
28
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

PAPER

Resco: Automatic Collection of Leaked Resources

Ziying DAI†a), Student Member, Xiaoguang MAO†b), Nonmember, Yan LEI†, Student Member, Xiaomin WAN†,
and Kerong BEN††, Nonmembers

SUMMARY A garbage collector relieves programmers from manual
memory management and improves productivity and program reliability.
However, there are many other finite system resources that programmers
must manage by themselves, such as sockets and database connections.
Growing resource leaks can lead to performance degradation and even
program crashes. This paper presents the automatic resource collection
approach called Resco (RESource COllector) to tolerate non-memory re-
source leaks. Resco prevents performance degradation and crashes due to
resource leaks by two steps. First, it utilizes monitors to count resource
consumption and request resource collections independently of memory
usage when resource limits are about to be violated. Second, it responds
to a resource collection request by safely releasing leaked resources. We
implement Resco based on a Java Virtual Machine for Java programs. The
performance evaluation against standard benchmarks shows that Resco has
a very low overhead, around 1% or 3%. Experiments on resource leak
bugs show that Resco successfully prevents most of these programs from
crashing with little increase in execution time.
key words: resource leaks, resource collection, fault tolerance, monitoring

1. Introduction

Automatic garbage collection has gained considerable suc-
cess in many mainstream programming languages, such as
Java and C#. Garbage collector relieves programmers from
manual memory management and improves productivity
and program reliability [1]. However, there are many other
non-memory, finite system resources, such as file descrip-
tors and database connections, whose management garbage
collector does not help with. In programs written in Java-
like languages, once acquired, a resource instance must be
released by explicitly calling a cleanup method. A resource
leak is a software bug that occurs when the cleanup method
of the resource is not invoked after the last use of the re-
source. Growing resource leaks can hurt application per-
formance and even result in system crashes due to resource
exhaustion.

Resource leaks are common in Java programs [2]. It
is difficult for programmers to correctly release all re-
sources along all possible exceptional paths. Implicit con-
trol flows introduced by exceptions also impose difficul-
ties on traditional testing and analysis techniques [3]. Cur-

Manuscript received May 2, 2012.
Manuscript revised October 4, 2012.
†The authors are with School of Computer, National University

of Defense Technology, 410073, Changsha, China.
††The author is with the Department of Computer Engineering,

Naval University of Engineering, 430033, Wuhan, China.
a) E-mail: ziyingdai@nudt.edu.cn
b) E-mail: xgmao@nudt.edu.cn (Corresponding author)

DOI: 10.1587/transinf.E96.D.28

rent approaches either strive to detect and fix these leaks
or provide new language features to simplify resource man-
agement [2], [3], [5]–[8]. Although these approaches can
achieve success to some extent, there are some escaped re-
source leaks that manifest themselves after programs have
been deployed. We also note that similar to memory leaks,
leaks of other resources are not necessarily a problem. A
few or a small amount of leaked resources will neither affect
program behavior nor performance. Only when accumu-
lated leaks exhaust all available resources or lead to large ex-
tra computation overhead, a system failure occurs. Based on
these two observations, we propose the automatic resource
collection approach to enforce resource limits and tolerate
resource leaks. Resource collections are triggered just when
there are so many leaked resources that the system is about
to crash or its performance is about to degrade. Let us take
database connections as an example. We can collect leaked
connections at the limit of the connection pool size to avoid
performance degradation due to establishing extra physical
connections, and also at the limit of the maximum number of
concurrent connections to prevent database crashes. Since
opening physical connections is time-consuming, connec-
tions should be closed as soon as possible. In such cases,
current solutions such as leak detection and fixing can ben-
efit and are complementary to ours.

This paper presents the Resco approach to automat-
ically collect leaked non-memory resources in response
to abnormal resource consumption. When the program
approaches a resource limit, the resource collection pro-
cess is triggered. First, Resco identifies leaked resources.
Among un-released resources, unreachable ones are defi-
nitely leaked. However, according to the leak definition
above, there may be leaked resources that are still reach-
able. Because determining whether an object is live (will
be used later) or not is un-decidable in general, most re-
source leak detection approaches including garbage collec-
tors target unreachable resources [2], [3], [8]. Resco also
employs this approach to identify leaked resources as un-
released and unreachable resources. Second, corresponding
cleanup methods such as close are invoked to safely re-
lease these leaked resources. Resco is analogous to the fi-
nalization mechanism since both aim at reclaiming unreach-
able resources. However, the execution of finalize meth-
ods may be arbitrarily delayed in an indeterminate way [9],
which makes it well known that finalization is unqualified
to perform resource collections. There are two main rea-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



DAI et al.: RESCO: AUTOMATIC COLLECTION OF LEAKED RESOURCES
29

sons: (1) finalize methods are bound to garbage collec-
tor that may not run until the application is about to run
out of memory. However, the application may be about
to exhaust some non-memory resources or may suffer per-
formance degradation due to huge resource consumption
while there is still a large amount of available memory; (2)
Various finalization implementations do not always execute
finalize methods immediately when they are ready to be
called [9]. Asynchronous finalization is a necessary fea-
ture for correct implementation, but the situation becomes
worse because of delayed invocations of ready finalize
methods. Resco improves the situation based on two de-
sign decisions. First, Resco separates non-memory re-
source collections from memory collections. Resource col-
lections are triggered in response to abnormal non-memory
resource consumption independently of memory usage. For
the flexibility to enforce various limits and to handle new
application-specific resources, we instrument monitors into
application code and system libraries to count the resource
consumption and request resource collections if necessary.
Second, the separate thread to release leaked resources is
given the privilege to run immediately after the liveness
analysis. We ensure the safety by releasing only leaked
resource instances that are not depended on by any object
with actions (e.g. close or finalize) to perform in fu-
ture and that do not reference any reachable instances of the
collection-triggering resource or its wrappers.

We implement Resco based on Jikes RVM [11] for Java
programs. Users provide Resco with resource releasing
specifications through a configuration file that includes re-
source types, resource acquiring and releasing methods, and
resource limits. Resco can handle new application-specific
resources that have a limited amount available to programs.
We evaluate Resco’s performance through standard bench-
marks. The experimental results show that the runtime over-
head of Resco is very low, around 1% or 3%. To evaluate
Resco’s ability to collect leaked resources, we conduct ex-
periments on four leaks. Resco successfully tolerates three
of these four leaks and reclaims all concerned leaked re-
sources. Resco performs stably in the long term with varia-
tions when resource collections are triggered. Resco cannot
tolerate the fourth leak because its leaked resources are still
reachable.

