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Nonlinear Metric Learning with Deep Independent Subspace
Analysis Network for Face Verification

Xinyuan CAI†a), Chunheng WANG†, Baihua XIAO†, Nonmembers, and Yunxue SHAO†, Student Member

SUMMARY Face verification is the task of determining whether two
given face images represent the same person or not. It is a very challeng-
ing task, as the face images, captured in the uncontrolled environments,
may have large variations in illumination, expression, pose, background,
etc. The crucial problem is how to compute the similarity of two face im-
ages. Metric learning has provided a viable solution to this problem. Until
now, many metric learning algorithms have been proposed, but they are
usually limited to learning a linear transformation. In this paper, we pro-
pose a nonlinear metric learning method, which learns an explicit mapping
from the original space to an optimal subspace using deep Independent
Subspace Analysis (ISA) network. Compared to the linear or kernel based
metric learning methods, the proposed deep ISA network is a deep and lo-
cal learning architecture, and therefore exhibits more powerful ability to
learn the nature of highly variable dataset. We evaluate our method on the
Labeled Faces in the Wild dataset, and results show superior performance
over some state-of-the-art methods.
key words: metric learning, independent subspace analysis, deep learning
architecture, face verification

1. Introduction

Face recognition, as one of the major biometric technolo-
gies, has attracted much attention in both industrial and re-
search communities. It has become increasingly important
owing to the availability of huge amounts of face images on
the web, and increasing demands for higher security. There
has been a lot of progress made in this area, and many
face recognition systems have been developed. The oper-
ation of face recognition systems can be divided into two
modes: identification and verification [1]. In the identifica-
tion mode, the system compares the given probe image with
all the gallery images and finds its closest match. The as-
sumption is that the probe image and its closest image in
the gallery belong to the same person. A more complicated
version of this problem would be to include the possibility
that the person of the probe image may not be present in
the gallery. So the system has to decide whether the person
with the highest rank is a correct match or not. In the veri-
fication mode, someone claims that he or she is a particular
person. The system verifies this assertion by matching the
probe against the gallery entry corresponding to the claimed
identity. The system accepts the claim if the matching score
lies above a predetermined operating threshold; otherwise
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the claim is rejected. More generally, face verification refers
to deciding whether two images depict the same person or
not.

In this paper, we focus on the face verification prob-
lem. In the constrained situations, where lighting, pose, fa-
cial wear and expressions can be controlled, automated face
recognition can achieve satisfactory performance. While in
the unconstrained environment, the variation caused by the
changes in illumination, pose or others, could be larger than
that caused by the identity changes. Therefore, the per-
formance degrades significantly. Metric learning has pro-
vided a viable solution for the unconstrained face verifica-
tion problem by comparing the image pairs based on the
learned metric, which could suppress the variations in the
unconstrained environment [2]. Most metric learning meth-
ods attempt to learn an appropriate similarity measure from
the labeled side information, which are often available in
the form of pairwise constraints, i.e. pairs of similar or dis-
similar data points [3]. A common theme in metric learn-
ing is to learn a distance metric such that the distance be-
tween similar examples should be relatively smaller than
that between dissimilar examples. Although the distance
metric can be a general function, the most prevalent one
is the Mahalanobis metric. It is equivalent to first apply-
ing a linear transformation, then computing Euclidean dis-
tance in the new subspace. Nevertheless, in many situa-
tions, a linear transformation is not powerful enough to cap-
ture the underlying data manifold and often fails to give de-
sired performance in high dimensional space. Therefore,
we need to resort to more powerful non-linear transforma-
tions. The kernel-based approach can achieve this goal.
They implicitly map the original space to a high dimensional
space by kernel-tricks. However, they have to compute the
kernel similarity between each testing sample with train-
ing samples. Therefore, they behave almost like template-
based approaches, and often have difficulty in handling large
datasets [4]. Moreover, if the chosen kernel cannot well re-
flect the true class-related structure of data, the performance
will be unsatisfactory.

