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SUMMARY Flat Panel Displays (FPDs) are manufactured using many
pieces of different processing equipment arranged sequentially in a line.
Although the constant inter-arrival time (i.e., the tact time) of glass sub-
strates in the line should be kept as short as possible, the collision proba-
bility between glass substrates increases as tact time decreases. Since the
glass substrate is expensive and fragile, collisions should be avoided. In this
paper, we derive a closed form formula of the approximate collision proba-
bility for a model, in which the processing time on each piece of equipment
is assumed to follow Erlang distribution. We also compare some numerical
results of the closed form and computer simulation results of the collision
probability.
key words: stochastic model, collision probability, Erlang distribution,
closed form, approximation

1. Introduction

Reflecting the increasing demand for Flat Panel Displays
(FPDs) such as LCDs, plasma display panels, etc., more
effective methods for their manufacture are required. The
production rate improves with technological advancements
such as the rapid enlargement of glass substrates and the
miniaturization of patterns. Accordingly, production lines
have to be modified to accommodate such advancements,
and new optimization problems to be solved continue to
arise. Lately, an advanced system called Crystal Flow [9]
has been introduced in the production line of FPDs. It tar-
gets a higher level of line control in the next-generation pro-
duction processes as well as in existing lines.

The main flow of the FPD process is shown in
Fig. 1 [11]. Each piece of processing equipment in Fig. 1
has a specialized role, such as cleaning, coating, proxim-
ity exposing, developing, etching, resist stripping, etc., and
those pieces of equipment are connected in-line. Most pro-
duction lines adopt a simple strategy to feed glass substrate
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Fig. 1 FPD process flow.

into the first piece of equipment at a constant inter-arrival
time, which is called the tact time. This strategy is simple
and enables us to accurately predict the number of products.

Due to solution foaming, chemicals, heat treating, etc.,
the processing time at each piece of equipment is uncertain
and may vary according to the conditions at that time. If a
sheet of substrate is sent to a piece of equipment that is still
processing a previously sent sheet of substrate, that newly
sent sheet cannot be processed on the piece of equipment.
This phenomenon is called a collision between substrates.
Since the glass substrate is expensive and fragile, collisions
should be avoided as much as possible.

A collision-like phenomenon is called a blocking in a
flow shop model in the field of scheduling theory, and is
studied as an important factor to determine line efficiency. If
the processing time is deterministic, many study results on
blocking exist (see extensive survey in [3]). If the process-
ing time is stochastic, study results are somewhat limited in
comparison with their deterministic counterparts. For exam-
ple, see [7] and [8], where the purpose is to minimize the ex-
pected makespan. On the other hand, in queueing theory, de-
pending on the rule for processing blockings (blocked calls
cleared, blocked calls delayed, etc.), previous work mainly
focused on performance measures in the steady state. We
can find, in fact, that a wide range of literature in the field
of queuing theory has been investigated, for example in [4],
[5] and [6]. In contrast, in this paper, given the number of
jobs to be processed in the prescribed tact time span, we
focus on the measure recently presented in [1], which is the
probability that there will be at least one collision, called the
collision probability. In a comparatively new manufacturing
system such as one manufacturing FPDs, the evaluation item
(i.e., collision probability) is the new focus of observation.

The tact time (i.e., the inter-arrival time of substrates at
the first piece of equipment) should be minimized in order
to maximize the production rate. This, however, increases
the collision probability. Thus there is a trade-off between
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Fig. 2 The pdfs of the Erlang distribution for (a) k = 1, λ = 1 (exponen-
tial distribution), (b) k = 2, λ = 2, (c) k = 5, λ = 5, (d) k = 10, λ = 10, (e)
k = 30, λ = 30.

the tact time and the collision probability. When consid-
ering this trade-off, it is important to evaluate the collision
probability under a given tact time.

For the simple model discussed in queuing theory, the
evaluation item (i.e., collision probability) was first pre-
sented in [1]. It was shown in [1] that the collision prob-
ability can be approximately expressed by a multiple inte-
gration, assuming that the processing time of each piece of
equipment follows general distribution. Thus, the approxi-
mate collision probability can be obtained by numerical in-
tegration. However, if the processing time follows expo-
nential distribution, a closed form formula of the approxi-
mate collision probability is derived without using any mul-
tiple integration. A computer simulation method for com-
puting the collision probability was also presented in [1].
This method can compute the approximate probability for
the processing time under general distribution.