The rest of this paper is organized as follows. Section 2
presents several concepts about resources to facilitate our
discussions and to drive the Resco approach. In Sect. 3, we
give the details of our Resco approach. The implementation
of Resco for Java programs is presented in Sect. 4. Section 5
presents the experimental evaluation. Related work is pre-
sented in Sect. 6. Finally, we conclude in Sect. 7.

2. Concepts

Resco reclaims leaked resources in a demand-driven way.
So the first question is to count resource consumption. This
is not as straightforward as what we may imagine. First,
we can look at many resources from different viewpoints

and thus impose different limits on them. These limits can
not necessarily be mapped to low-level system resources.
For example, database connections typically have two lim-
its: the size of the connection pool and the maximum num-
ber of concurrently available connections. These two lim-
its usually have small numbers and are set for performance
considerations. Second, the common resource we refer to
may not be the one on which the system directly imposes
limits. Moreover, one limited resource may be required by
several other resources and one resource may require sev-
eral different limited resources. Let us take the file descrip-
tor as an example. All examples in this paper are provided
in the context of Java except explicitly stated. We know
that FileInputStream is a finite resource whose instances
should be closed after use. However, its background lim-
ited resource is the file descriptor that the operating sys-
tem usually imposes a constraint on its maximum avail-
able number. One instance of FileInputStream occupies
one file descriptor. Knowing just these is not enough, be-
cause the file descriptor is also the background resource of
FileOutputSteam, Socket, etc.

To facilitate discussions and to drive our Resco ap-
proach, we give several concepts below. The concrete re-
source introduced below is to denote resources on which
limits are directly imposed, and the concept of abstract re-
source is to characterize resources at the programming level.
Resource-related concepts can also be found in [6], [23], but
we give our own ones here for the specific purpose of col-
lecting leaked resources.

Definition 1. (Concrete Resource) A concrete resource
is a hardware or software entity whose amount available to
a program is limited. A concrete resource CR is formally
specified as a pair 〈N, L〉, where N is its unique identifier
and L is its limit. Examples of concrete resources include
the operating system managed hardware resources such as
memory and disk space, and software entities such as file
descriptors and database connections. We focus on non-
memory finite resources in this paper due to the fact that
garbage collectors are widely used and there is so much
good research work on memory leaks [4], [20]–[22]. The
goal of the concrete resource concept is to count resource
consumption and enforce resource limits. The notable char-
acteristic of a concrete resource is that from some viewpoint,
the system/application directly imposes limits on it, that is,
it is limited not because they require other limited resources.
For example, the file descriptor is a concrete resource, while
at the same time FileInputStream is not a concrete re-
source. The limit of a concrete resource is naturally set in
the system configuration and/or application administration
and is imposed by the application or its hosting environment
such as the operating system, the virtual machine or other
applications for some functionality or performance reasons.
If one such limit is violated, the application will perform
poorly and even crash. The goal of Resco is to enforce lim-
its of concrete resources via automatic resource collections.

Definition 2. (Abstract Resource) An abstract re-
source is a data type that wraps some concrete resources. Its



30
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

instances are allocated to programs by some API methods
called acquiring methods and de-allocated by some other
API methods called releasing methods. An acquiring (re-
leasing) method acquires (releases) some amount va (vr) of
a wrapped concrete resource CR. We specify an acquir-
ing (releasing) method MCRa (MCRr) as a pair 〈mCRa, va〉
(〈mCRr, vr〉), where m is this methods fully-qualified signa-
ture and CR is the concrete resource acquired (released) by
this method. MCRa and its corresponding MCRr form a pair
〈MCRa, MCRr〉 with va = vr. Let RA denote the set of all
acquiring methods of an abstract resource and RR denote
the set of all its releasing methods. Define the total func-
tion SPEC: RA → RR as the set of all such method pairs.
SPEC formalizes the specification of this abstract resources
management. Finally, an abstract resource AR is formally
specified as a tuple (N, S, SPEC), where N is its unique iden-
tifier, and S is the set of its wrapped concrete resources, and
SPEC is the resource management specification. An abstract
resource may wrap more than one concrete resources and
an acquiring (releasing) method may acquire (release) more
than one concrete resources. In these cases, the acquiring
(releasing) method is treated per concrete resource. An ab-
stract resource can also be a concrete resource. For example,
database connections are their own concrete resources as
they have specific limits to themselves. Abstract resources
are finite resources that programmers should manage care-
fully because an abstract resource’s over-consumption will
lead to the over-consumption of underlying concrete re-
sources. Typically, programmers manage resources at the
abstract resource level. As there are well understood API
methods of programming-level resources and potential new
application-specific resources may be added, we define ab-
stract resources here to gain a straightforward and flexible
solution of our Resco approach and to facilitate discussions
of resource monitoring and collecting.

Definition 3. (Resource Collection Configuration) A
resource collection configuration C is a set of abstract re-
sources ARi that are provided for Resco to collect their
leaked instances. Users do not need to provide the complete
resource management specification for abstract resources.
Users can provide specifications related to only some of all
concrete resources, but all abstract resources that wrap an
interesting concrete resource should be specified. This re-
quirement is to guarantee the correct counting of resource
usage and enforcing of resource limits. An example of the
resource collection configuration is provided in Fig. 1. The
first three abstract resources have the value bottom of the at-
tribute hierarchy which represents the wrapping hierarchy of
all abstract resources wrapping a concrete resource. Other
abstract resources in the java.io package are wrappers of
these three ones. Only abstract resources at the bottom of
the wrapping hierarchy need to be monitored for resource
consumption. Although there are several acquiring methods
for each of these three abstract resources (e.g., there are 3
public constructors of FileInputStream), only one is pro-
vided here for each of them as other acquiring methods sim-
ply invoke it. The omission of redundant acquiring methods

Fig. 1 An example of the resource collection configuration in the XML
format. The concrete resource is the file descriptor, and we only provide
the wrapping abstract resources in the java.io package. There are other
20 abstract resources omitted from this figure for space limit. This example
is generated according to the source code of Oracle jdk6.27 [37] API.

(methods that acquire resources by invoking other acquiring
methods) from the resource collection configuration facili-
tates the instrumentation of resource monitors (see Sect. 3
for detail).