We propose an explicit nonlinear metric learning
method by using deep Independent Subspace Analysis
(ISA) network. ISA [5] is a variant of Independent Com-
ponent Analysis (ICA), and it can be described as a two-
layered network (as shown in Fig. 1 (b)). An advantage of
ISA is that it can learn receptive fields similar to the V1 area
of visual cortex when applied to static images [6]. However,
a disadvantage of ISA is that it can be very slow to train
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Fig. 1 (a) the architecture of the proposed Deep Independent Subspace
Analysis networks; (b) the neural network architecture of an ISA network.

when the dimension of the input data is large. Therefore,
we employ the ISA as a local network, and stack the lo-
cal networks in a deep architecture for the high-resolution
images (as shown in Fig. 1 (a)). The deep ISA networks
can be regarded as an explicit nonlinear mapping function,
which transforms the features from the original space to an-
other subspace. The original ISA algorithm is unsupervised,
so the learned features may not be suitable for some task-
related objectives. In order to get discriminative features, we
combine the side information constraints of metric learning
with ISA, and formulate it as an appropriate optimization
problem. Furthermore, we employ the greedy layer-wise
pre-training and fine-tuning schemes to get the optimal so-
lution. The proposed method is evaluated on the Labeled
Faces in the Wild (LFW) [8] benchmark. And the result
demonstrates superior performance over some state-of-the-
art methods.

Some contents of this paper have been reported in our
conference paper [9]. However, this paper extends it in sev-
eral ways: (i) more technical details are given; (ii) more
experiments are done. The remainder of this paper is orga-
nized as follows. In Sect. 2, we review some related works
of distance metric learning and deep learning. In Sect. 3,
we describe the details of the proposed Nonlinear Metric
Learning with Deep Independent Subspace Analysis net-
work (NLML DISA). Experimental results and analysis are
provided in Sect. 4. Finally, we summarized the contribu-
tions in Sect. 5.

2. Related Works

2.1 Distance Metric Learning

Distance metrics are fundamental concepts in machine
learning, and are crucial in many real-world applications
(e.g. [2], [10]). There has been considerable research on
metric learning over the past few years [3]. The literature
in metric learning can be split into two main categories:
manifold learning and supervised or semi-supervised met-
ric learning. Manifold learning is a kind of unsupervised
metric learning. Its key idea is to learn an underlying

low-dimensional manifold preserving the distance or struc-
ture between observed data points (such as ISOMAP [11],
LLE [12]). The supervised or semi supervised approaches
try to learn metrics by keeping points of the same class close
while separating points from different classes. This paper
relates to the latter.

One of the representative works of supervised metric
learning is [13], which formulates the distance metric learn-
ing under side information constraints as a constrained con-
vex programming problem. Let C = {x(1), x(2), . . . , x(T)} be
a collection of data points, where T is the number of sam-
ples and each x(i) ∈ Rn is a data vector. The set of equivalent
constraints is denoted by:

S = {(x(i), x(j)) | x(i) and x(j) belong to the same class}
and the set of inequivalent constraints is denoted by

D = {(x(i), x(j)) | x(i) and x(j) belong to different classes}
Under the distance metric A ∈ Rn×n, the distance between
any two data points x and y can be expressed as:

d2
A(x, y) = ‖x − y‖2A = (x − y)TA(x − y) (1)

Given the constraints in S and D, Xing et al. [13] formulates
the problem of metric learning into the following convex
programming problem:

minA

∑
(x(i),x(j))∈S d2

A

(
x(i), x(j)

)
(2)

s.t A ≥ 0,
∑

(x(i),x(j))∈D d2
A

(
x(i), x(j)

)
≥ 1 (3)

The objective term is to make the distance between similar
pairs as small as possible. The positive semi-definite con-
straint (A ≥ 0) is needed to ensure the nonnegative distance
between any two data points and the triangle inequality. The
third term is to make the distance between dissimilar pairs at
least larger than one. A is symmetric positive semi-definite,
and it can be decomposed as A = WT W. In the learned met-
ric, the distance between any two points can be written as
d2

A(x, y) = (x−y)TA(x−y) = (Wx−Wy)T(Wx−Wy). Thus,
the traditional metric learning is equivalent to learn a lin-
ear transformation matrix W, and then compute Euclidean
distance in the transformed subspace.

