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PCA-Based Retinal Vessel Tortuosity Quantification

Rashmi TURIOR†a), Student Member, Danu ONKAEW†b), and Bunyarit UYYANONVARA†c), Nonmembers

SUMMARY Automatic vessel tortuosity measures are crucial for many
applications related to retinal diseases such as those due to retinopathy of
prematurity (ROP), hypertension, stroke, diabetes and cardiovascular dis-
eases. An automatic evaluation and quantification of retinal vascular tor-
tuosity would help in the early detection of such retinopathies and other
systemic diseases. In this paper, we propose a novel tortuosity index based
on principal component analysis. The index is compared with three existant
indices using simulated curves and real retinal images to demonstrate that
it is a valid indicator of tortuosity. The proposed index satisfies all the tor-
tuosity properties such as invariance to translation, rotation and scaling and
also the modulation properties. It is capable of differentiating the tortuos-
ity of structures that visually appear to be different in tortuosity and shapes.
The proposed index can automatically classify the image as tortuous or non
tortuous. For an optimal set of training parameters, the prediction accuracy
is as high as 82.94% and 86.6% on 45 retinal images at segment level and
image level, respectively. The test results are verified against the judge-
ment of two expert Ophthalmologists. The proposed index is marked by
its inherent simplicity and computational attractiveness, and produces the
expected estimate, irrespective of the segmentation approach. Examples
and experimental results demonstrate the fitness and effectiveness of the
proposed technique for both simulated curves and retinal images.
key words: tortuosity, retinopathy of prematurity (ROP), principal compo-
nent analysis

1. Introduction

Tortuosity evaluation is a crucial task in many applications
pertaining to retinal diseases such as those due to retinopa-
thy of prematurity (ROP). ROP is a disease affecting infants,
characterized by an increase in vascular dilation and tortuos-
ity. Tortuosity is defined as non-smooth appearance of ves-
sel course. Deformation in the blood vessel network of the
retina are indicators of not only retinal pathologies but also
other systemic diseases coming from cardiovascular, central
nervous and endocrine-metabolic systems [1]. Tortuosity is
known to track Plus disease, one of the most important prog-
nostic indicators in ROP, better than dilation [2].

Tortuosity definition in clinical terms is still unclear
and thus a standard needs to be set in this field. In clin-
ical practice ophthalmologists commonly grade tortuosity
using a qualitative scale (e.g. mild, moderate, severe and
extreme) [3], but a reliable quantitative measure would en-
able the automated measurement of retinal vascular tortuos-
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ity and its progression to be more easily discerned. Many
techniques have been devised to classify tortuosity, but rel-
atively few attempts have been made to quantify it. W. Lot-
mar et al. and Bracher et al. proposed tortuosity measure
based on the ratio of arc length and chord length [4], [5].
However, it was recognised as flawed [2] since a vessel that
bends gradually can yield the same numeric value as the one
that bends more frequently. The authors in [6] formulated
automated measurement using seven integral estimates of
tortuosity based on the curvature of vessels. However, it
failed in differentiating the tortuosity of structures that visu-
ally appear to be different in tortuosity. For better accuracy
of tortuosity calculation, Bullitt et al. [7] generalized Harts
estimates to 3D images obtained by means of the Magnetic
Resonance Angiography. Measurement of tortuosity using
relative length variation was proposed by Kylstra et al. [8].
His study indicates relationships between tortuosity, diam-
eter and pressure that affect the change in the shape of ar-
tificial latex vessels. In [9], the authors intended to mea-
sure tortuosity by using Fourier analysis. Dougherty and
Varro [10] calculated the tortuosity using second derivatives
along central axis of the blood vessels. Gao et al. [11] de-
veloped an interface based on MIDAS, but it proved to be
subjective and time consuming.

Pederson et al. [12] proposed to measure vessel diam-
eter using two different methods to estimate profile width,
but in this case bifurcations and crossings were not consid-
ered while choosing the vessel segment. E. Grisan et al. [13]
proposed an alternative method based on partitioning of the
blood vessels into segments called turn curves, and calcu-
lated tortuosity of each individual segment. The idea be-
hind this is to use the points of changing curvature sign.
However, this algorithm required manual vessel extraction
and inflection point placement. Heneghan et al. [14] and
Sukkaew et al. [15] applied the method called Arc length
over Chord length ratio, which used the length of a straight
line over considered part of the vessel. But this method re-
quired proper partitioning values for each part of the blood
vessel to avoid significant error. Estimates based on curve
partitioning often proved as flawed in many cases such as, a
circle arc with a large radius is non-tortuous although the ra-
tio between arc length and chord length could be very large.
Johnson et al. defined robust metrics employing unit speed
parameterization for quantifying vascular tortuosity in terms
of 3-D curvature [16].

