content files as a function of the parameters of
request probability (a) a and (b) b defined in Eq. (10), re-
spectively.

Let us first discuss what we obtained by varying pa-
rameter a from Fig. 15 (a). We can see that the gain peaks at
a = 0.8. When a is less than 0.8, the gain simply decreases.
This is because, as mentioned in Sect. 5.2, since the distribu-
tion of request probability becomes more steeply inclined as
a decreases, only a smaller fraction of a set of purchasable
content files is requested by clients. Therefore, the number
of combined content files also decreases. However, when a
exceeds 0.8, the gain decreases. When a increases, clients
begin to request various content files and the number of

Fig. 16 Number of combined content files and gain as function of in-
terval of content generation I. Bar graph indicates number of combined
content files, while line graph indicates gain.

combined content files increases. However, clients easily re-
quest content files not included in the combined content files
selected by our scheme because the cache capacity limits the
number of combined content files. As a target for compar-
ison, we have also plotted the gain in Fig. 15 (a) when the
request probability follows Zipf’s law defined in Eq. (9); the
distribution of Zipf’s law is more gently inclined than that
of the power law described in Fig. 9. The gain when the
request probability follows Zipf’s law is much smaller than
that when the request probability follows the power law.

We can see a similar trend in Figs. 15 (a) and 15 (b),
and Fig. 15 (b) peaks at b = 0.2. The distribution of request
probability becomes more steeply inclined as b increases.
Therefore, as mentioned in the explanation of Fig. 15 (a), the
number of combined content files decreases as parameter b
is increased, while clients more easily request content files
not included in the combined content files selected by our
scheme as parameter b is decreased. This is why the gain
has a peak.

6.2.2 vs. Intervals for Content Generation I

Figure 16 plots the gain and the number of combined con-
tent files as a function of the intervals of content generation
I. We can see here that our proposed algorithm success-
fully reduces large amounts of traffic when the intervals for
content generation are short; it can reduce traffic by 45.2%
when new content files are generated every 10 min. Gen-
erating new content files during long intervals means that
the rate of change in request probability is low. Therefore,
popular content files have already been cached locally. This
is why gain and the number of combined content files de-
creased when I became long.

7. Related Work

Content placement in peer-to-peer (P2P) networks and
CDNs are long-standing and well-studied problems; besides
the papers we cited in our prior papers, [19]–[22] treated
these problems. In peer-assisted CDNs, unlike P2P net-
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works and CDNs, a central entity can attempt to control
cache placement [23], but clients may refuse to cache di-
rected content files because peer-assisted CDNs owe clients
storage resources. As we explained in Sect. 3.1, our ap-
proach does not directly control caches at clients but only
induces altruistic clients to cache required content to local-
ize traffic.

Since we assumed a paid service in this paper, all
clients have good reasons not to contribute to the service
as content servers. Therefore, we should expect a limited
number of altruistic clients to contribute to the service [24].
Our purposed scheme was simply to induce altruistic clients
to request specific content that would likely be requested on
local networks to reduce traffic. The form of the incentives
was another factor in which we were interested. It is mathe-
matically unclear how much a certain level of improved ser-
vice quality or monetary gain would increase the probabil-
ity that free riders would contribute to networks [25], [26].
Our incentive by combining content, which was explained
in Sect. 3.1, is straightforward. As we explained in Sect. 2,
since clients are charged at a fixed rate to obtain coupons for
every period and the combined content is just an electronic
copy of the original file, we can ignore the source of the in-
centive or reward once the service providers obtain Internet-
delivery rights. Distribution with packed content files has
been used as a business model to motivate consumers to
make purchases in pay-per-view services [27], [28].

8. Conclusion

This paper proposed a new concept of a virtual local server
to reduce computational complexity in the selection of com-
bined content. In our content combination mechanism, we
could say that the source server has a virtual caching net-
work inside that reflects the cache states of all clients in the
‘actual’ caching network and combines content files based
on the virtual caching network. Without determining vir-
tual caching network according to the cache states of all
clients, we approximately estimated the virtual caching net-
work in this research from the cache states of the virtual
local server of the local domain, which is the aggregated
cache state of only altruistic clients in a local domain. Fur-
thermore, we proposed a content selection algorithm that de-
termined which and when content files should be combined
according to the virtual caching network. Our proposed al-
gorithm allowed us to decrease the computational complex-
ity; i) the frequency of estimates of the virtual caching net-
work and ii) the computational cost in estimating the virtual
caching network. We constructed a news life-cycle model
in this research as a content model that had major changes
to cache states, which was a striking instance of dynamic
content models. Our computer simulations confirmed that
our proposed algorithm increased the request probability of
combined content by overestimating the expected traffic re-
duction of its content files which were required for the lo-
calization. Furthermore, our proposed algorithm could re-
duce traffic by about 40% even if the service environment

changed.
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