3. Resco Approach

Programmers acquire some resource by calling the appro-
priate API method, and they release the resource by call-
ing other API method. These resource management API
method pairs for acquiring (releasing) resources are some-
times called resource-releasing specifications [10]. The
problem of how to gain resource-releasing specifications has
be studied by many researchers [10], [24], and we consider
it orthogonal to our work. The only requirement of Resco
for users is to provide their interesting resources and cor-
responding resource management API methods. Specifying
resources at the abstract resource level facilitates users and
makes Resco consistent with existing work. Besides com-
mon system-level resources, there are also other application-
specific resources that have a limited amount available to
a program for their own purposes. We expect that Resco
can not only manage common system resources but also
application-specific ones. We decide to deal with the prob-
lem of leaked resource collections at the abstract resource
level, which has two main advantages: (1) Monitors are in-
strumented into the application code and/or libraries, which



DAI et al.: RESCO: AUTOMATIC COLLECTION OF LEAKED RESOURCES
31

Fig. 2 Resco architecture.

makes it easy to scale to new application-specific resources
without modifications to the underlying runtime system; (2)
As resources are specified by users at the abstract resource
level, we can achieve a straightforward and flexible solution
of counting resource usage and collecting leaked resources.

Figure 2 depicts the architecture of Resco that consists
of two stages. The first stage is pre-deployment instrumen-
tation. In this stage, resource monitors are first generated ac-
cording to user-provided resource collection configuration.
Then, these monitors are instrumented into target applica-
tion and system libraries. The second stage is runtime re-
source collection. Instrumented monitors count the applica-
tion’s resource usage and make a request for resource col-
lections if the resource limit is about to be violated. Then
resource collector reclaims leaked resources and the recla-
mation result is returned to the requesting monitor. This
monitor uses this feedback to adjust its request for next re-
source collection. Resco comprises three main components:
(1) Resource monitor generation that generates monitors for
each concrete resource (Sect. 3.1); (2) Instrumentation that
instruments resource monitors into target application and
system libraries (Sect. 3.2); and (3) Resource collector that
performs resource collections (Sect. 3.3).

3.1 Resource Monitor Generation

There are two steps toward the resource monitor generation:
(1) Identify all concrete resources SCR in the resource col-
lection configuration, SCR = {CR |CR ∈ S∧〈N, S , SPEC〉 ∈
C}; (2) Generate a monitor for each concrete resource CR ∈
SCR according to the monitor template. Core functionalities
of a resource monitor include counting resource acquisition
and releases, requesting resource collections if necessary,
and adjusting future requests for resource collections based
on the history of collection results. A prototype monitor for
concrete resource CR in Java is presented in Fig. 3. This
piece of code serves as an example of our discussion. The

Fig. 3 The prototype monitor for the abstract resource CR. Only impor-
tant fields and methods are presented here.

invariant count ≤ limit of class MonitorCR should not be
violated. The method resourceAcquire is responsible to
count resource acquisition and check the class invariant be-
fore the resource is allocated by acquiring methods. If the
limit is about to be violated, it send a request for collecting
leaked resources. The method resourceRelease simply
subtracts from count the amount of resource released by re-
leasing methods. The method adjust changes the trigger of
next resource collection according to previous resource col-
lection results. This adjustment is necessary for multi-level
limits and serves to avoid too frequent collections. The re-
source collector begins to work when the program is close
to resource exhaustion. We choose the threshold as 90% of
the resource limit. If none of leaked resources is reclaimed
in one collection, the trigger of next resource collection is
adjusted to the limit itself. If the resource has more than
one limit, the trigger is moved from the smaller one to the
bigger one in order if necessary. A generated monitor is a
singleton class. Only its one instance is created to monitor
all instances of all abstract resources wrapping correspond-
ing concrete resource. So, accesses to this instance should
be synchronized among different threads. Rescos single-
ton monitors are one important reason for its low runtime
overhead. We require that monitors do not use abstract re-
sources that monitored by other monitors to avoid possible
dead locks.

The resource collection configuration is provided
for common system resources, such as file descriptors
and database connections. As limits of these resources
are system-specific and/or application-specific, our tool
searches the system and application configurations for these
limits. Some application-specific resources can be defined



32
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

Fig. 4 Algorithm for resource management code instrumentation.

and provided through a configuration file. Specifications of
default system resources can also be modified through this
configuration file.

3.2 Instrumentation

The instrumentation process is to instrument generated re-
source monitors into resource management code that resides
in the application or system libraries. This process includes
two steps for each concrete resource CR ∈ SCR: (1) Identify
all abstract resources SAR that wrap CR; (2) Instrument the
monitor MonitorCR into all AR ∈ SAR. The instrumentation
algorithm is presented in Fig. 4. The resourceAcquire
method is inserted at the beginning of an acquiring method
to check the limit and request resource collections in ad-
vance if necessary. The resourceRelease method is in-
serted at the end of a releasing method to ensure that we
do not falsely count resource de-allocation in exceptional
situations that may occur in the releasing method and lead
to failed resource cleanup. It is common that one abstract
resource wraps another abstract resource and that one ac-
quiring method acquires resources by invoking another re-
source acquiring method. Resco requires that redundant ac-
quiring methods (methods that acquire resources by invok-
ing other acquiring methods) are omitted from the resource
collection configuration and that the abstract resources that
should be monitored are distinguished from the abstract re-
sources that are just wrappers of them (e.g. using the hier-
archy attribute in Fig. 1). This guarantees that resource con-
sumption can be correctly counted by monitors. If va (vr) is
not statically decidable, some method call that dynamically
gets this value should be passed into resourceAcquire
(resourceRelease) as the parameter. The source code of
the target application and system libraries is not necessarily
needed, and this is implementation-specific.

3.3 Resource Collector

The third component of Resco is the resource collector
to which monitors send requests for collecting leaked re-
sources during runtime. The request carries as a parameter
the concrete resource CR whose limit triggers this request.

Fig. 5 Algorithm to compute leaked abstract resources that can be safely
released.