We propose a new tortuosity measure that circumvents
the limitations posed by the previous available indices. This
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paper proposes a novel tortuosity index, and compares it
with three existant indices using simulated curves and real
retinal images to demonstrate that it is a valid indicator of
tortuosity. The paper is outlined as follows. Section 2 de-
scribes the abstract properties of a valid tortuosity index and
provides an overview of the available indices and the pro-
posed methodology. Section 3 shows the results and eval-
uation of the algorithm on simulated shapes and real blood
vessels, followed by discussions and conclusions in Sect. 4

2. Methods

2.1 Abstract Tortuosity Properties

There is no formal clinical definition of vessel tortuosity
measures; however there are some intuitive notions of tor-
tuosity, which a reasonable index must satisfy. A valid
tortuosity metric should work as a prognostic indicator of
the ophthalmologists’ notion of tortuosity. Therefore, it
becomes imperative to discuss the properties of tortuosity
measures.

2.1.1 Invariance to Translation, Rotation and Scaling

Translation and rotation transformations do not influence the
perception of tortuosity as they are related to the topology
and orientation of the vessels in a retina and consequently
do not alter in any way the clinical evaluation of tortuosity.
Ophthalmologists have equivocal intuitions of another one
property as invariance to scaling or independence of linear
scaling. The value of the index should be independent of
magnification of the image of a vessel. However, if a tor-
tuosity metric does vary with change in scale, it does so in
multiples.

2.1.2 Compositionality Property

The property of compositionality is concerned with the man-
ner in which the tortuosity of a vessel, comprising several
segments is computed. For example, given two continuous
curves c1 and c2, as part of the same vessel, the combination
of the two is defined as

c3 = c1 + c2

maintaining the continuity of c3 since the two constituent
curves belong to the same vessel.

According to the intuitive empirical principle pro-
posed [6] for the tortuosity, Γ of two curves c1 and c2

Γ(c1) ≤ Γ(c2)⇒ Γ(c1) ≤ Γ(c1 + c2) ≤ Γ(c2) (1)

This implies the resulting tortuosity is between those of
the two composing curve. The method proposed in [6] was
referred as weighted additive expressed as,

Γ(c1 + c2) = [Γ(c1)L(c1) + Γ(c2)L(c2)]/L(c1 + c2) (2)

where L(c) is the arc length of the curve, c. However, this

notion is contradicted with the principle of invariance with
respect to rotation and scale, since tortuosity of the vessel
cannot be less than any of its constituent segments. There-
fore, a composition property indicating full compliance with
the additive property was proposed [13], such that a vessel
curve c, combination of several segments ci, was given by
adding together the tortuosity values of its constituent seg-
ments that is,

Γ(ci) ≤ Γ(c1 + c2 + . . . . . . + cn) (3)

where i varies from 1 to n and ci is a subset of the parent
vessel, c. However, computation of tortuosity of a vessel
depend on whether the comprising segments belong to the
same vessel, as a result averaging the tortuosity of its con-
stituent segments to evaluate the net tortuosity of the parent
vessel does not hold true. In the proposed method, esti-
mation of tortuosity is done on sub vessel samples (a sub-
segment of the vessel tree enclosed by a branch point and
an end point or two end points). Hence it is concluded that,
our measure of evaluating tortuosity of a vessel is indepen-
dent of vessel sub segmentation and the tortuosity of the
segments comprising the sub vessel samples. In the present
work, the vessel tree is partitioned into sub vessels and net
tortuosity of the entire vessel tree is computed by taking the
mean of sum of the tortuosity of each sub vessel samples in
the blood vessel network.

2.1.3 Modulation

To assess the appearance of the blood vessel and its behav-
ior under varied circumstances, the property of modulation
holds immense importance. It is expressed in two forms:
change in frequency referred as frequency modulation at
fixed amplitude and change in amplitude referred as ampli-
tude modulation at fixed frequency. It may be assumed that
the greater number of changes in curvature sign (twist), the
greater the tortuosity associated with it will be. Likewise,
the higher the amplitude of a twist, (as defined in [13]) the
more tortuous, the vessel will be considered.

N(c1) ≤ N(c2)⇒ Γ(c1) ≤ Γ(c2) (4)

A(c1) ≤ A(c2)⇒ Γ(c1) ≤ Γ(c2) (5)

Where N is the number of twists and A is the amplitude of
the twists.