Following the above general approach, several meth-
ods are proposed to specifically address k-Nearest Neighbor
classification. They either introduce constraints on absolute
distance between pairs, such as Neighborhood Component
Analysis [14], Maximally Collapsing Component Analy-
sis [15], or constraints on relative distance such as Large
Margin Nearest Neighbor [16] or Large Margin Component
Analysis [17]. In these approaches, the k nearest neighbors
of each point are explicitly selected, and the distance metric
is learned in a way that for each training point, the neigh-
bors from other classes are always farther than the neigh-
bors from the same class up to a margin. However, these
approaches require the class labels of all the training points,
and are thus not adapted to the problems for which only
side-information or pair-wise constraints are available.
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The recently proposed Information Theoretic Metric
Learning (ITML) [18] and Logistic Discriminate Metric
Learning (LDML) [2] are designed to deal with general pair-
wise constraints. Furthermore, ITML considers not only
the pair-wise constraints, but also a prior knowledge on the
learned metric A. This is done by regularizing the ma-
trix A such that it is as close as possible to a known prior
matrix A0. Moreover, the closeness is measured in the
Kullback-Leibleer divergence criterion. LDML uses a ro-
bust probabilistic model to estimate the similarity between
two data points in the learned metric, and applies maximum
log-likelihood to learn the optimal metrics. The number
of parameters increases with the square of the dimension-
ality of the input space, so for the high dimensional input
space, both ITML and LDML must be preceded by a step of
prior dimensionality reduction, which may result in loss of
information.

Most of the above distance metric learning approaches
learn a Mahalanobis matrix, which is equivalent to learn
a linear transformation matrix for the original space. But
the linear transformation has limited power to describe the
underlying data manifold. Kwok et al. [19] shows that the
general framework of distance metric learning can be ex-
tended to non-linear problems using the kernel trick, which
maps the data vectors into a high dimensional space implic-
itly. However, the kernel-based methods need to compute
the kernel similarity between the testing sample and each
training sample. Therefore, they require high computational
cost for testing, especially when there are a large number of
training samples. Our proposed method tries to deal with
the limitation of traditional metric learning methods, and
learn an explicit nonlinear transformation, which could ex-
hibit good generalization properties.

2.2 Deep Learning

Deep multi-layer neural networks have many levels of non-
linearity, which allows them to potentially represent non-
linear and highly varying functions. However, until recently
it was not clear how to train such deep networks, since
gradient-based optimization starting from random initializa-
tion appears to often get stuck in poor solutions. Recently,
Hinton et al. [7] proposed a deep learning architecture called
Deep Belief Network (DBN). DBN is a generative graphical
model consisting of a layer of visible units and multiple lay-
ers of hidden units, where each layer encodes correlations
of the units in the layer below. The training of DBN con-
sists of three phase: pre-training, unrolling, and fine-tuning.
DBN first trains a sequence of Restricted Boltzmann Ma-
chine (RBM), and then unrolls the sequence of RBMs to
form a deep auto-encoder neural network. Finally, in the
fine-tuning phase, the deep auto-encoder neural network is
trained using back propagation algorithm to optimize some
task related objectives. The greedy layer-wise pre-training
serves as a better initialization than random initialization for
supervised training of the whole network.

While DBN has been successful in controlled domains,

scaling them to realistic-sized (e.g. 200 × 200 pixels) im-
ages remains challenging. One way to address this issue is
to subsample the large image to small size, such as [20].
However, sub-sampling may loss much useful information.
Another way is the convolutional learning approach, which
learns feature detectors that are shared among all locations
in an image. They assume that features, which capture use-
ful information in one part of an image, can pick up the same
information elsewhere. Unlike categorizing generic object
images, face verification focuses on a much more restricted
subset of images (i.e., faces), requiring a fine granularity of
discrimination solely between images within this restricted
class. Therefore, in contrast to the convolutional neural net-
work, we divide the image into a number of overlapping
blocks, and use a separate set of weights for each block (see
details in Sect. 3.3). Thus, we are able to train the mod-
els directly on the large size images. Huang et al. [21] take
a similar deep learning approach for face verification. They
develop local convolutional Restricted Boltzmann Machines
(RBMs), an extension of convolutional RBMs, to learn high-
level representations from low-level features, such as pixel
intensity or Local Binary Pattern. Then they apply a metric-
learning approach to learn an appropriate metric for the
high-level representations. While in our approach, we com-
bine the metric learning with the basic ISA network to learn
the optimal connection weights, which can get more suit-
able representations for face verification than [21]. And it is
evaluated in the experimental part.

