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Statistical Approaches to Excitation Modeling in HMM-Based
Speech Synthesis

June Sig SUNG†a), Doo Hwa HONG†b), Hyun Woo KOO†c), Nonmembers, and Nam Soo KIM†d), Member

SUMMARY In our previous study, we proposed the waveform inter-
polation (WI) approach to model the excitation signals for hidden Markov
model (HMM)-based speech synthesis. This letter presents several tech-
niques to improve excitation modeling within the WI framework. We pro-
pose both the time domain and frequency domain zero padding techniques
to reduce the spectral distortion inherent in the synthesized excitation sig-
nal. Furthermore, we apply non-negative matrix factorization (NMF) to
obtain a low-dimensional representation of the excitation signals. From a
number of experiments, including a subjective listening test, the proposed
method has been found to enhance the performance of the conventional
excitation modeling techniques.
key words: HMM-based speech synthesis, waveform interpolation, princi-
pal component analysis, non-negative matrix factorization

1. Introduction

In previous studies on hidden Markov model (HMM)-based
speech synthesis, emphasis has been placed on how to gen-
erate a natural trajectory of the spectrum parameters which
account for the vocal tract characteristics. However, the is-
sue of generating more realistic excitation signals is also
very important to achieve naturally sounding speech. One
of the simplest techniques for excitation modeling is to
switch between the pulse train and noise depending on the
voicing property, which usually turns out to provide poor
speech quality. A number of attempts have been made
to enhance excitation modeling. Yoshimura et al. apply a
mixed excitation model to an HMM-based synthesizer [1]
where the excitation signal is created by combining both the
periodic impulse train and random noise with appropriate
weights. A more sophisticated excitation model is proposed
in [2], where the periodic impulse train and random noise
are mixed after being passed through separate filters. As an
enhanced mixed excitation method, STRAIGHT was devel-
oped by Kawahara [3]. In STRAIGHT, a mixed excitation is
given as a weighted sum of a phase-manipulated pulse train
and Gaussian noise.

In our previous work, we applied the waveform inter-
polation (WI) technique to an HMM-based speech synthe-
sis system [4]. The WI framework enables us to analyze
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the excitation signals in the form of characteristic wave-
forms (CW’s), which are described in the frequency do-
main as spectral coefficients. Each CW is given by a fixed-
dimensional vector where the dimension equals the maxi-
mum pitch length, and its statistical distribution is approxi-
mated by HMM’s. In order to reduce the dimension of each
CW hence to improve robustness in training, we apply prin-
cipal component analysis (PCA) to the extracted CW’s.

In this letter, we propose an alternative representation
of a CW to improve the performance of statistical handling.
One of the significant drawbacks of the frequency domain
representation of the CW in the previous work is that each
element of the CW corresponds to a different frequency
component if the dimension is adjusted to a fixed pitch
length. For the purpose of alleviating this problem, we em-
ploy a time domain representation. In addition, we apply not
only PCA but also non-negative matrix factorization (NMF)
to obtain a compact representation of the CW’s. The ex-
perimental results demonstrate that the proposed technique
enhances the statistical representation of the CW’s resulting
in improved speech quality compared with the conventional
excitation modeling techniques for HMM-based speech syn-
thesis.

2. HMM-Based Speech Synthesis System with WI

The procedures in this work for modeling and synthesizing
the spectrum and pitch parameter trajectories are identical
to those adopted in a conventional HMM-based speech syn-
thesis system [5]. In this section, we briefly describe the
analysis and synthesis of excitation based on the WI tech-
nique [4].