2.2 Available Tortuosity Measures

Various tortuosity measures have been proposed in litera-
ture but all pose certain constraints, thereby restricting its
application. In this section we review two such measures
for evaluating retinal vessel tortuosity and demonstrate their
shortcomings as compared to the proposed index.

2.2.1 Arc Length over Chord Length Ratio

The simpler and the most widely used measure of tortuosity
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Fig. 1 The first and second curves (top and bottom) have same length, L
and chord length, C = 128, but very different tortuosity.

is the ratio between its arc length and length of underlying
chord (referred as L-C in the present work) [4], [5]. It gives
a value of unity for straight line and increases with vessel
elongation. This measure does not account for measuring
morphology or hemodynamic consequences. Moreover, the
surface of the retina is analogous to a circle arc with a large
radius and is considered non-tortuous; thereby L-C measure
is recognized as flawed. Besides it is shown in Fig. 1 that
the measure fails in distinguishing two vessels with different
tortuosity that have the same arc length over chord length
measure.

2.2.2 Measures Involving Curvature

In the Euclidean plane, curvature is defined as the rate of
change of slope as a function of arc length. Given a curve
y = f (x), the curvature at a point p(x, y) ∈ R2 is expressed
as,

κ(p) =
d2y/dx2

(1 + (dy/dx)2)3/2
(6)

where dy/dx and d2y/dx2 are the first and second derivative
respectively and κ(p) is the curvature at the point, p(x, y).

The above equation often produces errors in discrete
curves. To calculate curvature at each point on curve,
an index based on second difference of the coordinates of
the vessel midline (referred as TC in this study) was pro-
posed [10].The total curvature, TC, was measured by taking
the sum of the difference in slope of two successive seg-
ments, (that is, difference in slope between the three suc-
cessive points along the midline on the given vessel curve).
However all these measures require arbitrary smoothing
schemes to smooth the noise in the coordinates resulting
from limited sampling. Moreover, if a tortuosity metric is
to be useful in detecting and characterizing abnormal pat-
terns of tortuosity, it should give high tortuosity values to
curves with high frequency and high amplitudes, but results
show this measure does not fulfill this criterion.

2.3 Proposed Tortuosity Measure

Our approach is based on principal component analysis
(PCA) of the coordinates of the vessel midline. It is a
popular primary technique in pattern recognition, dimen-
sionality reduction and feature extraction. Among the true
eigenvector-based multivariate analyses, PCA is the sim-
plest technique that reveals the internal structure of the data
in a way that best explains the variance in the data. PCA on
simulated blood vessels provide a way to identify predom-
inant curvature patterns. A mathematical procedure, PCA
is implemented by eigenvalue decomposition of a data co-
variance matrix of each sub vessel (sub-segment) following
whitening procedure (implies centering the data for each at-
tribute). For the covariance matrix, the eigenvectors corre-
sponds to the principal components and eigenvalues to the
variance explained by the principal components. This op-
eration ensures that the first principal component describes
the direction of maximum variance. Eigenvectors are per-
pendicular to each other and provide information about the
patterns in the data.

Eigenvalues provide quantitative assessment of how
much a component represents the data. Higher eigenval-
ues of a component show that the representation of the data
is more in terms of variance and is referred as the lead-
ing eigenvalue. Eigenvectors with highest eigenvalue is the
principal component of the data set. It also represents the
intensity of explained variance as a percentage of total vari-
ance. In our methodology, the eigenvalues of the covariance
matrix determine the judge ment of practical significance.
The factors with eigenvalues ratio close to zero, are con-
sidered practically insignificant, that is, as explaining only
a negligible portion of variability in the direction of blood
vessel, while eigenvalues ratio approaching 1.00 are consid-
ered practically significant as explaining a large amount of
data variability.

We define our tortuosity coefficient, T , as the ratio of
second leading eigenvalue, λ2 associated with the second
principal axis, to the leading eigenvalue, λ1 corresponding
to the first principal axis. We calculate tortuosity of the
whole vascular structure by taking the average of the sum
of tortuosity values of each sub-vessel.