3. Proposed Framework: NonLinear Metric Learning
with Deep Independent Subspace Analysis Network

Because of the powerful approximate ability of the deep
learning architecture to learn functions or distributions, and
the virtues brought by the deep architecture, deep learning
methods theoretically exhibit powerful learning ability to
discover the nature of the dataset. Deep learning architec-
ture has been successfully employed to enhance the learning
ability of existing algorithms [22].

In this work, we also employ the deep learning ar-
chitecture, and use the ISA network as the basic net-
work. In the following subsections, we will first introduce
the ISA network, then describe our discriminative training
algorithm—NonLinear Metric Learning with ISA networks
(NLML ISA), and finally we stack the pre-trained ISA net-
works for deep metric learning.

3.1 Independent Subspace Analysis

Given the unlabeled data {x(t)}Tt=1, regular Independent Com-
ponent Analysis (ICA) [23] is traditionally defined as the
following optimization problem:

minW

∑T

t=1

∑k

j=1
g(Wjx

(t)) (4)

s.t. WWT = I (5)

where g(x) is a nonlinear convex function, e.g., smooth
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L1 penalty: g(x) = log(cosh(x)). W is the weight matrix
W ∈ Rk×n, k is number of components, and Wj is one row
in W. The orthonormality constraint WWT = I is used to
prevent the bases in W from becoming degenerate. Accord-
ing to [5], ISA is a variant of ICA, and it can be described
as a two-layered network (as shown in Fig. 1 (b)). The ac-
tive functions of the first and second layer are square and
square-root respectively. The connection weight W of the
first layer is learned, and the weight V of the second layer
is fixed, which represents the subspace structure of the neu-
rons in the first layer. Specifically, each of the second layer
hidden units pools over a small neighborhood of adjacent
units in the first layer. The first and second layer units are
called simple and pooling units respectively.

More precisely, for an input pattern x, the output of
each second layer unit is:

fi(x,W,V) =

√∑k

j=1
Vij

(∑n

p=1
Wjpxp

)2
. (6)

ISA learns the network parameters through finding sparse
feature representations in the second layer, by solving:

minW

∑T

t=1

∑m

i=1
fi(x(t),W,V) (7)

s. t. WWT = I (8)

where {x(t)}Tt=1 are the input samples. W ∈ Rk×n, V ∈ Rm×k

are the connection weights of the first and second layer. n,
k, m are the input dimension, number of simple units and
pooling units respectively. One property of the ISA pooling
units is that they are invariant and thus suitable for recogni-
tion task.

3.2 Nonlinear Metric Learning with ISA

The original ISA algorithm is unsupervised, so the learned
features might not be suitable for some task specific objec-
tives. We regard the ISA network as an explicit nonlinear
transformation function f(x,W,V): Rn → Rm, and use the
side information constraints to get the optimal parameters of
the ISA network.

Similar to [2], we assume a logistic regression model
to estimate the probability that two data points x(i) and x( j)

share the same class or be semantically dissimilar, i.e.,

Pr(li, j|x(i), x(j)) = 1/(1 + exp(li, j(d(x̂(i), x̂(j)) − μ))) (9)

where li, j = 1 if (x(i), x(j)) ∈ S, and li, j = −1 if (x(i), x(j)) ∈ D;
x̂(i) = f(x(i),W,V), x̂( j) = f(x(j),W,V). The parameter μ
is a threshold. Two data points x(i) and x( j) will have the
same class label only when their distance d(x̂(i), x̂( j)) is less
than the threshold μ. We use two simple distance measure:
the Euclidean distance and Chi Square distance to compute
the distance between two feature vectors. Then the overall
log likelihood for all the equivalent constraints S and the
inequivalent constraints D can be written as:

Lg(W, μ) = log(Pr(S)) + log(Pr(D))