To perform resource collections, the resource collector first
determines leaked instances of abstract resources that wrap
CR. Any analysis that provides object liveness information
can be integrated into our resource collector. We choose
to identify leaked resources as unreachable ones here like
most other approaches to facilitate users and for reliable im-
plementation. A full-heap tracing from root objects is per-
formed, and we get a set S uar that includes all unreachable
instances of abstract resources wrapping CR and a set S rr of
reachable instances of abstract resources wrapping CR and
reachable instances of CR itself. Then we perform a second
full-heap tracing beginning from objects in S uar, and get a
subset S s of S uar that can be safely released. If the pro-
gram’s runtime system has a garbage collector that includes
finalization, we should incorporate unreachable objects with
the finalize method identified during the first tracing into
roots for the second tracing. The algorithm to compute S s

is presented in Fig. 5. The array reach is used to determine
whether objects can be reached in the second tracing and
the array ref is used to indicate whether objects reference a
reachable resource instance in S rr. The procedure DFS is a
classic Depth-First Search algorithm to perform the traver-
sal of directed graphs. We adapt it to compute reach and
ref. Please note the complexity of this algorithm keeps un-
changed before and after the adaptation. There are two rea-
sons that guarantee the safety of releasing resources in S s:
(1) Objects in S s are not depended on by any object with
actions (e.g. close or finalize) to perform in future; and
(2) Objects in S s do not reference any reachable instances
of CR or wrappers of CR. We assume that corresponding
releasing methods only release acquired CR and do nothing
else. So, invoking these releasing methods will not cause
any unexpected side effects. Directly releasing resources



DAI et al.: RESCO: AUTOMATIC COLLECTION OF LEAKED RESOURCES
33

in S uar is not safe. As the first example, consider that if
you build a BufferedWriter based on a FileWriter, the
FileWriter should not be closed first. Otherwise, you
cannot successfully close the BufferedWriter because its
close method first flushes the buffer, which requires that
the wrapped FileWriter should be open. The first reason
of the safety of Resco guarantees that the BufferedWriter
instead of the FileWriter wil be released. As a second ex-
ample, consider that two abstract resources wrap the same
concrete resource and one of them is reachable but the other
is unreachable. If we close the unreachable abstract re-
source, the wrapped concrete resource will be closed. Then
future operations of the reachable abstract resource may fail.
The second reason of the safety of Resco guarantees that the
unreachable abstract resource will not be closed.

All leaked resource instances in S s are reclaimed by
invoking corresponding releasing methods. To avoid dead
locks, a separate thread is used to perform these invocations.
To timely release leaked resources, this thread is given the
privilege to run immediately after the second tracing. All
application threads are blocked until this thread terminates
or it is blocked by some locks. There is a possibility that
some or even all of leaked resources cannot be released im-
mediately and their releases are delayed to some later time
due to locks. However, it is worthy to have a try.

To perform collections, appropriate releasing methods
should be called dynamically. This is not easy in general
considering for example how to decide at runtime the meth-
ods’ receiver and its parameters’ values. We make the fol-
lowing three assumptions to simplify this problem: (1) Re-
leasing methods are public interfaces of corresponding ab-
stract resources; (2) There is only one releasing method
for each concrete resource wrapped by the same abstract
resource; and (3) Releasing methods have no parameters.
These assumptions hold for most non-memory system re-
sources in Java and we believe that these are good rules that
resource designs should obey. For example, the interface
Closeable since Java 1.5 is implemented by all resources
in the java.io package and some other resources. It in-
cludes only one non-parameter method close that releases
resources the object is holding. Socket, ServerSocket
and Connection also have a similar releasing method
close. All these resources satisfy the above three assump-
tions. The newly introduced interface AutoClosable [28]
since Java 1.7 also satisfies these assumptions. To guarantee
that releasing an already released resource causes no prob-
lem, we require that an abstract resource instance can be re-
peatedly released, that is, a releasing method can be safely
called more than once to close the same resource instance.
This requirement is also necessary to make Resco to co-exist
with existing finalization. This is not generally true for all
abstract resources, but we can easily achieve this by instru-
menting the abstract resource AR whose releasing method M
do not meet this requirement. First, add a private field closed
to AR with the initial Boolean value false; Second, add a
statement closed = true at the end of M; Finally, impose the
condition closed == false on the whole body of M by the

if statement. There is one notable point that the method
resourceRelease should not be repeatedly called for one
resource instance when the instrumented releasing method
is called more than once. This is easy to implement by
testing closed before the execution of resourceRelease.
Under above assumptions, releasing resource is simple: the
only releasing method is invoked directly on the unreachable
resource instance to reclaim it.

3.3.1 Discussions

We do not claim that Resco can collect all leaked instances
of the triggering concrete resource. First, S s is a conserva-
tive subset of S uar that may exclude some leaked resources.
However, we consider here the safety as the most impor-
tant because we also expect Resco to cope with performance
degradation due to resource leaks. Second, Resco can not
reclaim resources that have already been collected by the
garbage collector. However, since Resco and the garbage
collector are triggered separately (by non-memory concrete
resource consumption and by memory consumption, respec-
tively), it is not necessary that some garbage collections
have occurred before a resource collection. Even if part of
the leaked resources are garbage collected by some previ-
ous garbage collections, it is better to reclaim the remaining
leaked resources than to do nothing and leave the program
to crash. These reclaimed resources can possibly enable the
program to successfully complete its task. Otherwise, the
program crash is unavoidable. One possible solution to this
problem is to trigger the resource collector of Resco every
time the garbage collection is requested. However, we do
not adopt this approach and keep Resco separate from the
garbage collector to avoid additional overhead on the pro-
cess of garbage collections. As garbage collections are com-
mon and possible frequent depending on the available mem-
ory during the execution of programs written by garbage-
collected languages, the performance of the garbage collec-
tor is critical. When a garbage collection is requested, it
is possible that there are not any leaked resources. Even
if there are some leaked resources, we do not have to re-
claim them now if the consumption of the resource does not
touch its limit. For example, many garbage collections are
performed during the execution of benchmarks of our per-
formance evaluation experiments, but no resource collection
needs to be triggered. Bloch [27] reports that using final-
izers has a severe performance penalty. Binding Resco to
the garbage collector will cause unnecessary and non-trivial
overhead on the process of garbage collections. Despite of
the conservations of Resco, it is practical since it can suc-
cessfully tolerate typical resource leaks during our experi-
ments.

4. Implementation

We have implemented our Resco approach for Java based
on Jikes RVM 3.1.1, a production-level, open-source Java-
in-Java virtual machine. We call this implementation also



34
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

as Resco for simplicity. The resource collector is im-
plemented as a class RC based on the MMTK memory
manager toolkit [12] that provides the memory manage-
ment functionality for Jikes RVM. Resco utilizes the the
Mark-Sweep collector provided in Jikes RVM. However,
RC is separately implemented and is independent of the
underlying garbage collector. So, it can work with any
garbage collectors of Jikes RVM. The full-heap tracing
functionality of MMTK is mainly employed by Resco to
get unreachable resource instances that can be safely re-
leased. To close leaked resources, Java’s reflection (mainly
the class java.lang.Class and classes in the package
java.lang.reflect) is employed. We add a new method
resco to java.lang.System that requests RC to perform
resource collections. Resource monitors call this method
to send resource collection requests to the resource collec-
tor. We implement the instrumentation tool based on Javas-
sist [29] to instrument the Java bytecode. For system re-
sources such as the file descriptor, resource monitors are
statically inserted into Java core classes before the Java Vir-
tual Machine (JVM) starts up because the default JVM secu-
rity policies prevent Java core libraries from being modified
or reloaded once the JVM is running. For other resources,
the instrumentation is performed during load-time by our
specialized classloader. So, source code of the application
and system libraries is not needed.