T =
n∑

i=1

λ2i/λ1i (7)

λ1 and λ2 shows the variance along the two axes and
n is the total number of sub segments of the entire blood
vessel network. The proposed measure is modelled using
simulated curves. For straight vessels, the index approaches
zero, as λ2 ≈ 0 even though λ1 � 0, and increases as
the vessel becomes more tortuous, that is the second lead-
ing eigenvalue increases more as compared to the leading
eigenvalue of the covariance matrix and becomes closer to
the leading eigenvalue of the covariance matrix (λ2 ≈ λ1).
Since our proposed index is based on ratio of eigenvalues,
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Fig. 2 Architecture of tortuosity measurement algorithms.

the associated computation is relatively simpler compared to
other proposed indices and is dimensionless since both the
numerator and denominator have the same dimensions. It
satisfies the properties required for a valid tortuosity metric
for retinal vessel evaluation.

We have not considered further other proposed mea-
sures of tortuosity, such as the number of inflection points
and angle change along segments, since they performed
poorly in an earlier study [17].

Figure 2 shows the system architecture at a glance for
the proposed tortuosity index. The procedure is demon-
strated into three successive blocks with the first block de-
picting the image preprocessing, the second block show-
ing the tortuosity measurement process and the third block
showing the classification of the retinal vessels and its vali-
dation against the judgement of expert ophthalmologists.

2.4 Experimental Procedure and Setup

To test the performance of the proposed tortuosity index and
to compare it with other available indices, two types of ex-
periments are performed. In the first one, different types of
vessels are simulated (see Fig. 3) to evaluate the compliance
of various methods with the tortuosity properties described
in Sect. 2.1. Values for the four indices (TC, L-C, Grisan
metric and the proposed index) are calculated for each case
where TC is the tortuosity coefficient based on second dif-
ferences of the coordinates of the vessel midline [10]; L-C
is the traditional arc to chord length ratio and Grisan met-
ric evaluated by integrating the number of turn curves and
arc to chord length ratio. In the second experiment, ves-
sel centerline of a set of retinal images from infant retina is
extracted and segmented according to improved branching
point and ending point detection technique and analyzed by
the proposed approach. The results are verified against the
judgement of two expert ophthalmologists.

2.4.1 Simulated Vessels

In order to test how the various proposed tortuosity mea-
sures vary when single parameters that influence the clinical
perception of tortuosity changes, three sets of simulated ves-
sels are generated as shown in Fig. 3.

The first set of simulated vessels is composed by
a sequence of sinusoids with same frequency, f and
chord length, C, but different amplitude, A where A ∈
[5, 10, 15, 20, 25, 30, 35, 40], C = 128, f = 1 (Fig. 3 (a)).

Fig. 3 Different types of simulated vessel. Note: In figure 3 (b) Values
of T = 256, 85, 51 pixels is equivalent to f = 0.5, 1.5, 2.5

The second set is composed by a sequence of sinu-
soids with the same amplitude, A, and chord length, C,
but different frequency, f where A = 15, C = 128, and
f ∈ [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] (Fig. 3 (b)).
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Fig. 4 Left: The original image. Right: Detected vessel centerline.

Fig. 5 Vessel segmentation by improved branching point and terminal
point detection.

The third and the last set of simulated vessels is com-
posed by a sequence of curves with constant curvature (in
absolute value), but increasing number of changes in cur-
vature sign. These curves are built such that they have the
same chord length, C and arc length, L, but different am-
plitude and frequency (shapes), that is different curvature
signs; however the absolute curvature remains the same. In
this case, A ∈ [15, 8.3, 5, 4, 3], L = 144.42, C = 128, abso-
lute net curvature = 57 (Fig. 3 (c)). It is to be noted that only
some of the simulated curves are shown in Fig. 3 (a)-(c).

2.4.2 Skeletonised Retinal Images

In the second part of the experiment, the proposed measure
is tested on a set of 45 actual retinal images of infant retina.
The extracted vessel centerline of ground truth retinal im-
ages (Images with hand-labeled blood vessel network under
supervision of expert clinicians shown in (Fig. 4)) are seg-
mented by branching point and ending point (Fig. 5). These
45 images are segmented into 1676 sub segments. They are
divided into training set and test set. The proposed approach
is applied to each sub vessel sample and tortuosity is calcu-
lated as in Eq. (7).

2.4.3 Improved Branching and Terminal Nodes Detection

Terminal and branching points are detected using the skele-
ton image. We track every vessel pixel and count the num-
ber, n, of pixel around the eight neighborhood of a current

Fig. 6 A vessel segment of a digital curve.

location that has the same intensity as vessel pixel, and use
this number to classify the point as ending point (n = 1),
non-significant point (n = 2) and candidate for branching
point (n ≥ 3).