= −
∑

(x(i),x(j))∈S log(1 + exp(d(x̂(i), x̂(j)) − μ))
−
∑

(x(i),x(j))∈D log(1 + exp(μ − d(x̂(i), x̂(j))))

(10)

Using the maximum likelihood estimation, we will cast
the problem of distance metric learning into the following
optimization problem:

minW,μ E = −Lg(W, μ) + λ
∑T

t=1

∑m

i=1
fi(x

(t),W,V)

(11)

s.t. WWT = I (12)

The first term Lg(W, μ) is the log likelihood of side infor-
mation constraints, which encourages the margin between
positive and negative samples to be large. The second term
is the mapping function of ISA, which encourages the spar-
sity of the transformed features. The hard orthonormality
constraints (WWT = I) is used to prevent degenerated so-
lution of W. The standard optimization procedure, such as
projected gradient descent, can be used to solve the above
problem, and W is orthonormalized at each iteration by solv-
ing W := (WWT )−0.5W. This symmetric orthonormaliza-
tion procedure requires Eigen decomposition, which is very
challenging and time consuming, especially for the high di-
mensional data. However, the side information constraints
can also prevent W from becoming degenerate. So in or-
der to reduce the computational time, we ignore the hard
orthonormality constraints.

We adopt gradient descend scheme with line search to
solve the objective function optimization. The key issue is
to compute the gradient of E with respect to W and μ. We
write z(l)

i , a(l)
i to denote the total weighted sum of inputs and

the activation of unit i in layer l respectively. And we denote
f (1)(x) = x2, and f (2)(x) =

√
x as the active function of

the first and second layer of ISA network. Specifically, the
computation is given by

z(1)
i (x) = Wix, a(1)

i (x) = f (1)(z(1)
i (x), (13)

z(2)
i (x) = Via

(1)(x), a(2)
i (x) = f (2)(z(2)

i (x)), (14)

where Wi and Vi is the i-th row vector of W and V . In the
following, we will show the computation of ∂E/∂Wjq and
∂E/∂μ. (Wjq is the element of W at the j-th row and q-th
column). Due to space limitation, we just show the gradient
computation for Euclidean distance. The gradient computa-
tion for Chi Square distance is similar.

The Euclidean distance between two vectors x and y in
the transformed space is denoted as:

d(x̂, ŷ)=
∑m

i=1
(x̂i−ŷi)

2=
∑m

i=1
(a(2)

i (x)−a(2)
i (y))2 (15)

Then the gradient ∂E/∂Wjq and ∂E/∂μ can be computed as:

∂E
∂Wjq

= −
∑

(x,y)∈S(Pr(x, y) − 1)(δ(1)
j (x)xq − δ(1)

j (y)yq)

−
∑

(x,y)∈D(Pr(x, y) − 0)(δ(1)
j (x)xq − δ(1)

j (y)yq)
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+ λ
∑T

t=1

∑m

i=1
1/a(2)

i (x(t))Vija
(1)
j (x(t))x(t)

q (16)

∂E
∂μ
=−
(∑

(x,y)∈S (1−Pr(x, y))+
∑

(x,y)∈D(0−Pr(x, y))
)

(17)

where δ2i (x) = 2(a(2)
i (x) − a(2)

i (y)) (z(2)
i (x))−0.5, (18)

δ2i (y) = 2(a(2)
i (x) − a(2)

i (y)) (z(2)
i (y))−0.5, (19)

δ1j (x) =
∑m

i=1
δ2i (x)Vijz

(1)
j (x), (20)

δ1j (y) =
∑m

i=1
δ2i (y)Vijz

(1)
j (y). (21)

After obtaining the gradient, the parameter W and μ
can be updated by

Wt+1(αt) = Wt − αt ∂E/∂Wt, (22)

μt+1 = μt − αt ∂E/∂μt. (23)

The dynamic parameter αt is an appropriate step size to en-
able effective gradient descent at step t. It can be selected
from βz (0 < β < 1, z = 0, 1, 2, . . .), such that the Wolfe
condition prescribed below holds:

E(Wt+1(βz)) − E(Wt)

≤ η
∑L

l=1
tr
((
∂E
∂Wt

)T
(Wt+1(βz) −Wt)

)
(24)

αt is simply chosen as βz where z is the smallest nonneg-
ative integer satisfying the Wolfe condition. 0 < η < 1
is a constant. Through making use of the gradient de-
scent algorithm, we can achieve the optimal connection
weight W of the local ISA networks under the side infor-
mation constraints.