5. Experimental Results

To evaluate Resco, we collect its performance measurement
from standard benchmarks and apply it to tolerate several
resource leaks.

5.1 Experimental Setup

Resco uses the default production configuration of Jikes
RVM that is the highest performance configuration. We
use the DaCapo benchmarks of version 2006-10-MR2 and
version 9.12-bach [13], and SPECjvm98 [14]. We run each
benchmark program with a single medium heap size fixed
at two times the minimum in which it is possible for it to
execute. Each benchmark runs ten times and the geometric
mean of these results is presented as the final result. We run
DaCapo benchmarks with their default workloads, and run
SPECjvm98 benchmarks with the large input size (-s100).
All experiments run on a machine of a 3.0 GHz × 4 In-
tel Core i5-2320 CPU and 4 GB of RAM, running Linux
2.6.38.6.

We used the same resource collection configuration for
all experiments in this paper. Two common concrete re-
sources and corresponding abstract resources are consid-
ered: (1) the file descriptor with its per-process limit as
1024 (this is the default value on our experimental machine).
Corresponding abstract resources include file I/O streams
in the java.io package such as FileInputStream and
FileOutputStream, and sockets in the java.net pack-
age; and (2) the database connection of JDBC with its limit

being application-specific. These connections themselves
are their own abstract resources.

5.2 Performance

The performance of our resource monitor generation is quite
reasonable as monitors for these two concrete resources are
generated in less than 0.1 second. Classes of concerned ab-
stract resources in the Java core Library rt.jar are instru-
mented with the trivial cost of less than 50 milliseconds.

Figure 6 presents the runtime overhead of Resco that
includes overhead of the load-time instrumentation, the re-
source monitoring and resource collections. The Jikes RVM
configuration denotes running the benchmark on the unmod-
ified version of Jikes RVM 3.1.1. The Resco configuration
denotes running the benchmark on our Resco tool. Each
bar is normalized to its corresponding Jikes RVM config-
uration. The error bars show the range of the ten runs for
each benchmark. As a large part of benchmarks within Da-
Capo 9.12-bach cant run on unmodified Jikes RVM 3.1.1,
we only present here performance results of these ones that
can run. To avoid benchmark name collisions between Da-
Capo 2006-MR2 and DaCapo 9.12-bach, we precede names
of benchmarks in DaCapo 9.12-bach with .

The graph shows that the runtime overhead of Resco
is very low. The overall overhead increases by 1.32% as the
geometric mean and in the worst case of mtrt the increase is
3.95%. During this empirical study, we find that no resource
collection has been triggered. Benchmarks used here have
been intensively examined and used by many researchers,
so it is reasonable that they have few resource leak bugs.
Moreover, even if there is a resource leak activated during
the benchmark run, accumulated leaked resources may be
not enough to trigger the resource collection. The runtime
overhead of the resource collection phase of Resco will be
further evaluated in the next section against known resource
leak bugs.

5.3 Collecting Leaked Resources

To evaluate the capability of Resco to collect leaked re-
sources, we apply Resco to four benchmark programs with
known resource leak bugs. Table 1 gives overviews of
these four resource leaks that we could reproduce: one from
Ant [30], one from BIRT [31] one from Derby [32] and the
last is a micro-benchmark leak from the Open Web Appli-
cation Security Project [33]. To investigate the overhead of
the phase of resource collection, we compute the ratio of the
time for resource collections to the time for the whole run.
The resource collection overhead is presented in the last col-
umn of Table 1.

These four experiments run with the median 256 M
memory under original Jikes RVM and Resco respectively.
Under Jikes RVM, the first three programs quickly crash
due to resource exhaustion, while Resco collects leaked re-
sources before resources are exhausted, and enables them
to continuously run to successfully complete tasks. Resco



DAI et al.: RESCO: AUTOMATIC COLLECTION OF LEAKED RESOURCES
35

Fig. 6 Runtime overhead of Resco. The overall overhead increases by 1.32% as the geometric mean
and in the worst case of mtrt the increase is 3.95%.

Table 1 Results of applying Resco on four resource leaks.

Benchmark Programs LOC Leak Results Overhead
Ant 32 K File descriptor leak All leaked file descriptors are collected 3.58%
BIRT + Tomcat +MySQL 1.7 M BIRT’s connection leak All leaked connections are collected 0.72%
File processing 75 File descriptor leak All leaked file descriptors are collected 2.21%
Derby 426 K Connection leak None of leaked connections is collected 4.02%

cannot reclaim Derby’s leaked connections because Derby
still keeps references to these open connections, but this ex-
periment reveals the fact that Resco exhibits low resource
collecting overhead even for these leaks that it cannot help
with.

Ant leak. Ant is a famous Java project build tool. A
file descriptor leak bug #4008 resides in ant v1.4. As no re-
producing test case is provided in the bug report, we write
one by ourselves. We define two Ant copy tasks: the first
one copies all 515 files within the src directory of Ant v1.4
source distribution to another place; the second one copies
ten copies of above files to another place, coping with ten
times as much as the workload of the first one. To repro-
duce this bug, we employ one pattern file for each file to be
copied.

We run these two tasks with Jikes RVM and Resco re-
spectively. Both tools successfully complete the first task.
For task two, Jikes RVM crashes with an error saying “Too
many open files”, and none of these files is copied. Resco
successfully copies all these 5150 files. During this task, re-
source collections are triggered 5 times, and in total 4585
open file descriptors are reclaimed. This experiment has the
resource collection overhead of 3.58%.