In [18], Trucco et al defined branching point as n more
than or equal to 3. We found that sometimes it gives wrong
results. For example, the value of n corresponding to the
point a, b and c in Fig. 6 is 3 which is considered as a branch-
ing point by definition of [18]. Based on early observations,
to get actual branching point, this time we compute the four
connectivity of the branching point candidate by ignoring
other branching point candidates. If there is no connectivity
in each eight neighborhood, that branching point candidate
is marked as a branching point. In this case only point b
should be considered as a branching point.

2.5 Classification

Classifications are performed at 2 levels. The first level is
vessel level. In order to classify the retinal vessels into two
classes of tortuous and non- tortuous vessels, we adopt a
classification scheme. To facilitate comparison with previ-
ous work, the classifier we used is Naive Bayes classifier.
We give a short review of the Bayesian model here and refer
the reader to [19], [20] for details. The Naive Bayes classi-
fier is the probabilistic classifier based on applying Bayes’
theorem. The following equation is the Bayes rule used in
Naive Bayes classification.

P(y|x) =
P(x|y)P(y)

P(x)
(8)

The Naive Bayes classifier uses the principle of
Bayesian Maximum a Posteriori (MAP) classification: mea-
sure the feature data then select the class.

ŷ = argmax
y

P(y|x) (9)
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Table 1 Breakdown of ground truth database.

Tortuous Non-Tortuous

Expert 1
186 314
5 43

Expert 2
194 306
4 44

Agreed Result
173 309
4 41

Train Data
119 207
2 28

Test Data
54 102
2 13

P(y|x) is the parameter we want to estimate. It is the
hypothesis y and a finite set of features x which bears on the
hypothesis. P(x|y) is the likelihood of feature x given class
y, P(x) is an independent probability of feature x and P(y)
is the priori probability of class y. The equation below is the
Bayes rule used in Naive Bayes classifier.

P(tortuous class|tortuousity value)

=
P(tortuosity value|tortuous class)P(tortuous class)

P(tortuosity value)
(10)

tortuous class = tortuous, non-tortuous

Naive Bayes assumes that the features are condition-
ally independent given a class. We estimate the parameters
P(x|y) and P(y) from training data.

For the first classification problem, two expert oph-
thalmologists were asked to classify each segment of vessel
from vessel tree as tortuous or non-tortuous. They labelled
500 randomly selected sub vessel samples from the set of
forty five images out of which only 482 sub vessels (agreed
results) were used for analysis. The ophthalmologists were
also asked to grade each image as tortuous or non-tortuous
by looking at the whole vessel tree as one structure for the
second level that is frame level or image level analysis. The
grading of the experts are based solely on their experiences.
Table 1 shows the breakdown of ground truth database at
sub vessel level (first row) and Image level (second row).
Only the agreed results from both the experts, are used as
a ground truth in the training and testing phase. 67.5% of
the data were used to train the classifier at sub vessel level
and a training set of 30 images for Image-level analysis. We
evaluate performance on test set quantitatively by compar-
ing the classifier’s result to ground truth. The mean classi-
fication rate on the testing subsets were used to evaluate the
performance of the classifier. The classification rate gives
the overall success rate of the classifier for each metric.

All of the 45 images were converted to binary form for
implementation.

3. Results and Discussion

The Fig. 7 shows, our PCA-based proposed index as applied
to each sub vessels. The line along a sub vessel curve is
the principal axis and the ‘cross’ sign denotes the data point

Fig. 7 (a) Tortuous vessels. Note: Proposed index, T = 0.0346, 0.0456,
0.0253, 0.0124, starting from top left in clockwise direction (b) Normal
(non tortuous) vessels. Note: Proposed index, T = 0.0031, 0.0046, 0.0058,
0.0078, starting from top left in clockwise direction

of mean of the x and y coordinates of the sub vessel and
therefore it is shifted for each sub vessel curve depending
upon its respective x and y coordinates’ values (or in other
words, the cross sign denotes the sample mean, it locates the
centre of gravity of the cloud of points formed by the data
samples in d-dimensional space). The horizontal axis is the
first principal axis, where the variance is greatest and repre-
sents the position or distance along the vessel (the leading
eigenvalue). The vertical axis is the second principal axis,
where the remaining variance is greatest, and it represents
the deviation from the horizontal axis and values of the sec-
ond leading eigenvalue. It is observed that as the sub ves-
sels becomes tortuous or curved, the index value increases
as the second leading eigenvalue increases as compared to
the leading eigenvalue or approaches the leading eigenvalue
(λ2 ≈ λ1, see Fig. 7 (a)). On the other hand, the value of
the proposed index approaches zero, for almost straight sub
vessels as λ2 ≈ 0 even though λ1 � 0 (see Fig. 7 (b)). For
straight vessels, λ1 > 0, but λ2 = 0. The principal axis fits
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well for such straight sub vessels.
The results of simulated vessels are shown in Fig. 8 -

Fig. 11, for the four indices.
In Fig. 8, the tortuosity measure, L-C as function of

amplitude and frequency is shown. As both the sinusoid
amplitude and frequency changes, a valid tortuosity mea-
sure is expected to increase with increasing amplitude and
frequency. This proves that L-C satisfies the modulation
property.

