
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013
2733

PAPER

Teachability of a Subclass of Simple Deterministic Languages

Yasuhiro TAJIMA†a), Member

SUMMARY We show teachability of a subclass of simple determinis-
tic languages. The subclass we define is called stack uniform simple deter-
ministic languages. Teachability is derived by showing the query learning
algorithm for this language class. Our learning algorithm uses member-
ship, equivalence and superset queries. Then, it terminates in polynomial
time. It is already known that simple deterministic languages are poly-
nomial time query learnable by context-free grammars. In contrast, our
algorithm guesses a hypothesis by a stack uniform simple deterministic
grammar, thus our result is strict teachability of the subclass of simple de-
terministic languages. In addition, we discuss parameters of the polynomial
for teachability. The “thickness” is an important parameter for parsing and
it should be one of parameters to evaluate the time complexity.
key words: teachability, learning via query, polynomial time learning,
simple deterministic language

1. Introduction

Teachability is one of machine learning problems. In this
problem, the learner finds out a correct hypothesis via a
special set of examples. There are some different models
of teachability [2], [4], [9]. In Goldman and Mathias’s set-
ting [2], the teacher makes a set of examples called teaching
set which is helpful for the learner. Then, adversary adds
some examples to the teaching set with the aim of confus-
ing the learner. If the learner can guess a correct hypothesis
from the given examples, the language class is called teach-
able. Especially, if the teacher can make a teaching set in
polynomial time and the learner can also guess a correct hy-
pothesis in polynomial time, then such language is called
polynomially T/L-teachable. If only the learner can guess a
correct hypothesis in polynomial time, then such language is
called semi-poly T/L-teachable. In this setting, it is known
that a language class is semi-poly T/L-teachable if there ex-
ists a polynomial time learning algorithm which uses exam-
ple based queries.

“Identification in the limit from polynomial time and
data” is defined by de la Higuera [4]. This setting adds
one more consistency condition to Goldman and Mathias’s
teachability, i.e. if the learner can construct a consistent hy-
pothesis for any examples then de la Higuera’s setting and
Goldman and Mathias’s setting are equivalent, that is semi-
poly T/L-teachable. The polynomial in de la Higuera’s set-
ting only consists of the size of the target representation

Manuscript received March 6, 2013.
Manuscript revised July 19, 2013.
†The author is with the Department of Systems Engineering,

Okayama Prefectural University, Soja-shi, 719–1197 Japan.
a) E-mail: tajima@cse.oka-pu.ac.jp

DOI: 10.1587/transinf.E96.D.2733

and the size of teaching set. We think it is too strong be-
cause any grammar class which contains Gt = ({Ai | i =
1, 2, · · · , n}, {a, b}, P, A1) where

P = { Ai → aAi+1Ai+1 (i = 1, 2, · · · , n − 1),
An → b }

can not be identifiable in the limit from polynomial time and
data. Thus, we use the length of the shortest examples for
every nonterminal as a parameter of the polynomial.

In this paper, we show a polynomial time query learn-
ing algorithm for a subclass of simple deterministic lan-
guages. This algorithm uses membership, equivalence and
superset queries. Then, it guesses a correct hypothesis in
time of polynomial of the size of the grammar which gen-
erates the target language and the longest length of coun-
terexamples. It implies that this language class is semi-poly
T/L-teachable on our parameters of the polynomial.

It is shown by de la Higuera [4] that if a grammar
class whose equivalence problem is undecidable then such
class is not identifiable in the limit from polynomial time
and data. It implies that such class of languages is not
query learnable in polynomial time. For both context-free
languages and linear languages, the equivalence problems
are undecidable [3]. Thus, these languages are not identifi-
able in the limit from polynomial time and data. It implies
that these languages can not be query learnable in polyno-
mial time. For simple deterministic languages, the equiv-
alence problem is decidable [12]. Ishizaka [7] has shown
the polynomial time learning algorithm via membership and
equivalence queries. Thus, simple deterministic languages
are semi-poly T/L-teachable. But, the representation in
Ishizaka’s algorithm is a context-free grammar. It is unsolv-
able that the equivalence problem between a context-free
grammar and a simple deterministic grammar [11]. Then,
the result of Ishizaka’s algorithm can not be compared to a
simple deterministic grammar. We should say that simple
deterministic languages are semi-poly T/L-teachable with a
context-free grammar.

In contrast, the representation of our learning algorithm
is the restricted simple deterministic grammar which can ex-
press all languages in the target class. This brings some ad-
vantages. At first, an equivalence check between the learn-
ing result and any other simple deterministic grammar can
be solvable in polynomial time. The second advantage is
that we can parse any word in linear time, since the hypothe-
sis of Ishizaka’s algorithm needs CYK like algorithm whose
complexity is at least O(l2) for the l length word. Dupont

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

2734
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

et al. [6] have applied a grammatical inference algorithm to
investigate software behavior. When we apply some learn-
ing algorithm to such a practical problem, the representa-
tion of the learner is important. The equivalence check is
useful to check compatibility between two results of learn-
ing or teaching. Fast parsing is also useful to apply the re-
sult to some practical systems. At last, we show that the
time complexity of our learning algorithm is not slower than
Ishizaka’s algorithm.

2. Preliminaries

A context-free grammar (CFG for short) is denoted by G =
(N,Σ, P, S) where N is a finite set of nonterminals, Σ is a
finite set of terminals, P is a finite set of production rules
and S ∈ N is the start symbol. We call w ∈ Σ∗ a word and
the 0-length word is denoted by ε. The length of a word
w ∈ Σ∗ is denoted by |w|, and the cardinality of a set B is
also denoted by |B|.

A CFG G is a simple deterministic grammar (SDG for
short) if G is in Greibach normal form and ε-free and G
satisfies the following conditions.

• If A → aβ ∈ P where A ∈ N, a ∈ Σ and β ∈ N∗, then
A→ aγ � P for any γ ∈ N∗ such that γ � β.