3.3 Stacked Local ISA for Deep Metric Learning

Traditionally, the convolutional neural network architecture
is designed to scale up the algorithm for high resolution im-
ages (e.g. 150 × 150 pixel images in the LFW dataset). The
key idea is that they first train the local filters on small in-
put patches, and then take these learned filters to convolve
with the large input images. It is based on the assumption
that the distribution over features is stationary in an image
with respect to position. However, for images belonging to
a specific object class, such as faces, this assumption is no
longer reasonable.

One strategy for removing this stationary assumption is
to use a different set of filters for each region. Therefore, in
our experiment, as shown in Fig. 1 (a), we divide the image
into a number of overlapping blocks, and connect each ISA
network to only one block, which we call local or block-
wise ISA network. We regard all the local ISA networks as
the FIRST ISA network. Then we combine the responses of
the spatial neighbored local ISA networks in the FIRST ISA
network, and treat them as inputs of the next layer of ISA
network, which is regarded as the SECOND ISA network.
This procedure continues for the next layers. At the last
layer, we combine all the response of previous layer of lo-
cal ISA networks as input for one ISA network, and finally

the output is the transformed feature vector of the original
input image features. Figure 1 (a) shows the architecture of
stacking three layers of local ISA networks.

The whole model can be regarded as a stacked ISA
network. Similar to other algorithms proposed in the deep
learning literature [7], [21], our stacked ISA model is trained
greedy layer-wise in the pre-training phase, but we use
the discriminative pre-training algorithm (NLML ISA). In
the fine-tuning phase, the objective function is similar to
Eq. (11), but the mapping function is a stacked ISA network.
We also adopt the gradient descent method for objective op-
timization, and the gradient computing steps are similar to
those in Sect. 3.2.

4. Experiments

In this section, we will evaluate the effectiveness of the pro-
posed method, and compare against state-of-the-art methods
on the Labeled Faces in the Wild (LFW) [8]. We implement
the method in MATLAB, and the source code is available
upon request.

4.1 The LFW Dataset and Experiment Settings

The LFW was recently introduced as a benchmark dataset
for face verification in the unconstraint environments. It is
very challenging and difficult due to large variations in pose,
age, expression, race and illumination. Figure 2 shows some
example image pairs. The database contains 13,233 target
images of 5749 persons. In addition, it is divided into ten in-
dependent folds that can be used for cross validation, where
the subject identities are mutually exclusive. Each fold con-
tains between 527 to 609 different people, and between 1016
to 1783 faces. This database is aimed at studying the prob-
lem of face verification. There are two evaluation settings
provided by the authors of the database: the restricted and
unrestricted setting. Under the restricted setting, only bi-
nary information is given for each pair of images, as we
only know whether a pair of images belongs to the same

Fig. 2 Some example images of the LFW database. Each pair is from the
same person but with variations in: First row: pose and expression; Second
row: lighting; Third row: expression; Last row: occlusion
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Fig. 3 The pipeline of our face verification system.

person or not, while the identity information of each face is
unknown. Under the unrestricted setting, the identity infor-
mation of each image is available. Therefore, it allows us to
generate more image pairs for training.