BIRT leak. BIRT is an open source Eclipse-based re-
porting system. We manage to reproduce its one database
connection leak bug #237190. This is a very serious bug
that can soon cause service loss as it is stated in the bug re-
port that “we have consumed all available connections in the
database (170) and crashed Oracle just by running a single

production report every minute”. We setup this experiment
by deploying BIRT v2.3.1 into Tomcat v5.5.26 [34] with
MySQL v5.0.67 [35] as the database system. We remain all
default configurations of Tomcat and default 100 as the al-
lowed maximum number of concurrent sessions of MySQL.
We reproduce this bug with the test case provided in the
bug report that selects a column from a table in MySQL and
prints a string “Hello world.”. We run this report using Fire-
fox v11.0 [36] at the local machine. We develop a plugin for
Firefox that repeatedly opens the same web page (for this
experiment, it repeatedly run the test report) and logs the
page-loading time of each open. We find that each run of
the test report leaks a connection.

We repeatedly run the test report under Jikes RVM un-
til we get the exception message within the 101st run “. . .
rejected establishment of connection . . . Too many connec-
tions” and no database selection results are displayed. Next,
we repeatedly run the test report under Resco and every run
successfully presents the right report contents. We present
the page-loading time of each of the first 1000 iterations of
Resco and that of the first 100 iterations of Jikes RVM here
in Fig. 7. Resource collections are triggered 11 times and
in total 979 leaked connections are collected during Resco’s
first 1000 iterations. The performance of Resco remains sta-
ble in the long term. There are obvious increases in time
during iterations that resource collections are triggered. The
resource collection overhead of this experiment is 0.72%.
For the 11 iterations within which resource collections oc-
cur, the geometric mean of resource collecting overhead of



36
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

Fig. 7 Page-loading time of the BIRT leak experiment with logarithmic x-axis.

Fig. 8 The source code of the micro-benchmark from the OWASP.

each iteration is 28.80%.
File processing leak. This leak is from the Open Web

Application Security Project (OWASP) as an example of the
Unreleased Resource vulnerability. This example (Fig. 8) is
a simple Java method that does not close the file descriptor
it opens as shown below. We write a class of in total several
ten lines of Java code to run this example. The test task is
as follows: one empty file is created and written into with a
short string, then this example method is called with this file
as input and the string is read from this input file and printed
onto the standard output terminal. Clearly, one run of this
task will leak an open file descriptor.

Running under Jikes RVM, the program quickly
crashes with an exception saying “Too many open files”
after 1017 iterations. In contrast, Resco can successfully
prevent it from crashing and keep it continuously running
10000 iterations before we force it to exit. During these
10000 iterations, resource collections are triggered 10 times,
and in total 9170 leaked open file descriptors are collected.
The overhead of resource collections during these 10000 it-
erations is 2.21%.

Derby leak. Derby is an open source relational
database implemented entirely in Java. We succeed to re-
produce one database connection leak bug #3596 in Derby
v10.4.1.3. This bug is reproduced by the attached test case
that iteratively requests a connection and then executes a

Fig. 9 The number of iterations completed within 30 seconds for differ-
ent limits of connections of Derby leak experiment.

simple query within 30 seconds. The number of entries in
the transaction table is printed after every 2500 iterations.
We add several lines to print the exact number of open con-
nections within derby just before the test exits. This test case
is correct with respect to resource management. We find that
each iteration leaks one connection. But Derby still main-
tains references to these leaked connections. Just like most
other database systems, Derby have extra references to con-
nections for no-functional purpose, such as monitoring and
clean-up for abnormal situations. As these leaked connec-
tions are not unreachable, Resco cannot reclaim them.

As the test case is a Java program that directly interacts
with Derby, we cannot find how to set the connection pool
size or the maximum number of concurrent connections. So,
we select three different limits for Resco to measure per-
formance, and they are 100, 5000, and 50000. For each
limit, resource collections are triggered two times and none
of leaked connections is reclaimed. Figure 9 presents the
performance of Resco compared with Jikes RVM in terms of
iterations completed within 30 seconds for these three lim-
its. The error bars show the range of the ten runs for each
limit. It can be seen that when the limit is normal such as
100 or 5000, Resco’s performance overhead is trivial; when



DAI et al.: RESCO: AUTOMATIC COLLECTION OF LEAKED RESOURCES
37

the limit is extremely large such as 50000, the overhead is
obvious since the liveness analysis of the resource collec-
tor is very costly now. We also measure the time cost of
resource collections: for the limit of 100, the overhead of
resource collections is 0.18%; for the limit of 5000, the over-
head is 0.53%; for the limit of 50000, the overhead is 4.02%.
So, even for the extremely large limit, Resco’s resoruce col-
lection overhead is acceptably low. We conclude from this
experiment that the resource collection overhead of Resco is
low even for these leaks that it cannot help with.

6. Related Work

Current approaches to resource leaks either strive to detect
and fix these leaks or provide new language features to sim-
plify the resource management. There are few researchers
that try to tolerate non-memory resource leaks. We present
a new automatic resource collection approach and a tool that
safely collects leaked non-memory resources to enforce re-
source limits.

6.1 Static Resource Leak Analysis

There are several tools and techniques that statically detect
resources leaks [2], [3], [6] and insert releasing method calls
at appropriate code points [6]. Most of these approaches
adopt the reachability to conservatively approximate re-
sources’ liveness as Resco does. The CLOSURE [6] uses
the interest reachability to better approximate resources’
liveness, but it requires programmer-provided annotations.

Torlak et al. [2] present a tool Tracker that finds re-
source leaks in Java programs through an inter-procedural
static analysis. Tracker takes resource-releasing specifica-
tions as input and symbolically tracks every resource along
paths in the program’s CFG. If a resource is not released
and becomes unreachable, a resource leak is found. Weimer
et al. [3] presents a path-sensitive and intra-procedural static
data-flow analysis to find a kind of resource leak defects
caused by the implicit control flow resulting from a checked
language-level exception. The analysis considers each
method body in turn by symbolically executing all its paths.
If a resource is not in the closed state at the end of a path, a
resource leak is found. This analysis may report false leaks
or miss real leaks. The CLOSER [6] automatically inserts
resource release calls into programs based on a modular,
flow-sensitive analysis to determine the liveness of system
resources at each program point. The interest reachability is
proposed as an alternative to common reachability to better
approximate resource liveness. As the notion of interest is
application-specific and depends on program semantics, it is
required that programmers should provide relevant annota-
tions.

6.2 Dynamic Resource Leak Detection

Resco’s monitors are singleton classes, which is a notable
feature that differs from other dynamic leak detection tech-

niques such as QVM [8] and PQL [7]. These approaches
employ one monitor instance for each resource object. This
can lead to enormous monitor instances in practice, which
causes performance issues and is a very challenging prob-
lem in runtime verification [25]. Resco’s singleton moni-
tors are one important reason for its low runtime overhead.
There are several other techniques that explore the stale-
ness of objects to aggressively collect leaked memory [20],
[26]. However, as cleanup of non-memory resources is not
reversible, the object staleness cannot be easily applied to
non-memory resource collections.