We denote a derivation by γAγ′ ⇒
G
γaβγ′ where γ, γ′ ∈

(N ∪ Σ)∗ and A → aβ ∈ P. The reflexive and transitive

closure of derivations is denoted by
∗⇒
G

or
∗⇒ when G is ob-

vious. The simple deterministic language (SDL for short)

generated by an SDG G is L(G) = {w ∈ Σ∗ | S ∗⇒
G
w}. For

A ∈ N, we define LG(A) = {w ∈ Σ∗|A ∗⇒
G
w}. If there exists a

derivation S
∗⇒
G
αAβ for A ∈ N where α, β ∈ (N∪Σ)∗, then A

is reachable. In addition, if there exists a derivation A
∗⇒
G
w

for some w ∈ Σ∗ then A is live.
Let G = (N,Σ, P, S) be an SDG. A rooted ordered tree

tw is a derivation tree for w ∈ L(G) if the followings hold.

1. The root of tw is labeled by S .
2. Let A ∈ N and B1, B2, · · · , Bn ∈ N ∪ Σ. If an in-

ternal node labeled by A has child nodes labeled by
B1, B2, · · · , Bn, respectively, then A→ B1B2 · · · Bn is in
P.

3. The yield of tw is w.

A skeleton sk(t) for a derivation tree t is a tree whose
all internal nodes are labeled by a special symbol σ such
that σ � N ∪ Σ.

Let v be a node of a derivation tree or a skeleton t, and
the yield of t be w. The yield of the subtree rooted at v is
denoted by word(v). We define

pre(v) =

{
ε . . . if v is the root
pre(u) · word(a1) · · ·word(ai) . . . otherwise

here we assume that u is the parent of v and u has child nodes

a1, · · · , ai, v, b1, · · · b j, respectively. In other words, pre(v) is
the prefix word of w which is the yield before the depth-first
search of t reaches at v. In addition, post(v) is the suffix
word of w such that pre(v) · word(v) · post(v) = w.

We define corresponding nodes for two trees t1, t2 as
follows.

• The root of t1 and the root of t2 are corresponding
nodes.
• If a node v1 of t1 and a node v2 of t2 are corresponding

nodes, and both of v1 and v2 have the same number of
children, then xi and yi are corresponding nodes where
xi is the i-th child node of v1 and yi is the i-th child node
of v2.

Let V1 be the set of nodes of t1 and V2 be the set of nodes
of t2. If v1 ∈ V1 and v2 ∈ V2 are corresponding nodes then
f (v1) = v2. Two trees t1 and t2 are isomorphic iff the map-
ping f : V1 → V2 is a one-to-one mapping.

We denote a tree t by the followings.

• If t has only one node whose label is a ∈ Σ, then t = a.
• Let A be the label of root and vi be the i-th child node

of the root (i = 1, · · · ,m). Then, t = A(t1, t2, · · · , tm)
where ti is the subtree rooted at vi for i = 1, · · · ,m.

Let Lt be the learning target language. Let Gt =

(Nt,Σ, Pt, S t) be a grammar such that L(Gt) = Lt and ev-
ery A ∈ Nt be reachable and live. A set of word w ∈ Σ∗ and
its membership (w ∈ Lt or not) is called an example.

3. Stack Uniform Simple Deterministic Languages

Definition 1: An SDG G = (N,Σ, P, S) is a stack uniform
SDG (suSDG for short) if the following holds.

• If A → aβ ∈ P for A ∈ N, a ∈ Σ, β ∈ N∗, then |γ| = |β|
holds for any rule B→ aγ ∈ P.

A stack uniform SDL (suSDL for short) is the language gen-
erated by an suSDG G.

A pushdown automaton which accepts an suSDL moves
its stack height in “uniform” according to the input sym-
bol. The equivalence problem on stack uniform determin-
istic pushdown automata (DPDAs) is solved [8] before the
equivalence problem between DPDAs is solved. Let M =
(Σ,Γ,Q, F,Δ, cs) be a DPDA, where Σ,Γ, and Q are finite
sets of input symbols, stack symbols, and states, respec-
tively, F ⊆ Q × ({Ω} ∪ Γ) is the set of accepting modes
(here Ω is a special empty stack symbol), Δ is a finite set
of transition rules and cs = (s0,Z0) ∈ Q × Γ is the initial
configuration. A DPDA M is stack uniform iff

• M has no ε-rules, and
• for any s1, s2, s′1, s

′
2 ∈ Q, A, A′ ∈ Γ, a ∈ Σ and w, w′ ∈

Γ∗, if (s1, A) →a (s2, w) and (s′1, A
′) →a (s′2, w

′) are in
Δ, then it holds that |w| = |w′|.

An SDL can be represented by a DPDA such that |Q| = 1.
Then, it is trivial that an suSDG is equivalent to a stack uni-
form DPDA with |Q| = 1.

TAJIMA: TEACHABILITY OF A SUBCLASS OF SIMPLE DETERMINISTIC LANGUAGES
2735

Definition 2: Let G = (N,Σ, P, S) be an suSDG, a ∈ Σ and
A → aβ ∈ P. We define n(a,G) = |β|. If the grammar G
is obvious, na also denotes n(a,G). If there are no rules in P
of the form B → cγ for any B ∈ N and γ ∈ N∗, then let
n(c,G) = 1 for c ∈ Σ. This is because we can assume B→ cZ
is in P for such c ∈ Σ where Z is not live.

Without loss of generality, we assume an order on Σ

and let Σ = {a1, a2, · · · , a j}. We call �nG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(a1,G)

n(a2,G)
...
n(a j,G)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
the

parameter vector of G.
We define

m(x,a) = |{u · a|u, v ∈ Σ∗, x = uav}|
for x ∈ Σ∗ and a ∈ Σ. In other words, m(x,a) is the number
that a appears in x.

Definition 3: For a finite set of words X = {x1, x2, · · · , xk}
⊂ Σ+, we define

MX =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m(x1,a1) m(x1,a2) · · · m(x1,a j)

m(x2,a1) m(x2,a2) · · · m(x2,a j)
...

m(xk ,a1) m(xk ,a2) · · · m(xk ,a j)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where j = |Σ | and k = |X|.
Lemma 4: For an suSDG G = (N,Σ, P, S) and x ∈ L(G), it
holds that∑

a∈Σ,m(x,a)�0

m(x,a)(n(a,G) − 1) = −1 (1)

for x ∈ Σ+.
Proof: Suppose A → aβ is in P and there is a derivation
γ1Aγ2⇒

G
γ1aγ3. Then, |A| + |γ2| + n(a,G) = |a| + |γ3| holds.