Each CW is equivalent to a single pitch cycle of the
excitation signal. A method to extract the CW from the
given linear prediction residual is well explained in [6]. Let
s(n,m) denote the m-th sample of the CW extracted at the
n-th frame. For convenience we let each CW be centered at
m = 0. Then,

Ak(n) =
2

P(n)

�P(n)/2�∑
m=−�P(n)/2�

[
s(n,m) cos

(
2kmπ
P(n)

)]
(1)

Bk(n) =
2

P(n)

�P(n)/2�∑
m=−�P(n)/2�

[
s(n,m) sin

(
2kmπ
P(n)

)]
(2)

k = 1, 2, . . . , (P(n) − 1)/2

where P(n) is the pitch, which is given as a positive inte-
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Fig. 1 The procedures for parameter extraction (top) and excitation gen-
eration (bottom) of the WI-based approach.

ger in this work, and Ak(n) and Bk(n) are the k-th discrete
time Fourier series (DTFS) coefficients computed at frame
n. In (1) and (2), P(n) is assumed to be an odd integer. For
the case when P(n) is an even integer, a slight modification
is required. Each CW is described in terms of the derived
DTFS coefficients, {Ak(n), Bk(n)}, which can be considered
a frequency-domain representation of the CW. Considering
that each CW has a different dimension depending on the
corresponding pitch period, zeros are appended so that all
the coefficients of CW’s can be described in the same fixed
dimensional space. After the zeros are padded, each CW
coefficient is converted to the magnitude CW where each el-
ement represents the magnitude of the corresponding CW
coefficient. PCA is then applied to the covariance matrix
of the magnitude CW’s. As a result of the PCA, the eigen-
vector matrix is acquired, and M dominant eigenvectors are
chosen as the basis for approximating each magnitude CW.
By taking the inner product of a magnitude CW with these
basis vectors, a reduced dimensional representation is ob-
tained. During the synthesis process, the magnitude CW at
a specific frame is reconstructed by a linear combination of
the basis vectors with the corresponding coefficients which
are the elements of the reduced-dimensional representation.
The CW coefficients are computed by applying a default or a
random phases to the reconstructed magnitude CW depend-
ing on the voicing type. The reconstructed CW, sR(n,m) is
then generated by following

sR(n,m) =
�P(n)/2�∑

k=1

[
Ak(n) cos

(
2πkm
P(n)

)
+ Bk(n) sin

(
2πkm
P(n)

)]

− (P(n) − 1)/2 ≤ m ≤ (P(n) − 1)/2. (3)

Finally, the excitation signal is generated from the recon-
structed CW’s by following a continuous pitch track. Fig-
ure 1 describes the procedures for excitation parameter ex-
traction and reconstruction under the WI framework.

As mentioned above, the frequency to which a specific
element of a CW coefficient originally corresponds will be
altered if zeros are padded in order to adjust the dimension
to a fixed value. Since it is known that human auditory per-
ception is more sensitive to spectral distortion than the tem-
poral mismatch, this frequency domain representation of the
CW’s is likely to deteriorate the synthesized speech quality
with the WI scheme. In order to alleviate this problem, we

propose an alternative approach in this section. Basically,
the proposed approach employs a time domain representa-
tion.

Let the maximum pitch length be denoted by D, which
is assumed to be an odd integer. The basic idea of our ap-
proach is to perform zero padding in the time domain before
computing the DTFS coefficients. Let s′D(n,m) denote the
zero padded CW at frame n. Then,

s′D(n,m) =

{
s(n,m) if |m| ≤ P(n)/2
0 otherwise.

(4)

The DTFS coefficients of s′D(n,m) is given by

A
′
k(n) =

2
D

�D/2�∑
m=−�D/2�

[
s′D(n,m) cos

(
2πkm

D

)]
(5)

B
′
k(n) =

2
D

�D/2�∑
m=−�D/2�

[
s′D(n,m) sin

(
2πkm

D

)]
(6)

k = 1, 2, . . . , (D − 1)/2.

Now, each CW is given by a (D − 1)/2 dimensional vec-
tor consisting of {A′k(n), B

′
k(n)}. The reconstructed signal

s′DR(n,m) is obtained straightforwardly as

s′DR(n,m) =
�D/2�∑
k=1

[
A
′
k(n) cos

(
2πkm

D

)
+ B

′
k(n) sin

(
2πkm

D

)]

− (D − 1)/2 ≤ m ≤ (D − 1)/2. (7)

We refer to the proposed approach as time domain zero
padding (TDZ) in contrast to the previous technique which
is called frequency domain zero padding (FDZ).