A problem with exponential distribution is that it is not
flexible enough to represent processing time in real produc-
tion lines. Under exponential distribution, we cannot set the
expectation and the variance independently of each other.
Furthermore, the probability density function (pdf) of ex-
ponential distribution is monotone decreasing, as shown in
Fig. 2 (a), while actual processing time is often represented
by a bell-like curve such as Fig. 2 (e). The pdf of normal
distribution is also bell-shaped, but it has a weakness in that
the pdf takes positive values in the negative domain, which
is not true in the pdf of actual processing time. To overcome
this, we generalize in this paper exponential distribution to
Erlang distribution, and show that the approximate collision
probability can still be given as a closed form formula.

The pdf of Erlang distribution is defined as follows:

f (x; k, λ) =
λk xk−1e−λx

(k − 1)!
for x ≥ 0, (1)

where two parameters λ and k are a positive real number and
a positive integer, respectively. Its expectation and variance
are given by k/λ and k/λ2, respectively. Therefore, under
Erlang distribution, we can set the expectation and the vari-
ance independently of each other by setting parameters λ
and k appropriately. In Fig. 2, five different probability den-
sity functions are plotted, where expectations of all cases
are the same, but their variances decrease through cases (a)

Fig. 3 Model comprising of m pieces of equipment.

– (e). Some of these pdfs are bell-shaped, and the pdf of
Erlang distribution takes a value of zero for x < 0. Thus, Er-
lang distribution is flexible enough to represent actual pro-
cessing times.

2. Model

We describe a formal model of the FPD production line. The
following notations will be used:

• M1,M2, . . . ,Mm: m different pieces of equipment in the
line.
• J1, J2, . . . , Jn: n jobs to be processed.
• T ( j)

i (> 0): Processing time of job Ji on piece of equip-
ment Mj.
• Ttact (> 0): Tact time, i.e., the time difference between

the start time instants of Ji and Ji+1 for all 1 ≤ i ≤ n−1
at the entrance to the line.

The production model is illustrated in Fig. 3. With the
same time interval, Ttact, jobs are successively fed into the
line at the entrance. Every job is first processed on piece
of equipment M1. It is then automatically transported to
the next piece of equipment M2 after it has been finished
on M1. It is assumed, for simplicity, that the transporta-
tion time between pieces of equipment is nil. As soon as
M2 receives the job, it starts processing. In this manner,
every job is processed on the pieces of equipment in the or-
der M1,M2, . . . ,Mm, and then sent to the exit. Moreover,
we assume that the processing time T ( j)

i on Mj is a random
variable that follows Erlang distribution with parameters λ j

and k j, and all T ( j)
i (1 ≤ i ≤ n, 1 ≤ j ≤ m) are independent

of each other.
In the above model, a collision occurs if the next job ar-

rives at Mj while Mj is still processing the current job. The
following lemma on the collision condition between jobs
was given in [1].

Lemma 1: Suppose that T ( j)
i = t( j)

i for all 1 ≤ i ≤ n and
1 ≤ j ≤ m. For n (≥ 2) jobs, there is no collision in the
above production line of m pieces of equipment if and only
if

l∑
j=1

t( j)
i ≤ Ttact +

l−1∑
j=1

t( j)
i+1

holds for all 1 ≤ i ≤ n − 1 and 1 ≤ l ≤ m.

Lemma 1 is important for the analysis contained in this
paper, therefore we explain the physical meaning of the in-
equality in this lemma. Since a collision can only occur be-
tween two consecutive jobs, we pay attention solely to them.
For each i and l, we compare the time when job Ji is com-
pleted on piece of equipment Ml, with the time when job
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Ji+1, which is next fed into the system, is completed on the
previous piece of equipment Ml−1. If the former time value
is less than or equal to the latter, then no collision occurs.
Otherwise, a collision occurs. Note that the transportation
time is assumed to be nil.

3. Collision Probability for m = 1

In this section, we derive the collision probability when
there is one piece of equipment. By Lemma 1 with m = 1,
the no-collision probability between consecutive jobs Ji and
Ji+1 becomes as follows:

Pr
(
T (1)

i ≤ Ttact : 1 ≤ i ≤ n − 1
)

=
(
Pr
(
T (1)

1 ≤ Ttact

))n−1
(since the T (1)

i are i.i.d.)

=

⎛⎜⎜⎜⎜⎜⎝
∫ Ttact

0

λk1
1 xk1−1e−λ1 x

(k1 − 1)!
dx

⎞⎟⎟⎟⎟⎟⎠
n−1

=

⎛⎜⎜⎜⎜⎜⎜⎝1 −
k1−1∑
h=0

(λ1Ttact)h

h!
e−λ1Ttact

⎞⎟⎟⎟⎟⎟⎟⎠
n−1

.