Adding this equation for S
∗⇒
G

x, it holds that

|S | +
∑

a∈Σ,m(x,a)�0

m(x,a)n(a,G) = |x|

1 +
∑

a∈Σ,m(x,a)�0

m(x,a)n(a,G) = |x|
⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑
a∈Σ,m(x,a)�0

m(x,a)n(a,G)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ − |x| = −1

∑
a∈Σ,m(x,a)�0

m(x,a)(n(a,G) − 1) = −1.

Thus Eq. (1) holds. �

From this lemma, if x′ ∈ Σ∗ does not satisfy Eq. (1) then it
holds that x′ � L(G).

It is clear that the class of suSDGs is included in the
class of SDGs because of Definition 1.

Theorem 5: The class of suSDLs is a proper subclass of
SDLs.

Proof: Let G = ({S , A, B}, {a, b}, P, S) with

P = {S → aA, A→ aAB, A→ b, B→ b}
be an SDG, then L(G) = {aibi | i ≥ 1}. Suppose X = {x1 =

ab, x2 = aabb} ⊂ L(G), then m(x1,a) = 1, m(x1,b) = 1, m(x2,a) =

2, m(x2,b) = 2. There is no solution �nG = (na, nb) which
satisfies

m(x1,a)(na − 1) + m(x1,b)(nb − 1) = −1

and

m(x2,a)(na − 1) + m(x2,b)(nb − 1) = −1.

Thus, L(G) is not an suSDG. �

Definition 6: We define a regular language L with an end
marker as follows.

• L is regular.
• ∀w ∈ L, it holds that w = u# for u ∈ (Σ − {#})∗ and

∈ Σ.

In other words, every word in L is ended by # and the end
marker # must not appear in middle of any words.

Theorem 7: The class of regular languages with an end
marker is proper contained in the class of suSDLs.
Proof: Without loss of generality, any regular language
with an end marker can be represented by an suSDG G =
(N,Σ, P, S) which has the production rules of the form A→
aB or A → # where A, B ∈ N, a ∈ Σ and # ∈ Σ is the end
marker.

On the other hand, let G = ({S ,T }, {a, b}, P, S) be an
suSDG such that

P = {S → aS T, S → b, T → b}
then L(G) = {aibi+1 | i ≥ 0} and this is not a regular language.
Thus, this theorem holds. �

The class of suSDGs has the following property.

Lemma 8: Let G = (N,Σ, P, S) be an suSDG. For any
w ∈ L(G), we can construct the skeleton sk(tw) from the
parameter vector �nG and Σ, where tw is the derivation tree of
w on G. The time complexity to construct sk(tw) is O(|w|).
Proof: Let A ∈ N and w = a1a2 · · · an ∈ Σ∗ for ai ∈ Σ
(i = 1, 2, · · · , n). Reading w from left to right, sk(tw) can be
recursively constructed as follows.

1. Make root node and let it the current node.
2. Read one terminal symbol from w and make child

nodes according to �nG.
3. Change the current node based on the depth first search

and back to the previous step.

Formally, we can show the algorithm in Fig. 1.
The output skeleton sk satisfies followings.

• The yield of sk is w.
• The first child of every internal node is labeled by ai ∈
Σ (i = 1, · · · , n).

2736
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

Fig. 1 The skeleton construction algorithm.

• The root of sk and the root of tw are corresponding
nodes.
• If a node v of tw and a node u of sk are corresponding

nodes, then both v and u have n(a,G) + 1 child nodes
where a ∈ Σ is the label of the first child of u.

Thus, sk is isomorphic to tw.
When this procedure is called recursively, the input

word will be decreased. Thus, the number of recursive call
is at most |w|, it implies that the time complexity of this pro-
cedure is O(|w|). �

Example 9: We show an example run of Fig. 1. Assume an
suSDG G = ({S ,T }, {a, b}, {S → aS T, S → b,T → b}, S)
and try to make the skeleton for w = aabbb ∈ L(G). The
parameter vector of G is

�nG =

(
n(a,G)

n(b,G)

)
=

(
2
0

)

and we start the procedure “make skeleton(INPUT: aabbb,
�nG).” Since n(a,G) = 2, it makes two times re-
cursive calls of make skeleton(). The first call is
“make skeleton(INPUT: abbb, �nG).” This second level
procedure also makes two times recursive calls, and the
first call is “make skeleton(INPUT: bbb, �nG).” The third
level procedure returns σ(b) and bb. The second level
procedure calls “make skeleton(INPUT: bb, �nG)” and ob-
tains σ(b) and b. Now, the second level procedure
returns σ(a, σ(b), σ(b)) and b. The first level proce-
dure calls “make skeleton(INPUT: b, �nG)” and obtains
σ(b) and ε. Finally, the first level procedure returns
σ(a, σ(a, σ(b), σ(b)), σ(b)) and ε. This is the skeleton of
the derivation tree. The time complexity is O(|w|).
Lemma 10: Let X ⊂ Σ+ hold that

{a ∈ Σ | u, w ∈ Σ∗, uaw ∈ X} = Σ.
In other words, every a ∈ Σ appears in some x ∈ X. Then it
holds that

|{ �nG | X ⊆ L(G),G is an suSDG}| = O(l|Σ |)

where l = max{|x| | x ∈ X}, i.e. the number of possible
parameter vectors is finite and O(l|Σ |).
Proof: Every suSDG G such that X ⊆ L(G) holds Eq. (1)
for any x ∈ X. Thus, |{ �nG | X ⊆ L(G),G is an suSDG}| is
bounded by the number of solutions of

MX(�nG + �−1) = �−1 (2)

with

nai ≥ 0

for i = 1, 2, · · · , |Σ |. Here,

�nG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

na1

na2

...
na|Σ |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, �−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
...
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
|Σ |.

