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Voice Activity Detection Based on Generalized Normal-Laplace
Distribution Incorporating Conditional MAP

Ji-Hyun SONG†a), Nonmember and Sangmin LEE†, Member

SUMMARY In this paper, we propose a novel voice activity detection
(VAD) algorithm based on the generalized normal-Laplace (GNL) distri-
bution to provide enhanced performance in adverse noise environments.
Specifically, the probability density function (PDF) of a noisy speech signal
is represented by the GNL distribution; the variance of the speech and noise
of the GNL distribution are estimated using higher-order moments. After
in-depth analysis of estimated variances, a feature that is useful for discrim-
ination between speech and noise at low SNRs is derived and compared to
a threshold to detect speech activity. To consider the inter-frame correla-
tion of speech activity, the result from the previous frame is employed in
the decision rule of the proposed VAD algorithm. The performance of our
proposed VAD algorithm is evaluated in terms of receiver operating char-
acteristics (ROC) and detection accuracy. Results show that the proposed
method yields better results than conventional VAD algorithms.
key words: voice activity detection, generalized normal-Laplace distribu-
tion, higher order moments, conditional maximum a posteriori

1. Introduction

In many speech processing procedures such as speech en-
hancement, speech recognition, and speech coding, a voice
activity detection (VAD) algorithm has become an essen-
tial component, because the performance of these speech
processing procedures relies on the accurate detection of a
speech signal from within a noisy signal. For instance, a
VAD module is a key component of variable-rate speech
coding, because it provides an effective way of enhancing
the capacity and coverage of the communication bandwidth.
For this reason, a variety of VAD algorithms has been pro-
posed. Early VAD algorithms were based on heuristic rules
on several features such as spectral energy, zero crossing
rate (ZCR), linear prediction coding, pitch, spectral devia-
tion, and higher-order energy [1], [2]. More recently, VAD-
algorithm-based pattern recognition such as support vector
machines (SVMs) and Gaussian mixture models (GMMs),
which use a mixture of conventional features, have been pro-
posed [3]. However, these VAD algorithms have shown poor
performance in adverse noise environments because conven-
tional features cannot distinguish between speech and noise
at low SNRs. Therefore, features that can accurately specify
the characteristics of speech in adverse noise environments
are needed.

Recently, the features of higher-order moments based
on the generalized normal-Laplace (GNL) distribution
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(which is used to represent the probability density function
(PDF) of the noisy speech signal) have been proposed for
estimating the SNR; they have shown good performance in
adverse noise environments [4]. These features can be used
to detect the speech activity at low SNR because the instan-
taneous SNR in the time-domain is closely related to speech
activity.

In this paper, we propose a novel VAD algorithm based
on the GNL distribution to improve the performance of VAD
in various noisy environments. First, we analyze features
(the same as those used in [4]), namely, the estimated vari-
ance of speech and noise in the GNL distribution. On the ba-
sis of these two features, a robust feature that is accurately
able to distinguish speech from a noisy signal is derived;
this new metric is compared to a threshold to detect speech
activity. In addition, to further enhance the performance of
VAD, a conditional maximum a posteriori (CMAP) crite-
rion, which considers the inter-frame correlation of voice
activity, is adopted in the decision rule.

2. The Variance Estimation for the Speech and Noise
Model Based on GNL

In this section, we briefly review the method for estimating
the variance of the speech and noise in a GNL distribution,
which arises as the convolution of the independent normal
and generalized Laplace distribution [4], [5].