In this experiment, we do not use any outside train-
ing data, and the performance is measured by ten-fold cross
validation. We use the aligned version of the database,
lfw a [24]. And the face images are cropped to 150 × 80
pixels just by simply cutting out the center of the image.
To combine the complementariness of different types of
low-level features, we carry out the experiments on four
descriptors: SIFT [25], Local Binary Pattern (LBP) [26],
and two LBP’s variations: Hierarchical Local Binary Pat-
tern (HLBP) [27], and Patterns of Oriented Magnitudes
(POEM) [28]. The architecture of the stacked ISA networks
used in our experiment is shown in Fig. 1 (a). For LBP and
its variations, the facial image is divided into half-size over-
lapping 36 (6 × 6) blocks, and then each block is further
partitioned into 6 (3 × 2) patches. Histogram features are
extracted in each patch. Then we concatenate the patch de-
scriptor in one block to form the block-wise descriptors,
which are the input for the FIRST ISA network. And the
spatial neighborhood in the SECOND ISA network is de-
fined as 2 × 2 neighbors. For SIFT, we use the Nine-Points
SIFT features provided by [2], which are computed at the
fixed facial points (e.g. corners of eyes, nose and mouth).
For each facial point, we use multiscale SIFT descriptors
to describe the patches. Setting scale σ = 1 to represent
a 16 × 16 patch in the 250 × 250 face images, we extract
SIFT features at multiple scale for σ ∈ {1, 2, 3}. We re-
gard the concatenated 384D SIFT-based descriptor at each
facial point as one block, and in the SECOND ISA network,
the spatial neighbors are the blocks in one component (e.g.
eye, nose, mouth). For each local ISA network, the num-
ber of simple units and pooling units are set as 500 and 250
respectively.

The verification pipeline of our algorithm is illustrated
in Fig. 3. For two given facial images, we first crop the
original image into an appropriate size and extract some
low-level features for each image; then these features are
given as input to the proposed stacked ISA networks, and
the output is the feature vector in the transformed subspace.
We then compute the similarity of two feature vectors using
Eq. (9). If the similarity score is larger than the predefined
threshold (e.g. 0.5), the two facial images are classified as
the same person, otherwise they depict different persons.

Table 1 Performance of our method in different phases for four descrip-
tors.

Table 2 Performance comparison of our method and other metric learn-
ing methods with SIFT descriptor under restricted setting.

Table 3 Performance comparison of our method and other state-of-art
methods under restricted setting.

4.2 Effectiveness of the Proposed NLML DISA

In this experiment, we evaluate the effectiveness of our pro-
posed NLML DISA. Under restricted setting, each fold
contains 300 matched pairs and 300 mismatched pairs. We
use nine of the ten folds for training, and the left one
for testing. Table 1 shows the performance of our pro-
posed NLML DISA with Euclidean distance measure in the
pre-training and fine-tuning phase for different descriptors.
From these results, we can see that the performance im-
proves significantly as the number of layers increase, and
the fine-tuning can further improve the performance near
2% over the THIRD ISA. In addition, the average improve-
ment of four descriptors is near 5% over the single layer ISA
(FIRST ISA). Thus, it proves the effectiveness of the deep
learning architecture.

Table 2 gives the fair comparison between the pro-
posed NLML DISA and some metric learning methods with
the same SIFT features under the image restricted set-
ting. Our method obtains 84.31%, which is significantly
better than the linear metric learning methods LDML [2]
(76.60%), ITML [2] (76.18%), DML-eig [29] (80.55%),
PCCA [30] (82.2%) and the kernel based metric learning
method (KPCCA [30] (83.8%)). In order to compare with
state-of-the-art results on LFW, we combine the similarity
scores of four descriptors under two distance measures by
a linear Support Vector Machine. The comparisons are pre-
sented in Table 3. Our method achieves a new state-of-the-
art accuracy (88.30%). We believe that this is because the
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Table 4 Performance of our method when varying the number of training pairs per fold.

Table 5 Performance comparisons with other method on the LFW
dataset, under unrestricted setting.

proposed NLML DISA method can suppress the variations
of the facial appearance, and obtain a compact representa-
tion after transformation. Note that Pinto et al. [32] per-
forms sophisticated large-scale feature search, and use mul-
tiple complimentary representations, which are combined
by using kernel techniques. The local CRBM [21] approach
combines two low-level features (pixels and local binary
pattern), and achieves comparable results to ours. How-
ever, they use outside sources of data for training. Complete
benchmark results can be found on the LFW website [33].

4.3 Performance Comparison under Unrestricted Setting

Under the unrestricted setting, the identity information of
each training image is available. Therefore, we can gen-
erate as many pairs of matched and mismatched images as
desired. This reduces the risk of over-fitting. Table 4 shows
the performance of our method for four different descriptors,
when using an increasing number of training pairs of each
fold: 2000, 3000, and 6000. For each descriptor, we eval-
uate the original feature and the element-wise square-root
feature. As shown by [34], taking square root of the orig-
inal feature can improve the performance. Table 5 shows
the comparisons of our method with current state-of-the-art
methods under unrestricted setting.