Let k = |X|. For any ai, there exists 1 ≤ hi ≤ k such that
m(xhi ,ai) > 0. In addition, it holds that 0 ≤ nai < l for any i
(1 ≤ i ≤ |Σ |) because of the following. If there exists i such
that nai ≥ l then

|Σ |∑
i′=1

m(xhi ,ai′)(nai′ − 1)

= m(xhi ,ai)(nai − 1) +
|Σ |∑

i′=1 (i′�i)

m(xhi ,ai′)(nai′ − 1)

≥ 1(l − 1) + (l − 1) ·min
i′�i

(nai′ − 1)

≥ (l − 1) + (l − 1)(−1) = 0 > −1.

This is a contradiction to Eq. (1).
Thus, the number of solutions of (2) is bounded by l|Σ |.

�

For an suSDG G and its parameter vector �nG, we define
the following suSDG Gu.

Gu = ({S },Σ, Pu, S)

Pu = {S → ai S · · · S︸�︷︷�︸
n(ai ,G)

|ai ∈ Σ}

We call this a Universal suSDG (USDG for short). Then,
the followings hold.

• Both G and Gu have the same parameter vector, i.e.
�nG = �nGu .

• L(G) ⊆ L(Gu).

Similar definition and universal grammars are used in
the learning algorithm for linear languages [10].

4. Learning Algorithm When the Parameter Vector is
Given

We define the following queries. Here, Lt is the target
suSDL.

TAJIMA: TEACHABILITY OF A SUBCLASS OF SIMPLE DETERMINISTIC LANGUAGES
2737

[Membership query: Member]
INPUT: w ∈ Σ∗
OUTPUT: yes if w ∈ Lt,

no if w � Lt

[Equivalence query: Equiv]
INPUT: a hypothesis suSDG Gh

OUTPUT: yes if L(Gh) = Lt,
no and w ∈ Σ∗ if L(Gh) � Lt

here w ∈ Σ∗ is a counterexample such that w ∈ (Lt −
L(Gh)) ∪ (L(Gh) − Lt).

In the following of this paper, let Gt = (Nt,Σ, Pt, S t) be an
suSDG such that L(Gt) = Lt. With these queries and a pa-
rameter vector �nGt , we can show a polynomial time learning
algorithm. This learning algorithm is an application of An-
gluin [1]’s algorithm to suSDGs.

From Lemma 8, we can make a skeleton sk for w ∈ Lt

if �nGt is known. In the following of this paper, we denotes
the skeleton for w ∈ Lt by sk(w). Let V be the set of all
nodes of sk(w). Since every SDG is unambiguous and sk(w)
is isomorphic to the derivation tree tw, we can use a word
pre(v) for v ∈ V as a representation of a nonterminal. In
addition, let x ∈ Σ+ be the shortest suffix of post(v) such
that

• x′x = post(v) for some x′ ∈ Σ∗,
• pre(v) · word(v) · x ∈ Lt.

Such shortest suffix x is denoted by sspost(v). We can find
sspost(v) for any node v by |post(v)| times calling of mem-
bership queries. Let v be a node of sk(w), u be the node of
tw such that v and u are corresponding nodes. Suppose that

S t
∗⇒ pre(u) ·A ·β ∗⇒ pre(u) ·word(u) ·β ∗⇒ pre(u) ·word(u) ·

post(u), then it also holds that S t
∗⇒ pre(u) · A · β ∗⇒ pre(u) ·

word(u) · β ∗⇒ pre(u) · word(u) · sspost(u). The following
lemma holds.

Lemma 11 (Ishizaka [7] Lemma 8): Let v and u are corre-
sponding nodes where v is a node of ty and u is a node of
sk(y) for y ∈ Σ∗. In addition, let A ∈ Nt be the label of v. It
holds that

LGt (A) = {w ∈ Σ+
| Member(pre(u) · w · sspost(u)) = yes,

∀w′ ∈ Σ+,∀w′′ ∈ Σ+, w′w′′ = w,
Member(pre(u) · w′ · sspost(u)) = no}.

Proof: Since v and u are corresponding nodes, it holds that
pre(u) = pre(v) and sspost(u) = sspost(v). From ty is a
derivation tree, it holds that

LGt (A) = {w ∈ Σ+
| Member(pre(u) · w · sspost(u)) = yes,

∀w′ ∈ Σ+,∀w′′ ∈ Σ+, w′w′′ = w,
Member(pre(u) · w′ · sspost(u)) = no}.

�

Let V be the set of internal nodes of sk(w). In our al-
gorithm, {(pre(v), sspost(v))|v ∈ V} is a set of nonterminal

candidates of sk(w). These candidates are added to N0 for
all positive counterexamples.

Let W ⊂ Σ+. For a set of nonterminal candidates N0

and (u, v) ∈ N0, we define L(u,v) = {w ∈ W |Member(u · w ·
v) = yes,∀w′ ∈ Σ+,∀w′′ ∈ Σ+, w′w′′ = w,Member(u · w′ ·
v) = no}. In addition, for (u1, v1), (u2, v2) ∈ N0, we define

(u1, v1)
W
=(u2, v2) iff L(u1,v1) = L(u2,v2). An equivalence class

on N0 by
W
= is a nonterminal of a hypothesis grammar and Nh

denotes the set of nonterminals. We denote the equivalence
class A ∈ Nh which contains (p, q) ∈ N0 by A(p, q). The
root of sk(w) corresponds to (ε, ε) ∈ N0. The root of sk(w′)
also corresponds to (ε, ε) ∈ N0 for any w′ ∈ Σ+ such that
w′ � w. Thus, all root nodes are in the same equivalence
class at every hypothesis guessed by our algorithm.

Let sk(w) be a skeleton obtained from a positive coun-
terexample w ∈ Lt and v, u1, u2, · · · , un are nodes of sk(w)
such that v has child nodes u1, · · · , un, respectively. From
Lemma 8, the first child node of every internal node in sk(w)
is labeled by a terminal in Σ and the other child nodes are
internal node if exist. Now, let the label of u1 be a ∈ Σ.
In addition, let A(v), A(u2), · · · , A(un) ∈ Nh be nonterminals
which correspond to v, u2, · · · , un, respectively. Then, a rule
A(v) → aA(u2) · · · A(un) is added to Ph in our algorithm. If
both of A → aβ and A → aγ are in Ph then |β| = |γ| should
hold.