Note that the last expression is given by iteratively perform-
ing integration by parts. Therefore, the collision probability
for m = 1 is given by the closed form

1 −
⎛⎜⎜⎜⎜⎜⎜⎝1 −

k1−1∑
h=0

(λ1Ttact)h

h!
e−λ1Ttact

⎞⎟⎟⎟⎟⎟⎟⎠
n−1

. (2)

4. Derivation of Collision Probability for m = 2

We derive an approximate collision probability for the case
of m = 2 by considering only two consecutive jobs. The
reason why we pay attention to two consecutive jobs is as
follows: even if we consider n jobs, a collision is the phe-
nomenon which occurs between only two consecutive jobs.
Therefore, we first pay attention to only two consecutive
jobs, and then we derive the no-collision probability be-
tween them. After that, considering n jobs, as the number
of pairs of two consecutive jobs is n − 1 (J1 and J2, J2 and
J3, . . . , Jn−1 and Jn), we approximate the no-collision prob-
ability over all n jobs using the (n−1)-th power of the above
derived probability of two consecutive jobs.

For this, the following random variables are intro-
duced. X1 = T (1)

i − Ttact, X2 = T (1)
i + T (2)

i − T (1)
i+1 − Ttact.

The random variable X1 means the time difference between
the time when job Ji is completed on piece of equipment M1

and the tact time. Similarly, the random variable X2 means
the time difference between the time when job Ji is com-
pleted on piece of equipment M2 and the time when job Ji+1

is completed on the previous piece of equipment M1. There-
fore, each X1 ≤ 0 and X2 ≤ 0 is the event that, under the
assumption that there are only two consecutive jobs Ji and
Ji+1, there is no collision between Ji and Ji+1 on piece of
equipment M1 and M2, respectively. Next, we introduce the
following event Ei for values of i from 1 to n − 1.

Ei : Event that, under the assumption that there are

only two consecutive jobs Ji and Ji+1, there is no

collision between them.

By Lemma 1 for m = 2, the probability of event Ei

occurring is given by

Pr(Ei) = Pr(T (1)
i ≤ Ttact,T

(1)
i + T (2)

i ≤ Ttact + T (1)
i+1)

= Pr(X1 ≤ 0, X2 ≤ 0)

=

�
S 1

f (x1, x2)dx1dx2, S 1 : x1 ≤ 0, x2 ≤ 0, (3)

where f (x1, x2) is the joint probability density function of
random variables X1 and X2, which are not independent of
each other.

Variables are then transformed by y1 = x1, y2 = x2−x1.
Thus, S 1 is expressed as S 2 in terms of y1 and y2:

S 2 : y1 ≤ 0, y1 + y2 ≤ 0.

The Jacobian J for x1 = y1 and x2 = y1 + y2, which corre-
sponds to S 1, is given by

J =
∂(x1, x2)
∂(y1, y2)

=

∣∣∣∣∣∣
1 0
1 1

∣∣∣∣∣∣ = 1.

Therefore,

Eq. (3) =
�

S 2

g(y1, y2)
∣∣∣J ∣∣∣ dy1dy2

=

∫ 0

−∞
dy1

∫ −y1

−∞
g1(y1)g2(y2)dy2, (4)

where g(y1, y2) is the joint probability density function of
random variables

Y1 = T (1)
i − Ttact, (5)

Y2 = T (2)
i − T (1)

i+1, (6)

and g1(y1) and g2(y2) are the pdfs of Y1 and Y2, respectively.
The random variable Y1 means the time difference between
the processing time of job Ji on piece of equipment M1 and
the tact time. Similarly, the random variable Y2 means the
time difference between the processing time of job Ji on
piece of equipment M2 and the processing time of job Ji+1

on the previous piece of equipment M1. Note that the sec-
ond equality in Eq. (4) holds since Y1 and Y2 are assumed to
be independent of each other.

Note that Eq. (4) (i.e. Pr(Ei)) is valid even if the pro-
cessing time of each piece of equipment follows general
distribution. However, Eq. (4) has a closed form formula
if Erlang distribution is assumed. In the next section, such a
closed form is derived.

Each pdf g j(y j) ( j = 1, 2) is determined only by pa-
rameters related to piece of equipment Mj. Therefore,
Pr(E1) = Pr(E2) = · · · = Pr(En−1) holds. Note that two
events, Ei and E j (i � j), are not independent of each other.
However, we approximate the no-collision probability over
all n jobs by Pr(Ei)n−1. In this case, the approximate colli-
sion probability for m = 2 is given by

1 − Pr(Ei)
n−1. (7)



CHIBA et al.: COLLISION PROBABILITY IN AN IN-LINE EQUIPMENT MODEL UNDER ERLANG DISTRIBUTION
403

5. Closed Form Formula for m = 2

In this section, we derive a closed form formula of Eq. (4)
(i.e. Pr(Ei)) under Erlang distribution.