Let s(t) and n(t) denote a clean speech and an uncor-
related additive noise signal, respectively. The noisy speech
signal is the sum of a clean speech signal and a noise signal.
Assuming that the clean speech signal and the noise sig-
nal are statistically independent and the that PDF of noise
and speech is characterized by a zero-mean Gaussian and
Laplace distribution, the PDF of the noisy speech signal is
obtained by the convolution of the Gaussian and Laplace
component.

fT (t) =
e
−t2

2σn2

√
2πσn

∗ 1√
2σs

e−
√

2σs
−1 |t| (1)

where fT (t), σs
2, and σn

2 are the PDF of the GNL and the
variances of the speech and noise, respectively. This convo-
lution can be expressed as the product of the characteristic
function of the normal and Laplace distributions because the
characteristic function is the inverse Fourier transform of the
PDF.
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ΦGNL(t) = ΦND(t) · ΦLD(t) =
( e−σn

2t2/2

1 + σs
2t2/2

)γ
(2)

where ΦND, ΦLD, and ΦGNL are the characteristic func-
tions of the normal, Laplace, and GNL distributions, respec-
tively. γ is the shape parameter; it measures the peakedness
of the distribution.
In (2), the unknown parameters (σs

2, σn
2, and γ) can be es-

timated on the basis of the moments of the distribution. The
moment of the distribution is defined in terms of its charac-
teristic function as follows:

Mp = i−p
[ dp

dtp
ΦGNL(t)

]
t=0

(3)

where p is the order of the moment. From (2) and (3), the
higher order moments of the GNL distribution can be com-
puted as [4]

M2 = γ(σn
2 + σs

2) (4)
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4γ) (5)
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2)+2γσs
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Here, the higher-order moments are approximated by the
sample moments. Using the approximated higher-order mo-
ments, the variance of the speech and noise are as follows:

σ̂2
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where M̂p is the sample moment of the pth order.

3. Proposed VAD Based on the GNL Distribution In-
corporating Conditional MAP

In the previous section, it was noted that the variance of
speech and noise in the PDF model could be obtained us-
ing high-order moments and the characteristic function of
the GNL. Based on these feature vectors, we propose a
novel VAD algorithm that has an improved probability of
detecting speech activity under adverse noise conditions. To
derive the robust feature in the VAD algorithm, we first an-
alyze the speech to noise variance ratio (SNVR).

S NVR = σ̂2
s/σ̂

2
n (9)

As we assume that the speech signal is characterized by
the Laplace distribution, if the speech in the input signal is
more salient, the variance of the Laplace component will
have more low values than that of the Gaussian compo-
nent. Therefore, the SNVR during speech periods tends
to be lower than that during noise-only periods. Further,
because the speech signal has a higher variation than the
noise signal over time, the SNVR during speech periods has
a larger dynamic range than that during noise-only periods.

Fig. 1 Comparison of S NVRc and S NVRr under white noise conditions
(SNR = 0, 10 dB).

Figure 1 (b) shows SNVR values for two different SNR val-
ues for white noise (0 dB = dotted line, 10 dB = bold line).
This figure shows the aforementioned tendency. Addition-
ally, this figure indicates that the direct application of the
SNVR to detect voice activity is difficult because the ranges
of the SNVR values during both speech and noise are dif-
ferent for different SNR values. On the basis of this obser-
vation, we define a new feature (S NVRr), which is the ratio
of the SNVR of the current frame (S NVRc) to the smoothed
SNVR of the noise-only frame (S NVRn).

S NVRr(t) = S NVRc(t)/S NVRn(t) (10)

where the initial value of the S NVRn is calculated by aver-
aging the initial four frames. S NVRn is updated during the
speech absence as follows:

S NVRn(t)=S NVRn(t−1)×(1−αs)+S NVRc(t)×αs (11)

where αs is a smoothing parameter. Figure 1 (c) shows
the proposed feature (S NVRr) for white noise (0 and 10
dB SNR). This figure also shows that S NVRr during both
speech and noise periods has a similar value for different
SNR values. In other words, the same threshold can be used
to detect speech activity for different SNR values. To verify
whether S NVRr can serve as a useful feature for VAD, we
obtain histograms to determine the statistical distribution of
S NVRr for speech and noise. Figure 2 shows the histogram
of S NVRr and compares it to that of S NVRc. Figure 2
shows that the proposed feature provides superior discrim-
ination between speech and noise than S NVRc in the var-
ious noise environments. Furthermore, this feature is uni-
modal, and therefore, could be successfully represented by
a Gaussian basis function. On the basis of this observation,
the speech activity is detected by a decision rule in the pro-
posed algorithm based on the likelihood ratio test (LRT) as
follows:

H1
>P(S NVRr(t)|H1(t))

P(S NVRr(t)|H0(t))
α

P(H(t) = H0)
P(H(t) = H1)

(12)<
H0

where H0,H1, P(H(t) = Hi), and α indicate speech absence,
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Table 1 Comparison of total error rate (PE), false rejection rate (PR), and false acceptance rate (PA)
of the proposed and conventional algorithms.

Environments J.Shon GSAP G.729 Annex B G.729 Appendix III Proposed
Noise SNR PE PR PA PE PR PA PE PR PA PE PR PA PE PR PA

White

0 16.2 19.7 11.3 12.6 12.7 12.3 34.5 41.7 24.4 22.5 31.8 9.6 9.0 7.6 11.6
5 12.8 15.7 9.1 11.4 11.7 11.0 27.8 30.0 24.7 11.8 12.2 11.2 7.7 5.1 10.6

10 10.3 12.5 7.1 9.1 9.1 9.0 22.7 22.2 23.2 9.7 6.7 13.8 5.9 2.9 9.6
15 9.1 10.5 6.5 7.3 6.9 7.5 18.6 13.9 25.2 7.4 3.8 12.3 5.4 1.4 8.8

Babble

0 34.0 34.8 32.9 33.2 32.7 34.1 37.2 63.5 0.5 27.4 26.4 30.3 28.2 27.1 30.4
5 25.7 34.0 15.4 24.6 29.7 18.3 25.2 42.8 0.7 21.3 13.0 32.8 21.5 25.6 17.5

10 22.3 21.0 23.9 18.1 18.1 18.1 17.4 29.1 0.9 15.4 5.2 28.9 16.1 15.2 16.5
15 17.9 16.9 19.2 12.5 12.5 12.5 12.9 20.0 3.1 12.7 1.7 27.5 12.1 13.0 10.5

Office

0 23.9 26.7 20.0 20.6 21.5 19.3 28.5 38.2 15.1 18.3 17.3 19.7 18.2 18.8 18.2
5 18.1 16.7 19.9 16.6 16.5 16.9 26.5 28.7 23.4 14.8 9.7 22.9 14.5 15.0 14.8

10 15.6 13.4 17.8 14.4 13.9 14.9 22.7 22.3 23.4 12.8 5.0 23.7 12.2 13.0 12.6
15 13.8 11.4 16.0 12.4 11.8 13.1 19.3 17.3 22.0 12.1 2.6 25.3 10.2 11.1 10.5

Fig. 2 Histogram of S NVRc and S NVRr for white, babble and office
noise condition (SNR = 5 dB).

speech presence, the a priori probability of Hi, and a com-
pensation factor, respectively. In addition, as the speech sig-
nal has a strong correlation between the consecutive frames,
we consider the result of VAD in the previous frame to cre-
ate the decision rule in the proposed VAD as follows [6]:

H1
>P(S NVRr |H(t) = H1,H(t − 1) = Hi)

P(S NVRr |H(t) = H0,H(t − 1) = Hi)
α′i (13)<

H0

where

α′i = α
P(H(t) = H0|H(t − 1) = Hi)
P(H(t) = H1|H(t − 1) = Hi)

, i = 0, 1. (14)

As the voice activity of the current frame is predominantly
affected by the S NVRr value in the current frame, the final
decision rule of the proposed VAD algorithm can be simpli-
fied as follows:

H1
>P(S NVRr |H(t) = H1)

P(S NVRr |H(t) = H0)
α′i , i = 0, 1. (15)<

H0

From (15), we can see that the final decision rule has two
separate thresholds, specified according to the speech activ-
ity in the previous frame.