If β � γ then the following is processed. Let β =
A(p1, p′1) · · · A(pn, p′n) and γ = A(q1, q′1) · · · A(qn, q′n) where
(p1, p′1), · · · , (pn, p′n), (q1, q′1), · · · , (qn, q′n) ∈ N0. If there are
no w ∈ W and 1 ≤ i ≤ n such that w ∈ (L(pi,p′i) − L(qi,q′i)) ∪
(L(qi,q′i) − L(pi,p′i)), we call the pair A → aβ and A → aγ a
consistent pair. We call Ph is consistent if every pair of the
form A→ aβ and A→ aγ in Ph is a consistent pair. If Ph is
consistent then delete one of A→ aβ or A→ aγ, arbitrarily.

If Ph is not consistent, i.e. there exist w ∈ W and i such
that w ∈ (L(pi,p′i) − L(qi,q′i)) ∪ (L(qi,q′i) − L(pi,p′i)) then

W := W ∪ {a · s1 · · · si−1 · w · si+1 · · · sn} (3)

where s j ∈ Σ+ (1 ≤ j ≤ n) is the shortest word in W such
that Member(p j · s j · p′j) = yes. Now, L(pi,p′i) � L(qi,q′i) holds.
Thus, we must remake Nh from N0 by the new W. Applying
this process to Ph repeatedly, we can obtain a consistent Ph.

From these process, we can obtain a hypothesis gram-
mar (Fig. 2). The learning algorithm is shown in A1 (Fig. 3).

Lemma 12: In the algorithm A1, it holds that |Nh| ≤ |Nt |.
Proof: For every (x, y) ∈ N0, there exists a node v of sk ∈
S K such that pre(v) = x, sspost(v) = y. From Lemma 11,

LGt (A) = {w ∈ Σ+|Member(x · w · y) = yes,

∀w′ ∈ Σ+,∀w′′ ∈ Σ+, w′w′′ = w,
Member(x · w′ · y) = no}

for some A ∈ Nt. In addition,

LGt (A) = {w ∈ Σ+|Member(u · w · v) = yes,

∀w′ ∈ Σ+,∀w′′ ∈ Σ+, w′w′′ = w,
Member(u · w′ · v) = no}

2738
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

Fig. 2 An example of trees and a hypothesis grammar.

holds for any (u, v) ∈ N0 such that L(x,y) = L(u,v). It implies
that every B ∈ Nh corresponds to some A ∈ Nt. Thus, |Nh| ≤
|Nt | holds. �

Lemma 13: Suppose (x, y) ∈ N0 and A ∈ Nh such that
A(x, y) = A and Member(x · w · y) = no for w ∈ W. It holds
that w � LGh (A).
Proof: We denote the derivation tree on Gt which is iso-
morphic to sk ∈ S K by tsk. Let u be a node of sk. vu denotes
the node of tsk such that u and vu are corresponding nodes.
In addition, B(vu) ∈ Nt denotes the nonterminal by whom vu
is labeled.

Suppose w = a ∈ Σ. For any node u of any sk ∈ S K
such that A(pre(u), sspost(u)) = A, then it holds that a �
LGt (B(vu)) from the assumption that Member(x · a · y) = no.
It implies that B(vu) → a is not in Pt. Every sk ∈ S K is a
skeleton of a derivation tree of Gt, then A→ a is not in Ph.

Suppose that this lemma holds for any |w| = n and
|aw| = n + 1 where a ∈ Σ. For any node u of any
sk ∈ S K such that A(pre(u), sspost(u)) = A, it also holds
that aw � LGt (B(vu)) from the assumption. It implies that

• B(vu)→ aβ is not in Pt for any β ∈ N+t , or
• B(vu) → aC1 · · ·Cm is in Pt for m ≤ n, but there exists

1 ≤ j ≤ m such that w j � LGt (C j) for any separation of

w = w1w2 · · ·wm (wi ∈ Σ+, i = 1, · · · ,m).

If the former case holds then aw � LGh (A). If the later case
holds, there are two cases.

• u has child nodes u0, u1, · · · , um of sk such that the label
of u0 is a and B(vui) = Ci (i = 1, · · · ,m).
• u has only one child node whose label is a.

If the later case holds then aw � LGh (A). If the former case
holds then Member(pre(u j) ·w j · sspost(u j)) = no from w j �
LGt (C j). Now, |w j| ≤ n thus w j � LGh (Dj) where Dj ∈
Nh and D(pre(u j), sspost(u j)) = Dj. It implies that aw �
LGh (A). �

Lemma 14: Let G(t)
h = (N(t)

h ,Σ, P
(t)
h , S h) be the hypothesis

grammar such that the t-th equivalence query is guessed by
A1. When a negative counterexample is given and the next
hypothesis G(t+1)

h = (N(t+1)
h ,Σ, P(t+1)

h , S h) is guessed, it holds
that |N(t)

h | < |N(t+1)
h |.

Proof: No skeleton is added to S K since the counterexam-
ple is negative. In addition, N0 is not modified, too. Suppose
that this lemma does not hold. For any pair of (x1, y1) ∈ N0

and (x2, y2) ∈ N0 such that A(x1, y1), A(x2, y2) ∈ N(t)
h and

A(x1, y1) � A(x2, y2), it holds that C(x1, y1) � C(x2, y2)

TAJIMA: TEACHABILITY OF A SUBCLASS OF SIMPLE DETERMINISTIC LANGUAGES
2739

Fig. 3 The learning algorithm A1.

where C(x1, y1),C(x2, y2) ∈ N(t+1)
h . Thus, N(t)

h = N(t+1)
h w.r.t.

|Nh| is monotone increasing. It holds that P(t)
h = P(t+1)

h from
S K is not modified. It implies that G(t)

h = G(t+1)
h . The coun-

terexample holds w � Lt. Thus, Member(ε · w · ε) = no.
From Lemma 13, it implies that w � LG(t+1)

h
= LG(t)

h
. This is

contradiction. �

Lemma 15: Let G(t)
h = (N(t)

h ,Σ, P
(t)
h , S) be the hypothesis

grammar such that the t-th equivalence query is guessed by
A1. When a positive counterexample is given and the next
hypothesis G(t+1)

h = (N(t+1)
h ,Σ, P(t+1)

h , S) is guessed, it holds
that

• |N(t)
h | < |N(t+1)

h |, or
• |P(t)

h | < |P(t+1)
h |.