3. Low Dimensional Representation of CW’s

3.1 Principal Component Analysis

For PCA, a covariance matrix C is constructed from the
statistics of the given data vectors. The PCA method leads
us to the following matrix factorization [7]:

U−1CU = D (8)

where U is a unitary matrix whose columns are eigenvec-
tors of C and D is a diagonal matrix consisting of the corre-
sponding eigenvalues arranged in a descending order.

Any vector can be uniquely expressed as a linear com-
bination of the columns of U. The usefulness of PCA lies on
the fact that there exists a compact representation approxi-
mating the given data. Let x be an arbitrary D dimensional
vector and M be the number of eigenvectors for compact
representation. Then, it can be approximated as follows:

x̃ �
M∑

i=1

αiui + x̄ (9)

in which M � D, ui is the i-th column of U, αi is the coeffi-
cient associated to ui, and x̄ is the mean of the data vectors.
Since {ui} forms an orthonormal basis, αi, denoting a weight
for the i-th basis vector, can be easily obtained by taking the
inner product between (x − x̄) and ui.
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3.2 Non-negative Matrix Factorization

NMF is a signal analysis method in which the data matrix
is factorized into two constrained matrices of non-negative
elements [8]. When a collection of D-dimensional positive
valued input data is represented by a D × q matrix V with
q denoting the number of samples, it can be approximately
factorized into two matrices W and H with dimensions D ×
M and M × q, respectively, i.e.,:

V �WH. (10)

The way of factorizing a certain matrix is generally
non-unique and a lot of methods have been developed with
different constraints. NMF is different from the other meth-
ods in that it has the constraint that all the factors of W and
H must be non-negative. For the factorization of an input
data matrix with this constraint, we can apply the multi-
plicative update rules which find a suboptimal solution it-
eratively. In this work, we apply the algorithm presented in
[8] where Euclidean distance is used as the measure which
results in the following update rules:

Hk j ← Hk j
(WT V)k j

(WT WH)k j
,Wik ← Wik

(VHT )ik

(WWHT )ik
. (11)

where T denotes the transpose of a matrix, and Hk j and Wik

are the (k, j)-th and (i, k)-th element of H and W, respec-
tively. After W and H are obtained from a set of training
data, we use columns of W as the basis vectors. A reduced
dimensional representation a for a vector x is derived ac-
cording to

a = (WT W)−1WT x (12)

where a denotes an M-dimensional weight vector and x is a
D-dimensional input vector.

4. Experiments

To prove the effectiveness of the proposed method, several
experiments on speech synthesis were conducted. A Ko-
rean speech database spoken by a male (HNC) and female
(YMK) speakers was applied. For each speaker, 1,000 sen-
tences were used for training the synthesizer and another
20 sentences were used for performance evaluation. Speech
data was sampled at 16 kHz and quantized in 16 bits in
conjunction with the information on the phone segmenta-
tion and context dependency. For feature extraction, speech
waveforms were windowed by a 20 ms Hamming window
with a 5 ms frame shift. The maximum length of CW was
set to 320 in samples. At each frame, we extracted a CW and
converted it to the fixed-dimensional magnitude CW vector
with either the FDZ or TDZ technique. Examples of the ex-
citation from a sample of the male speaker are compared in
Fig. 2.

Fig. 2 Examples of excitation for male voice.

Table 1 Averaged approximation errors with low-dimensional represen-
tations.

FDZ TDZ
8 dim PCA 0.4394 0.2245

NMF 0.4376 0.2103
12 dim PCA 0.3953 0.2033

NMF 0.3987 0.1888
16 dim PCA 0.3599 0.1865

NMF 0.3586 0.1706
20 dim PCA 0.3299 0.1705

NMF 0.3302 0.1555

4.1 Performance of Low-Dimensional Representation

To investigate the usefulness of low dimensional represen-
tation via PCA and NMF, we measured the reconstruction
error for the magnitude CW vectors. For this, we extracted
5,558 magnitude CW’s from the actual excitations. Among
them, 3,000 magnitude CW’s were used to generate the ba-
sis, and the other 2,558 vectors were used to evaluate ap-
proximation errors. The number of basis vectors was set to
8, 12, 16, and 20 for both the PCA and NMF analyzes. Eu-
clidian distance was used to compute mismatches between
the original magnitude CW’s and those reconstructed from
the low-dimensional representation. Table 1 shows the av-
eraged approximation errors.