The QVM [8] is based on a Java Virtual Machine that
detects and helps diagnose defects as violations of speci-
fied correctness properties. The garbage collector is instru-
mented to provide object death events when an object is
decided to be unreachable during garbage collections. To
check resource-releasing specifications, every resource ob-
ject is instrumented and its states are tracked separately. If
a resource object dies before it is released, a resource leak
is detected. The PQL [7] is a pattern language that allows
programmers to express common program error patterns. It
is shown that PQL queries can effectively find mismatched
method pairs which typically include resource leak bugs.
PQL queries are first translated to state machines against
which each resource instance are tracked. Although it is
claimed that programmer-specified recovery actions can be
performed as response to runtime query matches, releasing
leaked resources are not discussed in this paper. As mis-
matched method pairs are liveness queries that depend on
the absence of the second action, their matches are found
at the end of an execution. Performing resource releasing
then is too late and makes no sense. Other approaches based
on aspects (e.g., [16], [17]) cannot precisely capture object
death due to the lack of direct support from garbage collec-
tor. So, they are not suitable to detect resource leaks.

6.3 Language Features

Most garbage collectors allow a finalizemethod to be as-
sociated with an object. The finalize method is intended
to perform some cleanup work that will be executed before
its associating object is garbage collected. As the execution
of finalize methods may be arbitrarily delayed in inde-
terminate way [9], it is generally agreed that the Finaliza-
tion mechanism is not competent to reclaim finite system re-
source. Besides this delayed execution, another main draw-
back of Java’s finalization is that ordering of invocations of
different finalize methods cannot be guaranteed. As depen-
dencies between resources are common, Java’s finalization
is not safe. In contrast, Resco performs resource collections
in a safe manner. Resco is conservative because directly
released resource instances are a subset of all unreachable
ones. However, as it is a common design that releasing
methods of one abstract resource call those of wrapped re-
sources [10], Resco works well in practice. Modula-3 style
finalization can guarantee ordering of finalize methods,
however, the finalization need be performed in consecu-



38
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

tive multi-cycles [9]. Resco choose a more conservative ap-
proach here to achieve low overhead while still maintain
practicability.

Many languages provide the mechanism of automatic
releases of scoped resources that when a resource is out
of its lexical scope, its releasing method is automati-
cally invoked. Examples include destructors of C ++ and
the using statement of C# [18]. Java 7 introduces the
try-with-resource statement called Automatic Resource
Management (ARM). Resources declared in this statement
will be automatically closed once the program runs out of
the try block. The declared resource should implement the
java.lang.AutoCloseable interface. When resources
are used in local scope, these mechanisms work well. How-
ever, there are situations in which the heap holds references
to resources that are not confined to a convenient lexical
scope.

To cope with resource leaks, Weimer et al. [3] propose
a language extension called compensation stack that allows
annotating resource acquiring methods with compensations
such as resource releasing method invocations. These com-
pensations are put in stacks that guarantee included com-
pensations to execute in the last-in-first-out order. Compen-
sations can be executed by the programmer, but they are of-
ten executed automatically when a heap-allocated compen-
sation stack is finalized or when a stack-allocated compensa-
tion stack goes out of scope. The Furm [5] groups resources
into a resource tree on which a single release call can close
all these resources in deterministic order. The resource tree
can be closed by the programmer, or when a thread dies,
resource trees used by this thread will be closed automati-
cally. One requirement of Furm is that each type of resource
must be wrapped in a corresponding new class and inter-
faces of resource acquiring methods have to be changed.
The type system of the Vault programming language [19]
allows function post-conditions to be specified to guarantee
that annotated functions cannot allocate and leak resources.

7. Conclusion and Future Work

This paper presents the Resco approach that reclaims leaked
non-memory resources in response to abnormal resource
consumption. Resco is a resource leak tolerance approach
that complements existing techniques such as leak detec-
tion and fixing. For some concrete resource, there is a limit
throughout the system. Our monitors now can only moni-
tor application-level limits, which is adequate for our per-
application resource collections. To enforce system-level
limits is a future research direction. In addition, we plan to
conduct further experiments on resource leak bugs to evalu-
ate Resco’s ability to collect leaked resources, especially on
these leaks that cause performance degradation.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China under Grant No.90818024 and

60803042, the National High Technology Research and De-
velopment Program of China (863 program) under Grant
No. 2011AA010106 and 2012AA011201, and Program for
New Century Excellent Talents in University.

References

[1] R.K. Dybvig, C. Bruggeman, and D. Eby, “Guardians in a
generation-based garbage collector,” Proc. ACM SIGPLAN 1993
conference on Programming language design and implementation,
pp.207–216, Albuquerque, New Mexico, United States, 1993.

[2] E. Torlak and S. Chandra, “Effective interprocedural resource leak
detection,” Proc. 32nd ACM/IEEE International Conference on Soft-
ware Engineering, pp.535–544, Cape Town, South Africa, 2010.

[3] W. Weimer and G.C. Necula, “Exceptional situations and program
reliability,” ACM Trans. Program. Lang. Syst, vol.30, no.2, pp.1–51,
2008.

[4] H. Fujio, H. Okamura, and T. Dohi, “Fine-grained shock models to
rejuvenate software systems,” IEICE Trans. Inf. & Syst., vol.E86-D,
no.10, pp.2165–2171, Oct. 2003.

[5] D.A. Park and S.V. Rice, “A framework for unified resource man-
agement in Java,” Proc. 4th International Symposium on Principles
and Practice of Programming in Java, pp.113–122, Mannheim, Ger-
many, 2006.

[6] I. Dillig, T. Dillig, E. Yahav, and S. Chandra, “The CLOSER:
automating resource management in java,” Proc. 7th International
Symposium on Memory Management, pp.1–10, Tucson, AZ, USA,
2008.

[7] M. Martin, B. Livshits, and M.S. Lam, “Finding application errors
and security flaws using PQL: a program query language,” Proc.
20th Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, pp.365–383, San
Diego, CA, USA, 2005.

[8] M. Arnold, M. Vechev, and E. Yahav, “QVM: An efficient runtime
for detecting defects in deployed systems,” ACM Trans. Softw. Eng.
Methodol, vol.21, no.1, pp.1–35, 2011.