Proof: Obviously, |Nh| and |Ph| are monotone increasing.
Thus, if this lemma does not hold then G(t)

h = G(t+1)
h . Let w

be the positive counterexample and tw be its derivation tree

on Gt. From w � LG(t)
h

, there is no derivation S h
∗⇒

G(t)
h

w. There

is also no derivation S h
∗⇒

G(t+1)
h

w from the assumption. On the

other hand, sk(w) is in S K when G(t+1)
h is guessed. For every

node v in sk(w) and its child nodes v1, v2, · · · , vm, it holds
that A(v) → aA(v2) · · · A(vm) is in P(t+1)

h . Thus, it holds that

S h
∗⇒

G(t+1)
h

w. This is contradiction. �

Theorem 16: An suSDL is polynomial time learnable
from membership queries, equivalence queries and the pa-

rameter vector �n of Gt.
Proof: It is clear that if the algorithm A1 terminates then
Equiv(Gh) = yes. Thus it confirm the correctness of A1.

From Lemma 14 and Lemma 12, negative counterex-
amples are given at most |Nt | times. From Lemma 15
and Lemma 12, positive counterexamples are given at most
|Nt | + |Pt | times. Thus, equivalence queries are guessed at
most 2|Nt | + |Pt | times.

Let l be the maximum length of counterexamples. The
increase of |W | by all counterexamples is bounded by 1

2 l(l −
1)(2|Nt | + |Pt |). If Ph is not consistent then W is modified
by (3) and |Nh| is increased. From Lemma 12, it happens
at most |Nt | times that Ph is not consistent. The increase
of |W | by (3) is also at most |Nt |. Thus, |W | is bounded by
O(l2(|Nt | + |Pt |)) when A1 is terminated.

Let k = max{|w| | w ∈ W}. When (3) is applied, the
length of the string added to W is at most l + k. Especially,
at the first time that (3) is applied, the length of the string
added to W is at most 2l. Thus, k is bounded by l(|Nt | + 1)
when A1 is terminated.

To find not consistent pair of rules takes at most
O((|Nh||Σ |)2|W |) time. This is also bounded by a polynomial
of |Nt |, |Σ |, |Pt |, l. Thus, this theorem holds. �

Example 17: We show an example run of A1. Let Gt =

(Nt,Σ, Pt, S) be Nt = {S , A, B,D, E}, Σ = {a, b, c}, Pt =

{ S → aAB, S → cD, A→ aDA, A→ b, B→ aEB, B→ b,
D → cE, D → b, E → b } and Lt = L(Gt). The parameter
vector of Gt is t(2, 0, 1).

At first, an equivalence query for Gh = ({S },Σ, ∅, S) is
guessed and suppose the counterexample aabbabb. Then,
W = { a, b, aa, ab, bb, ba, aab, abb, bba, bab, aabb,
abba, bbab, babb, aabba, abbab, bbabb, aabbab, abbabb,
aabbabb }. The skeleton skaabbabb is σ(a, σ(a, σ(b),
σ(b)), σ(a, σ(b), σ(b))) and this skeleton is added to S K.
Let names of internal nodes of skaabbabb be v1, v2, · · · , v7
and place them on v1(a, v2(a, v3(b), v4(b)), v5(a, v6(b), v7(b))).
Then, sspost(v1) = ε, sspost(v2) = b, sspost(v3) = bb,
sspost(v4) = b, sspost(v5) = ε, sspost(v6) = b and
sspost(v7) = ε. The set of nonterminal candidates is
N0 = { (ε, ε), (a, b), (aa, bb), (aab, b), (aabb, ε), (aabba, b),
(aabbab, ε) }.

The learner asks membership queries and finds L(ε,ε) =

{abb, aabbabb}, L(a,b) = L(aab,b) = L(aabb,ε) = L(aabbab,ε) =

{b, abb}, L(aa,bb) = L(aabba,b) = {b}. Then, the learner
obtains the equivalence class such that Nh = { X :
{(ε, ε)}, Y : {(a, b), (aab, b), (aabb, ε), (aabbab, ε)}, Z :
{(aa, bb), (aabba, b)} }. The hypothesis grammar is Gh =

(Nh,Σ, Ph, X), here Ph = { X → aYY , Y → aZY , Y → b,
Z → b } and an equivalence query is asked with Gh.

Suppose the next counterexample is ccb. W := W ∪
{ c, cc, cb, ccb }. The constructed skeleton skccb is σ(c, σ(c,
σ(b))) and the learner adds this skeleton to S K. Suppose
that names of nodes of skccb is u1, u2, u3 and place them on
u1(c, u2(c, u3(b))). Then, sspost(u1) = ε, sspost(u2) = ε
and sspost(u3) = ε. The set of nonterminal candidates is
N0 = { (ε, ε), (a, b), (aa, bb), (aab, b), (aabb, ε), (aabba, b),

2740
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

(aabbab, ε), (c, ε), (cc, ε) }. Here, both of u1 and v1 corre-
spond to (ε, ε).

The learner distinguishes (aa, bb) and (aabba, b) by
L(aa,bb) = {b, cb} but L(aabba,b) = {b}. Then, Nh =

{ X : {(ε, ε)}, Y : {(a, b), (aab, b), (aabb, ε), (aabbab, ε)},
Z : {(aa, bb), (c, ε)}, T : {(aabba, b), (cc, ε)} } and Ph =

X → aYY , X → cZ, Y → aZY , Y → aTY , Y → b, Z → cT ,
Z → b, T → b }. Now, the pair of Y → aZY and Y → aTY
is not consistent pair. The learner adds a · cb · b to W, then
L(a,b) = L(aab,b) = {b, aab, acbb} and L(aabb,ε) = L(aabbab,ε) =

{b, abb}. Remaking Nh, the learner obtains Nh = { X :
{(ε, ε)}, Y : {(a, b), (aab, b)}, Q : {(aabb, ε), (aabbab, ε)},
Z : {(aa, bb), (c, ε)}, T : {(aabba, b), (cc, ε)} }. The set of
hypothesis rules is Ph = { X → aYQ, X → cZ, Y → aZY ,
Y → b, Q → aT Q, Q → b, Z → cT , Z → b, T → b }. The
hypothesis grammar Gh = (Nh,Σ, Ph, S) is equivalent to Gt.