From Table 1, we can see that TDZ reduces the approx-
imation error more than FDZ, and NMF shows a slightly
better performance than PCA.

4.2 Evaluation of Objective Measure

In the next experiment, we compared the original excita-
tions with those synthesized by the proposed techniques. We
measured the distance between the original magnitude CW’s
and those obtained through HMM-based synthesis. To do
this, we extracted the magnitude CW’s from the excitations
of 20 test sentences which were not included in the training
database. We carried out the experiment with different com-
binations of the low-dimensional representation (PCA and
NMF) and the CW models (TDZ and FDZ). In addition, as
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Table 2 Distance measurement between original magnitude CW’s and
those synthesized by proposed technique.

method \ speaker HNC YMK

PCA-FDZ-8dim 3.6720 2.0472
PCA-FDZ-20dim 4.4499 2.0473
PCA-TDZ-8dim 1.3465 0.7585
PCA-TDZ-20dim 1.5195 0.7523
NMF-FDZ-8dim 4.0257 2.0309
NMF-FDZ-20dim 6.4102 2.0701
NMF-TDZ-8dim 1.3136 0.7613

NMF-TDZ-20dim 1.3700 0.7549

Fig. 3 Result of subjective listening tests.

for the number of basis vectors we tried M = 8 and 20.
For each test condition, we computed averaged Euclidean
distance between the actual magnitude CW and the corre-
sponding synthesized magnitude CW.

The results are shown in Table 2 from which we can
discover that TDZ much reduced distortion compared with
FDZ in all the tested conditions. Note that more number
of basis vectors does not always guarantee a better perfor-
mance. This implies that some of the basis vectors of PCA
and NMF did not help to improve the robustness of statisti-
cal modeling in the HMM-based framework.

4.3 Subjective Tests

We performed a set of subjective listening tests for which
11 listeners participated. In these tests, each listener was
provided with two speeches synthesized by two different
methods, and gave his/her preference as a score in the range
{−2, 1, 0, 1, 2}.

To compare the performance between FDZ and TDZ,
we applied PCA-FDZ-8dim for both HNC and YMK as the
reference method, and NMF-TDZ-8dim for HNC and PCA-
TDZ-20dim for YMK as the proposed method because these
two methods produced the best results in the previous ex-
periments. Furthermore, to compare the performance with
that of other excitation generation technique, we synthe-
sized excitation signals using the parameters provided by
the STRAIGHT [5] method, which is denoted as STR in the
result. The averaged listening preference scores are given in
Fig. 3 where ′A vs B′ means that the techniques ′A′ and ′B′
were compared and a positive value indicates that ′B′ was
preferred and vice versa.

From the results, we can see that TDZ produced bet-
ter speech quality than FDZ for the speaker HNC while no
significant difference was occured for the speaker YMK. In
comparison with STRAIGHT, TDZ showed a better result
for the male (HNC) voices while it produced slightly worse
scores for the female voices. This phenomenon might be
partly caused by the current implementation of the WI-based
system in which the phases of the original CW’s are ignored.

5. Conclusions

In this letter, we have proposed several approaches to im-
prove the excitation modeling based on the WI framework
for excitation generation in HMM-based speech synthesis.
In the proposed method, we append zeros before extract-
ing the DTFS coefficients of the CW’s. In addition, NMF
is applied to obtain a more efficient low-dimensional repre-
sentation of the excitation signals. A number of experiments
have proven that the proposed method improves the statisti-
cal representation of the CW’s, resulting in enhanced speech
quality compared with the conventional excitation modeling
techniques.

For the future work, research on an appropriate phase
modeling is required to further enhance the quality of the
synthesized speech.
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