Figure 9 shows the tortuosity index, TC for varying val-
ues of amplitude and frequency. It is found that the index
reaches its peak at A=25 for f=0.5 and then decreases. At
f=1 and f=1.5, it reaches the maximum at A=10, then de-
scends. After that as the frequency is increased from f=2
to f=4, it decreases for all values, as the amplitude is in-

Fig. 8 3D Plot of L-C ratio for varying amplitude and frequency values.

Fig. 9 3D Plot of total curvature, TC, for varying amplitude and fre-
quency values.

Table 2 Shows values of proposed index, T, based on PCA for varying Amplitude (vertically) and
frequency (horizontally) where T= λ2/λ1.

����������Amplitude
Frequency

0.5 1 1.5 2 2.5 3 3.5 4

5 0.0019 0.0038 0.0086 0.008 0.0091 0.0089 0.0093 0.0096
10 0.0072 0.0141 0.0335 0.0313 0.0339 0.0302 0.0308 0.0282
15 0.0159 0.0296 0.0755 0.0613 0.0678 0.0621 0.0632 0.0606
20 0.0283 0.0478 0.1199 0.0999 0.109 0.1005 0.1053 0.1047
25 0.0438 0.0697 0.1748 0.1418 0.1649 0.1534 0.1609 0.1602
30 0.0628 0.0898 0.2322 0.1948 0.2305 0.2122 0.23 0.2132
35 0.0849 0.1069 0.3126 0.2419 0.3042 0.2831 0.3079 0.2875
40 0.1108 0.1233 0.3886 0.3003 0.3975 0.3597 0.4017 0.3704

creased. That is to say, it follows the reverse of the expected
trend, thereby shows that it does not satisfies the modulation
property.

Figure 10 shows the tortuosity index, Grisan Metric for
varying values of amplitude and frequency. It is observed
that the index varies almost proportionally to amplitude and
frequency changes as expected for a valid tortuosity index,
therefore fulfills modulation property.

In Fig. 11, the proposed tortuosity measure, based on
PCA as function of amplitude and frequency is shown. Ta-
ble 2 displays values of proposed index for different fre-
quency and amplitude values. For fixed frequency values,
(e.g. f = 1) as the amplitude is increased in steps of five
starting from amplitude equal to 5 to a maximum of ampli-
tude value equal to 40, the values of the proposed measure
increases, indicating that it fulfills the criterion of amplitude

Fig. 10 3D Plot of Grisan Metric, for varying amplitude and frequency
values.

Fig. 11 3D Plot of proposed index, for varying amplitude and frequency
values.
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modulation. For the case of frequency modulation, the in-
dex increases as the value of frequency is increased until
f = 1.5, then descends for f = 2, showing somewhat abrupt
changes between f = 2 and f = 3, thereafter follows the
expected trend. Therefore it is inferred that as both the sinu-
soid amplitude and frequency changes, the proposed tortu-
osity measure increases, though not proportionately, show-
ing the maximum value at A = 40 and f = 3.5. This shows
that the index is effective in detecting abnormal patterns of
low frequency and large amplitude, and it does to an ex-
tent satisfy the modulation property. Since ROP falls un-
der Type 1 abnormality where the normally straight or gen-
tly curved vessels begin to exhibit a more sinuous curve of
relatively low frequency and large amplitude, the proposed
index proves viable to detect phenomenal changes in such
images.

A special case of flipped sinusoids (Fig. 12) is also
tested on the four indices and found that L-C ratio cannot
differentiate any changes, because it depends on the total
curve length; however Grisan metric and TC could differ-
entiate as the sinusoids are flipped from 0.7 to 0.5. i.e.,
follows the desired trend (the values of the index should
increase as the sinosoids are flipped more.) Table 3 gives
the values of the four indices. On the other hand, The pro-
posed index, PCA is sensitive to such changes, although it
actually decreases slightly as the sinosoids are flipped more.
This is attributed to the fact that as the sinusoids are flipped
more, the value of the second leading eigen value, λ2 de-
creases whereas the value of the leading eigen value, λ1 re-
mains constant, as a result the value of the proposed index
decreases since it is the ratio of the two eigen values.