5. Learning via Example Based Queries

From Lemma 10, if the learner takes a positive counterex-
ample w whose length is |w| = l, the number of skeletons
whose yields are w is bounded by O(l|Σ |). Thus, if we can
run the algorithm A1 with O(l|Σ |) times, we can construct the
learning algorithm for suSDLs via membership and equiv-
alence queries. But, this is not a polynomial time learning
algorithm.

We define the following superset query and show a
polynomial time learning algorithm via membership, equiv-
alence and superset queries.

[Superset query: S uper]
INPUT: a hypothesis suSDG Gh

OUTPUT: yes if L(Gh) ⊇ Lt,
no and w ∈ Σ∗ if L(Gh) � Lt

where w ∈ Σ∗ is a positive counterexample such that
w ∈ (Lt − L(Gh)).

With superset queries and USDGs (universal suSDGs), we
can identify the parameter vector �nt of Gt (Fig. 4).

For any X = {x1, x2, · · · , xk} ⊆ Lt, a solution of Eq. (2),

MX(�n + �−1) = �−1,

is a candidate of the parameter vector of Lt.

Fig. 4 Algorithm A2 (learning from example based queries).

For X ⊆ Lt, it holds that 1 ≤ rank(MX) ≤ |Σ | be-
cause MX has |Σ | columns. Let r = max{rank(MX)|X ⊆ Lt}.
Obviously, r is monotone increasing and if |X| ≥ |Σ | then
rank(MX) = r. Now, we can show the following lemma.

Lemma 18: Let r = max{rank(MX)|X ⊆ Lt} and X(t) be
the X in A2 at t-th superset query is guessed. Suppose 1 ≤
|X(t)| < |Σ | and m (≤ r) be the rank of MX(t) . If the next
superset query guessed by A2 and a positive counterexample
w ∈ Lt is given, i.e. X(t+1) = X(t) ∪ {w}, then it holds that

• rank(MX(t+1)) = m + 1 if m < r.

Proof: If |X| = 1 then MX is a row vector and MX � �0,
thus m = 1. Suppose if this lemma does not hold, then
rank(MX(t+1)) = m. It implies that all solutions of MX(t) (�n +
�−1) = �−1 are also solutions of MX(t+1) (�n + �−1) = �−1 and

the number of both solutions are the same. Thus, MX(t) (�n +
�−1) = �−1 and MX(t+1) (�n + �−1) = �−1 have same solutions.

It implies that G(t)
h by whom t-th superset query is guessed

is also consistent with X(t+1), i.e. X(t+1) ⊆ L(G(t)
h). This is

contradiction. �

Theorem 19: An suSDL is polynomial time learnable
from membership, equivalence and superset queries.
Proof: From Lemma 18, at most |Σ | times superset queries
are guessed by the learning algorithm A2, and the parameter
vector will be fixed. Thus, from Theorem 16, we can find
the correct hypothesis by the algorithm A1. The time com-
plexity to solve Eq. (2) is bounded by a polynomial of |X|
and |Σ |. Thus, this theorem holds. �

The time complexity of Ishizaka [7]’s algorithm is, at
least, larger than O(|Nt |3l6). On the other hand, the time
complexity of our algorithm is bounded by O(|Nt |3l2|Σ |4).
Usually, |Σ | < l holds, then the time complexity of our algo-
rithm is less than that of Ishizaka’s algorithm.

6. Teachability

Teachability is one of a variation of machine learning prob-
lems. There are some different settings [2], [4], [9]. In
Goldman and Mathias’s setting [2], at first, the teacher
makes a teaching set T which is a set of examples for the
learner. Then, the adversary adds a set of examples A to
T arbitrarily. The learner is given E = A ∪ T and try to
identify the target language. The learner can not distinguish
T from E when E is given. If the teacher can make T in
polynomial time of the size of the representation Gt for the
target language L(Gt) and the learner can identify in poly-
nomial time of the size of Gt and the total length of E, then
such the representation class is polynomially T/L-teachable.
If the teacher’s complexity is not bounded by polynomial
time then we call such the representation class is semi-poly
T/L-teachable.

It is known that learnability via queries leads teachabil-
ity.

Theorem 20 (Goldman and Mathias [2]): A representation
class which is polynomial time learnable via example based

TAJIMA: TEACHABILITY OF A SUBCLASS OF SIMPLE DETERMINISTIC LANGUAGES
2741

queries is semi-poly T/L-teachable. �

Here, all of membership, equivalence and superset queries
are example based queries. From Theorem 19, an suSDL
is polynomial time learnable via example based queries, but
the polynomial consists of the size of Gt and the maximum
length of counterexamples. On the other hand, in Theorem
20, the polynomial only consists of the size of Gt.

Let T be a finite set of examples of the target language.
A consistency-easy class is a representation class which can
express any T and we can find such a representation in poly-
nomial time of the size and the total length of T . It is trivial
that SDGs or CFGs are consistency-easy class. In addition,
suSDGs are also consistency-easy because we can make an
suSDG which only generates T by the following process.

1. Find a parameter vector by a solution of Eq. (2).
2. Make all skeletons of T from the algorithm in

Lemma 8.
3. Let all internal nodes of skeletons be different nonter-

minals and make rules from parent-child relations.

Definition 21 (de la Higuera [4]): A representation class R
is identifiable in the limit from polynomial time and data iff
there exist two polynomials p() and q() and an algorithm A
such that:

1. Given any examples S of size m, A returns a represen-
tation r ∈ R compatible with S in O(p(m)) time.

2. For each representation r of size n, there exists a char-
acteristic sample CS of size less than q(n) for which, if
CS ⊆ S , A returns a representation r′ equivalent with r.