[9] H.J. Boehm, “Destructors, finalizers, and synchronization,” Proc.
30th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp.262–272, New Orleans, Louisiana, USA,
2003.

[10] Q. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei, “Iterative mining
of resource-releasing specifications,” Proc. 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp.233–
242, Oread, Lawrence, Kan., 2011.

[11] B. Alpern, C.R. Attanasio, J.J. Barton, M.G. Burke, P. Cheng,
J.-D. Choi, A. Cocchi, S.J. Fink, D. Grove, M. Hind, S.F. Hummel,
D. Lieber, V. Litvinov, M.F. Mergen, T. Ngo, J.R. Russell, V.
Sarkar, M.J. Serrano, J.C. Shepherd, S.E. Smith, V.C. Sreedhar, H.
Srinivasan, and J. Whaley, “The Jalapeño Virtual Machine,” IBM
Systems Journal, vol.39, no.1, pp.211–238, 2000.

[12] S.M. Blackburn, P. Cheng, and K.S. McKinley, “Oil and Water?
High Performance Garbage Collection in Java with MMTk,” Proc.
26th International Conference on Software Engineering, pp.137–
146, Edinburgh, United Kingdom, 2004.

[13] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J.B. Moss, A.
Phansalkar, D. Stefanović, T. VanDrunen, D.V. Dincklage, and B.
Wiedermann, “The DaCapo benchmarks: Java benchmarking de-
velopment and analysis,” Proc. 21st Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages, and
Applications, pp.169–190, Portland, Oregon, USA, 2006.

[14] Standard Performance Evaluation Corporation, “SPECjvm98 Docu-
mentation,” release 1.03 edition, 1999.

[15] L. Bauer, A.W. Appel, and E.W. Felten, “Mechanisms for secure
modular programming in Java,” Software – Practice and Experience,



DAI et al.: RESCO: AUTOMATIC COLLECTION OF LEAKED RESOURCES
39

vol.33, no.5, pp.461–480, 2003.
[16] C. Allan, P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins,

O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble,
“Adding trace matching with free variables to AspectJ,” Proc. 20th
Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pp.345–364, San
Diego, CA, USA, 2005.

[17] F. Chen and G. Rosu, “Mop: An efficient and generic runtime ver-
ification framework,” Proc. 22nd Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems and Applications,
pp.569–588, Montreal, Quebec, Canad, 2007.

[18] A. Hejlsberg, P. Golde, and S. Wiltamuth, C# Language Specifica-
tion, Addison Wesley, Oct. 2003.

[19] R. DeLine and M. Fähndrich, “Enforcing high-level protocols in
low-level software,” Proc. ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, pp.59–69,
Snowbird, Utah, United States, 2001.

[20] M.D. Bond and K.S. McKinley, “Tolerating memory leaks,” Proc.
23rd ACM SIGPLAN Conference on Object-Oriented Programming
Systems Languages and Applications, pp.109–126, Nashville, TN,
USA, 2008.

[21] M.D. Bond and K.S. McKinley, “Leak pruning,” Proc. 14th Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp.277–288, Washington, DC, USA,
2009.

[22] S.Z. Guyer, K.S. McKinley, and D. Frampton, “Free-Me: A static
analysis for automatic individual object reclamation,” Proc. of the
2006 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pp.364–375, Ottawa, Ontario, Canada,
2006.

[23] L. Moreau and C. Queinnec, “Resource aware programming,” ACM
Trans. Program. Lang. Syst, vol.27, no.3 pp.441–476, 2005.

[24] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring Resource Spec-
ifications from Natural Language API Documentation,” Proc. 2009
IEEE/ACM International Conference on Automated Software Engi-
neering, pp.307–318, Auckland, New Zealand, 2009.

[25] D. Jin, P. O’Neil Meredith, D. Griffith, and G. Rosu, “Garbage col-
lection for monitoring parametric properties,” Proc. 32nd ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation, pp.415–424, San Jose, California, USA, 2011.

[26] Y. Tang, Y. Tang, Q. Gao, and F. Qin, “LeakSurvivor: Towards
safely tolerating memory leaks for garbage-collected languages,”
USENIX 2008 Annual Technical Conference on Annual Technical
Conference, pp.307–320, Boston, MA, 2008.

[27] Joshua Bloch, Effective Java, 2rd ed., Pearson Education Inc, 2008.
[28] Java 7, http://jdk7.java.net/, accessed Feb. 12. 2012.
[29] Javassist, http://www.jboss.org/javassist, accessed Feb. 1. 2012.
[30] Apache Ant, http://ant.apache.org/, accessed Feb. 15. 2012.
[31] BIRT, http://www.eclipse.org/birt/phoenix/, accessed Feb. 20. 2012.
[32] Derby, http://db.apache.org/derby/, accessed Feb. 25. 2012.
[33] The Open Web Application Security Project,

https://www.owasp.org/index.php/Main Page, accessed March 3.
2012.

[34] Apache Tomcat, http://tomcat.apache.org/, accessed March 10.
2012.

[35] MySQL, http://www.mysql.com/, accessed March 16. 2012.
[36] Firefox, http://www.getfirefox.net/, accessed March 16. 2012.
[37] Oracle Java SDK and JRE, http://www.oracle.com/technetwork/java/

archive-139210.html. accessed Jan. 10. 2012.

Ziying Dai is currently a Ph.D. candidate
in computer science and technology at School
of Computer, National University of Defense
Technology, 410073, Changsha, China. His re-
search interests include fault tolerance and soft-
ware debugging.

Xiaoguang Mao is currently a full professor
at School of Computer, National University of
Defense Technology, 410073, Changsha, China.
He received his Ph.D. degree in computer sci-
ence from National University of Defense Tech-
nology in 1997. His research interests include
high confidence software, software development
methodology, software assurance, software ser-
vice engineering, etc.

Yan Lei is currently a Ph.D. candidate
in computer science and technology at School
of Computer, National University of Defense
Technology, 410073, Changsha, China. His re-
search interests include software debugging.

Xiaomin Wan received his B.S. degree
in Information and Computing Science from
Central South University, Changsha, China in
2004, and his M.S. degree in Computer Science
from National University of Defense Technol-
ogy, China in 2007. His research interests in-
clude software behavior analysis, program com-
prehension and software trustworthiness.

Kerong Ben is currently a full pro-
fessor at Department of Computer Engineer-
ing, Naval University of Engineering, 430033,
Wuhan, China. He received his Ph.D. degree in
computer science and technology from National
University of Defense Technology in 1994. His
research interests include software testing and
software maintenance.