4. Experimental Results

To evaluate the performance of the proposed VAD algo-

rithm, we performed speech detection under various noise
conditions for each VAD algorithm. In our experiments,
speech material spoken by four male and four female speak-
ers was sampled at 8 kHz. To evaluate the detection accu-
racy, we made reference decisions on the clean speech ma-
terials of 456 s long by manually labeling each frame at 10
ms intervals. The proportion of voiced, unvoiced, and silent
frames were 44.8%, 13.4% and 41.8%, respectively. To
verify the performance of the proposed method in terms of
noise characteristics, we selected white noise, babble noise
(from the NOISEX-92 database), and office noise (from the
Dynastat database). Whereas the white noise was com-
pletely stationary, the babble and office noises were typical
non-stationary noises. In order to simulate noisy condition,
we added these noises to clean speech signal at SNRs of 0,
5, 10, and 15 dB. Table 1 summarizes the detection accu-
racy of the VAD algorithms based on the proposed method
and statistical models [7], [8]. Here, the threshold of the
aforementioned VAD algorithm was experimentally deter-
mined to minimize the total error rate under a large number
of noisy speech data samples containing a variety of noises
and SNR conditions. In this table, PR (false rejection rate)
is the probability that noise is (mistakenly) identified when
speech is present and PA (false acceptance rate) is the prob-
ability that speech is (mistakenly) detected when no speech
is present. PE (total error rate) is the false detection prob-
ability of all frames. To show that the performance of the
proposed method is acceptable in practice, the results for the
well-known standard VAD algorithms, ITU-T G.729 Annex
B and ITU-T G.729 Appendix III are also included [9], [10].
Our experimental results show that not only does the pro-
posed VAD algorithm based on GNL outperform other sta-
tistical approaches, but it also exhibits better (or compara-
ble) performance than the standard VAD algorithms in most
environmental conditions.

The receiver operating characteristics (ROCs) that il-
lustrate a trade-off between the speech detection rate (100-
PR) and PA for babble, white, and office noise environments,
are shown in Figs. 3–5. These figures show the overall per-
formance differences among the aforementioned algorithms.
The working points of the standard VAD algorithms are also
included. These figures indicate that the proposed VAD
algorithm yields better performance than statistical-based
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Fig. 3 ROC curves for babble noise conditions (SNR = 0, 5 dB).

Fig. 4 ROC curves for white noise conditions (SNR = 0, 5 dB).

Fig. 5 ROC curves for office noise conditions (SNR = 0, 5 dB).

algorithms and G.729 Annex B under the noisiest condi-
tions. Although the performance of the proposed method is
slightly lower than that decribed in G.729 Appendix III for
babble and office noises, determining the performance of the
proposed method is still a useful result because it uses only
one feature vector (SNVR) whereas the methods in G.729
Appendix III are obtained using a combination of multiple
features such as line spectral frequency (LSF), low-band en-
ergy, and zero crossing rate (ZCR). Additionally, as the

feature vector (SNVR) of the proposed method is directly
calculated from the microphone input signal and has low
computational complexity, our approach has the advantage
of being easy to incorporate with a real-time speech signal
processing applications.

5. Conclusion

In this paper, we have proposed a novel VAD algorithm
based on GNL distribution for use in the time domain. The
feature vector was obtained by estimating the variance of
speech and noise in the GNL distribution using high-order
sample moments. Our experimental results (i.e., ROCs
and detection accuracy) indicate that the performance of
the proposed VAD algorithm was superior to that of con-
ventional statistical-based VAD algorithms (e.g., the LR-
based method and GSAP). Additionally, a comparison be-
tween the proposed method and the standard VAD algorithm
(G.729 Annex B, G.729 Appendix III) indicated that the per-
formance of the proposed method is acceptable in practical
applications. Further improvement is expected if we can in-
corporate frequency-related information such as spectral de-
viation and channel SNR.
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