In this setting, some positive identifiability has been
shown [5]. Then, following theorems hold.

Theorem 22 (de la Higuera [4]): A consistency-easy class
is identifiable in the limit from polynomial time and data iff
it is semi-poly T/L-teachable. �

From this theorem, following negative results are known.

Theorem 23 (de la Higuera [4]): A language class whose
equivalence is undecidable is not identifiable in the limit
from polynomial time and data. �

Equivalence problem of both of linear grammars and
context-free grammars are undecidable. Thus, these class
of languages are not semi-poly T/L-teachable.

Theorem 24 (de la Higuera [4]): The class of SDGs is not
identifiable in the limit from polynomial time and data.
Proof: Suppose Gt = (Nt = {Ai | i = 1, 2, · · · , n}, {a, b}, P,
A1) where

P = { Ai → aAi+1Ai+1 (i = 1, 2, · · · , n − 1),
An → b }

then L(Gt) contains just one word and the length is 2n −
1. If the teacher makes a teaching set T , T must contain
the positive example, but the size of T is not bounded by a
polynomial of |Nt | = n. �

This Gt is also an suSDG. Thus, the class of suSDGs is also
not identifiable in the limit from polynomial time and data.

On the other hand, the length of a counterexample is
an important parameter for polynomial time query learn-
ing. We define new teachability which concerns the length
of counterexamples.

Definition 25: Let Gt = (Nt,Σ, Pt, S t) be a CFG. The
thickness of A ∈ Nt is the length of the shortest word which
is generated from A, and is denoted by tck(A). The thickness
of A → β ∈ Pt is the length of the shortest word which is
generated from β, and is denoted by tck(A→ β). The thick-
ness of Gt is max({tck(A) | A ∈ Nt} ∪ {tck(A→ β) | A→ β ∈
Pt}), and denoted by tck(Gt).

If a subclass of CFGs is T/L-teachable in polynomial
of the size of Gt and tck(Gt), then we call the subclass of
CFGs teachable in polynomial examples.

We can claim immediately that the class of suSDGs is
teachable in polynomial examples from Theorem 19.

Theorem 26: The class of suSDGs is teachable in polyno-
mial examples. �

7. Conclusions

We have shown the learning algorithm via membership,
equivalence and superset queries for suSDLs. It implies that
suSDLs are teachable in polynomial examples. It is equiv-
alent that suSDLs are semi-poly T/L-teachable if the thick-
ness is a parameter of the polynomial. Eventhough, it is still
open problems for SDLs that teachability in polynomial ex-
amples and polynomial time query learnability.

The thickness is a parameter of the time complexity of
teaching in polynomial examples. This parameter is also
important in the time complexity of the parsing and the
equivalence problem of SDLs. An inclusion problem be-
tween two SDGs is undecidable, but it is solvable between
suSDGs [13]. In the future, if we find another parameter
which is important to solve some example based queries,
then it should also be important to clear the relation between
the parameter and teachability or learnability.

Suppose a CFG which generates an suSDL. If we can
solve the equivalence and the inclusion problems between
such the CFG and an suSDG in polynomial time, then we
can claim that there exists a conversion algorithm from the
CFG to the equivalent suSDG. Because, let the CFG be
the target of our learning algorithm, then we can obtain the
suSDG which is equivalent to the CFG.

References

[1] D. Angluin, “Learning regular sets from queries and counterexam-
ples,” Inf. Comput., vol.75, no.2, pp.87–106, 1987.

[2] S.A. Goldman and H.D. Mathias, “Teaching a smart learner,” J.
Computer and System Sciences, vol.52, pp.255–267, 1996.

[3] M.A. Harrison, Introduction to Formal Language Theory, Addison-
Wesley, Reading MA, 1978.

[4] C. de la Higuera, “Characteristic sets for polynomial grammatical

2742
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

inference,” Mach. Learn., vol.27, no.2, pp.125–138, 1997.
[5] C. de la Higuera and J. Oncina, “On sufficient conditions to identify

in the limit classes of grammars from polynomial time and data,”
LNAI 2484 (Proc. ICGI 2002), pp.134–148, 2002.

[6] P. Dupont, B. Lambeau, C. Damas, and A. van Lamsweerde, “The
QSM algorithm and its application to software behavior model in-
duction,” Applied Artificial Intelligence, vol.22, nos.1-2, pp.77–115,
2008.

[7] H. Ishizaka, “Polynomial time learnability of simple deterministic
languages,” Mach. Learn., vol.5, no.2, pp.151–164, 1990.

[8] M. Linna, “Two decidability results for deterministic pushdown au-
tomata,” J. Computer and System Sciences, vol.18, no.1, pp.92–107,
Feb. 1979.

[9] A. Shinohara and S. Miyano, “Teachability in computational learn-
ing,” New Generation Computing, vol.8, pp.337–347, 1991.

[10] Y. Takada, “A hierarchy of language families learnable by regular
language learning,” Inf. Comput., vol.123, no.2, pp.138–145, 1995.

[11] Y. Tajima, E. Tomita, M. Wakatsuki, and M. Terada, “Polynomial
time learning of simple deterministic languages via queries and
a representative sample,” Theor. Comput. Sci., vol.329, nos.1-3,
pp.203–221, 2004.

[12] M. Wakatsuki and E. Tomita, “On the upper bound of the shortest
length of input strings to decide the equivalence of simple deter-
ministic pushdown automata,” IEICE Trans. Inf. & Syst. (Japanese
Edition), vol.J75-D-I, no.10, pp.950–953, Oct. 1992.

[13] R. Yoshinaka, “Polynomial-time identification of an extension of
very simple grammars from positive data,” LNAI 4201 (Proc. ICGI
2006), pp.45–58. 2006.

Yasuhiro Tajima received his Ph.D. from
The University of Electro-Communications in
2001. He had joined Ishikawajima-Harima
Heavy Industries Co., Ltd., and Tokyo Univer-
sity of Agriculture and Technology. Currently,
he is an associate professor at Okayama Pre-
fectural University. His research interests are
in Machine Learning and Text Mining. He is
a member of JSAI and IPSJ.