Our point in this study is to prove whether our proposed
measure, based on PCA is sensitive to the morphology of
the vessel that is to the shape of its path in space irrespective
of the point whether the observed appreciable changes (Ta-
ble 3), are in the reverse fashion (Fig. 12). On the contrary,
L-C ratio remains almost constant, consequently is insensi-
tive to such changes. Therefore, in our pursuit to show the
merits of the proposed measure over L-C metric, our pro-
posed index, T, proved superior in some cases to the most
simple and prevailing index, L-C.

Any useful tortuosity index should be independent of
scale, so that a magnified image of a certain shape should
have almost the same tortuosity value as the original. Ta-
ble 4 shows the values of the four indices for different scales.
It is observed that minor changes occur in the values of
all the indices, but they lie in the permissible error range.
Hence, it is concluded that the proposed index along with
TC and L-C does fulfill this important criterion of scale-
independence. On the other hand, Grisan Metric fails to sat-
isfy this pre-requisite since it is not a dimensionless index.

An ideal tortuosity index should vary inversely to chord
length. Table 5 shows values of the tortuosity indices calcu-
lated for 1/2 sinusoid of different chord lengths and ampli-
tude fixed as A = 15. As the chord length increases, and the
sinusoid becomes less curved, the indices become smaller
as expected.

Fig. 12 Flipped Sine wave at 0.7, 0.6 and 0.5.

A tortuosity index useful in detecting and charac-
terizing abnormal patterns of tortuosity should be sensi-
tive to curves with high frequency but low amplitude (see
Fig. 3 (c)). Results in Table 6 show that Grisan metric does
fulfill this criterion, whereas L-C and TC theoretically re-
mains constant. Juxtaposed our proposed measure shows
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changes, although the values of the index actually decrease
for low amplitude and high frequency curves, signifying that
it is not sensitive to small ripples that perhaps be seen in
blood vessels due to artifacts or noise. Notwithstanding, it
works well for our experimental set-up composed of infant
retinal images, that are characterized by low frequency, large
amplitude blood vessels (Type 1 abnormality).

Table 7 compares the properties of our proposed mea-
sure based on PCA with three other previously proposed in-
dices. The L-C ratio commonly used as an index of tortuos-
ity only indicates vessel elongation and has no value in mea-

Table 3 Values of indices for shapes shown in Fig. 12.

L-C Proposed index TC Grisan Metric
Sine wave 1.1924 0.0297 73 0.0008
Sinewave, flipped
at 0.7

1.1793 0.0121 65 0.0005

Sinewave, flipped
at 0.6

1.1793 0.0076 69 0.0006

Sinewave, flipped
at 0.5

1.1793 0.0055 73 0.0009

Table 4 Values of the indices for different scales.

L-C Proposed index TC Grisan Metric
A=15, Chord
Length, L =
128

1.1924 0.0297 73 0.0006

A=30, Chord
Length, L =
256

1.1933 0.0293 77 0.0003

A=60, Chord
Length, L =
512

1.1937 0.0292 78 0.0001

Table 5 Values of the indices for sinusoid of different lengths.

Length L-C Proposed index TC Grisan Metric
128 1.1363 0.0171 57 0.0005
256 1.0487 0.0039 28 0.0002
512 1.0259 0.0009 24 0.0001

Table 6 Values of the indices for of different twists.

Frequency Amplitude L-C Proposed
index

TC Grisan Met-
ric

0.5 15 1.1363 0.0171 57 0.0000
1.0 8.3 1.1382 0.0109 57 0.0004
1.5 5 1.1363 0.0080 57 0.0006
2.0 4 1.1382 0.0054 57 0.0007
2.5 3 1.1363 0.0032 57 0.0008

Table 8 Classification performance as confusion matrices.
������������Classify result

Ground truth
Tortuous Vessel Non-Tortuous Vessel

Arc-chord Ratio
Tortuous Vessel 64.81 (35) 30.39 (31)

Non-Tortuous Vessel 35.18 (19) 69.61 (71)

TC
Tortuous Vessel 64.81 (35) 48.04 (49)

Non-Tortuous Vessel 35.18 (19) 51.96 (53)

Grisan Metric
Tortuous Vessel 59.25 (32) 27.45 (28)

Non-Tortuous Vessel 40.74 (22) 72.55 (74)

Proposed index,T
Tortuous Vessel 79.62 (43) 13.73 (14)

Non-Tortuous Vessel 20.38 (11) 86.27 (88)

suring morphology or hemodynamic consequences. The ra-
tionale of TC is unclear for modulation property. Grisan
Metric shows scale variance. Our PCA based index behaves
consistently with intuitive notions of tortuosity. It represents
analogs of L-C measure, except that the latter was not de-
fined in terms of standard deviation along the orthogonal
axis and cannot differentiate between different shapes.