From these results, we can observe that:
(1) As expected, our method benefits from an increasing
number of training pairs. With 2000 training pairs per fold,
the combined performance of our method is 90.10%. While
with 6000 training pairs per fold, our method with only
HLBP descriptor gives a mean accuracy of 90.51%; by com-
bining multiple descriptors, the accuracy is further improved
to 92.81%.

(2) As reported in [2], with 10000 training pairs per fold,
LDML with the SIFT descriptor gives a mean accuracy
of 83.2%. By combining LDML with the Marginalized
k-nearest neighbor classifier [2], the performance can be im-
proved to 87.50%, which is still slightly worse than our
method (88.41%). With LBP descriptor, our method out-
performs [35], [36] with a large margin.
(3) The mean accuracy of our method by ten-fold cross vali-
dation is 92.81%, which is remarkably well with other state-
of-the-art results on LFW. In addition, the standard error
(0.42%) is much lower than most of the other methods. Note
that the result of [37] is obtained by a commercial system. It
utilizes a proprietary 3D face reconstruction engine to pro-
duce an accurate 3D model from a single face image, while
our method does not apply any preprocessing methods, and
uses the original images. Huang et al. [38] proposes an en-
semble metric learning approach, which first selects effec-
tive feature groups, and then further exploits correlations be-
tween selected feature groups. In addition, they use all the
possible matched and mismatched pairs, while our method
uses 6000 pairs per fold.

4.4 Computational Complexity Analysis

Finally, we analyze the computational complexity. Assume
there are N pairs of facial images for training, and each im-
age is divided into M blocks. The dimension of the low-level
features in one block is d. The number of input units, sim-
ple units and pooling units in one ISA network is d1, d2, d3

respectively. The spatial neighborhood is P, and the num-
ber of layers of the whole network is L. In the pretraining
phase, we train the network layer by layer. The computa-
tional complexity of feed-forward computing will scale in
about O((d̂1d2+d2+d3)M̂N), and the back-propagation will
scale in about O((d3d2d̂1)M̂N), where d̂1 = d, M̂ = M for
the FIRST ISA network, d̂1 = Pd3, M̂ = M/Pl−1 for the
l-th network (l = 2, . . . , L − 1), and d̂1 = d3M/PL−2, M̂ = 1
for the last layer of network. So the computation complex-
ity of training one layer of ISA network will scale in about
O((d̂1d2 + d2 + d3 + d3d2d̂1)M̂NTl), where Tl is the num-
ber of iterations for the l-th layer network. In the finetun-
ing phase, the computational complexity will scale in about
O((M(d1d2 + d2 + d3)+ PLM(d2d3 + d2 + d3))T ), where T is
the number of iterations.

Running time: In our experiment, without feature
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extraction, it takes about 6 hours to train the FIRST ISA
network on 108000 pairs of samples, 4 hours to train the
SECOND ISA network, 1 hour to train the THIRD ISA
network, and 1 hour to finetuning the whole network on
a 3.0GHz, 8GB RAM PC. In addition, it takes about 4 min-
utes to test on 12000 pairs of samples.

5. Conclusions

In this paper, we proposed a nonlinear metric learning
method by using Deep ISA network (NLML-DISA). Un-
like traditional linear or kernel based metric learning meth-
ods, NLML-DISA learns an explicit nonlinear transforma-
tion and can handle high dimensional input spaces without
prior dimension reduction. More specifically, for the high-
resolution facial image, we use ISA as the basic network to
connect to one block of the image and stack the block-wise
ISA networks in a deep architecture. We combine the side-
information constraints with ISA to get the optimal network
connections. With the stacked ISA networks, every instance
can be transformed nonlinearly to a compact vector for ef-
ficient verification. We evaluate the proposed method on
LFW benchmark, and achieve better results than the state-
of-the-art methods. Although initially the proposed NLML-
DISA is designed for face verification, it has a wide range
of applications, which we plan to explore in future works.
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