3.1 Model Verification

We compared results of our proposed measure at segment
level with three metrics reported earlier in literature: the L-
C, TC, and the metric suggested by Grisan et al. Confusion
matrices are used and experiments are conducted with our
own implementations of various measures. In our confusion
matrices, each column gives the percentages of the vessels
classified by the system in this row (for e.g., tortuous) that
were classified in each class (tortuous and non- tortuous) by
the clinicians. Therefore, the entries of each column adds to
100, but the rows do not need to.

For Grisan’s method we used the threshold value of
0.015 (average of 0.03 for arteries and 0.01 for veins con-
sidered in [13]).

Table 8 shows the confusion matrices comparing au-
tomatic classification against clinical judgement. We show
results for L-C, TC, Grisan’s metric and our proposed mea-
sure. Table 9 shows the classification accuracy of the corre-
sponding metrics. This Table reports the classification rates
at segment level and image level. The classification rate is
simply the proportion of test samples that are correctly clas-
sified.

In this study, we examined retrospectively the retinal
fundus images of infants both normal and pathological and
computed values of the tortuosity metric for each retinal ves-
sels within an image. The tortuosity values are validated
against agreed results of two expert ophthalmologists. We

Table 7 A comparison of the tortuosity indices with respect to the re-
quired properties ( -do- indicates that an index shows the required property;
X that it does not).

Properties L-C TC Grisan Metric Proposed index
Scaling -do- -do- X -do-

Modulation -do- X -do- -do-
Shape X -do- -do- -do-
Length -do- -do- -do- -do-

Additive X -do- -do- X
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Table 9 Classification accuracy of different tortuosity measures.

Tortuosity Index Arc-chord Ratio TC Grisan Metric Proposed index, T
Classn Rate (Segment) 67.21 58.39 65.89 82.94
Classn Rate (Image) 73.33 (11) 53.33 (08) 66.67 (10) 86.66 (13)

Note: The values in parentheses in the above two tables gives the number of correctly classified test samples

wished to test whether our tortuosity index can successfully
mimic the judgment of human experts. The best set of pa-
rameters produced 82.94% and 86.6% classification rate at
vessel segment level and image level respectively.

Our method predominates the conventional L-C index,
as it could differentiate between different shapes (flipped
case) and those having same arc length but different num-
ber of twists (refer Fig. 3 (c) and Table 6).Evaluation of the
tortuosity measure was done on ground truth retinal vessels
to avoid possible errors and variability arising from the dif-
ferent automatic vessel tracing procedures available.

4. Conclusion

We investigate our tortuosity measure by analyzing abstract
properties of metrics based on medical intuitions of tortu-
osity. Classification is carried out in two tiers to categorize
blood vessel segments and blood vessel networks, in order to
evaluate the integrity of the proposed measure. An improved
approach of splitting the network of blood vessels into sub
vessels is proposed, and it is characterized by branching and
terminal point detection.

An attempt is made to quantify the morphological fea-
tures of the full micro vascular network in the retina by
taking the mean of the values of the tortuosity index mea-
sured using each of the vessels within the images. The nu-
merical experiments show the efficiency and robustness of
the proposed index as applied to 45 medical images of the
retina. The index may be useful in selecting infants with
Plus disease, one of the most important prognostic indica-
tors in ROP. However, the clinical definition of abnormal
tortuosity can vary from disease to disease [7]; therefore,
extensive testing on a large number of infants with vessels
ranging widely in tortuosity is needed to further validate the
index. The tortuosity values that have been computed thus
far apply to vessel segments. Current work aims at gener-
alizing this treatment, in order to characterize a network of
branched vessels, such as occur in the micro vascular net-
work of the retina. An earlier attempt to this [21], (anal-
ogous to our approach) also used the average tortuosity of
vessel segments to characterize such a network. Investiga-
tions are underway to assess the goodness of the proposed
measure in other retinopathies having similar vascular mor-
phology changes, such as diabetic retinopathy, hypertensive
retinopathy and cardiovascular diseases.
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