By Eq. (5), the pdf g1(y1) of Y1 is obtained by translat-
ing the pdf of Erlang distribution with parameters λ1 and k1

by −Ttact. Therefore, we have

g1(y1) =

⎧⎪⎪⎨⎪⎪⎩
λ

k1
1 (y1+Ttact)k1−1

(k1−1)!eλ1(y1+Ttact ) (y1 ≥ −Ttact),
0 (y1 < −Ttact).

(8)

By Eq. (6), Y2 is the sum of two independent random
variables T (2)

i and −T (1)
i+1 with the following pdfs, h1 and

h2, respectively. The pdf of T (2)
i follows Erlang distribution

with parameters λ2 and k2, i.e.,

h1(x) =

⎧⎪⎪⎨⎪⎪⎩
λ

k2
2 xk2−1e−λ2 x

(k2−1)! (x ≥ 0),
0 (x < 0).

The pdf of −T (1)
i+1 is the reflection of the pdf of T (1)

i+1 with
parameters λ1 and k1 with respect to the line y = 0,

h2(y) =

⎧⎪⎪⎨⎪⎪⎩
0 (y > 0),

λ
k1
1 (−y)k1−1eλ1y

(k1−1)! (y ≤ 0).

Then, the pdf g2(y2) of Y2 is given by the convolution of h1

and h2.
Case 1: y2 ≥ 0

g2(y2) =
∫ ∞
−∞

h1(x) h2(y2 − x) dx

=

∫ ∞
y2

λk2
2 xk2−1e−λ2 x

(k2 − 1)!
· λ

k1
1 (x − y2)k1−1eλ1(y2−x)

(k1 − 1)!
dx

=
λk1

1 λ
k2
2 e−λ2y2

(k2 − 1)!(λ1 + λ2)k1+k2−1

·
k1−1∑
l=0

(k1 + k2 − 2 − l)!
l!(k1 − 1 − l)!

(−1)lyl
2(λ1 + λ2)l

·
k1+k2−2−l∑

h=0

yh
2(λ1 + λ2)h

h!
, (9)

Case 2: y2 < 0

g2(y2) =
∫ ∞
−∞

h1(x) h2(y2 − x) dx

=

∫ ∞
0

λk2
2 xk2−1e−λ2 x

(k2 − 1)!
· λ

k1
1 (x − y2)k1−1eλ1(y2−x)

(k1 − 1)!
dx

=
λk1

1 λ
k2
2 eλ1y2

(k2 − 1)!(λ1 + λ2)k1+k2−1

·
k1−1∑
h=0

(k1 + k2 − 2 − h)!
h!(k1 − 1 − h)!

(−1)hyh
2(λ1 + λ2)h. (10)

Using Eqs. (8) – (10) we simplify Eq. (4) (i.e. Pr(Ei))

in the following equation. Since y1 ≤ 0 holds in Eq. (4), we
have
∫ 0

−∞
g2(y2)dy2 +

∫ −y1

0
g2(y2)dy2

=
λk1

1 λ
k2
2

(k2 − 1)!(λ1 + λ2)k1+k2−1
·
k1−1∑
h=0

(k1 + k2 − 2 − h)!(λ1 + λ2)h

(k1 − 1 − h)!λh+1
1

+
λk1

1 λ
k2
2

(k2−1)!(λ1+λ2)k1+k2−1 ·
k1−1∑
l=0

(k1+k2−2−l)!(λ1+λ2)l(−1)l

(k1 − 1 − l)!λl+1
2 l!

·
k1+k2−2−l∑

h=0

(l + h)!(λ1 + λ2)h

h!λh
2

− λk1
1 λ

k2
2 eλ2y1

(k2−1)!(λ1+λ2)k1+k2−1 ·
k1−1∑
l=0

(k1+k2−2−l)!(λ1+λ2)l(−1)l

(k1 − 1 − l)!λl+1
2 l!

·
k1+k2−2−l∑

h=0

(l + h)!(λ1 + λ2)h

h!λh
2

·
l+h∑
q=0

λ
q
2y

q
1(−1)q

q!
.

Therefore, by denoting the above expression as I, we obtain

Pr(Ei) =
∫ 0

−∞
g1(y1) · Idy1

=

∫ −Ttact

−∞
g1(y1) · Idy1 +

∫ 0

−Ttact

g1(y1) · Idy1

=

∫ 0

−Ttact

λk1
1 (y1 + Ttact)k1−1e−λ1(y1+Ttact)

(k1 − 1)!
· Idy1

=

⎧⎪⎪⎨⎪⎪⎩
A−FAD+B−FBD+FC−GE, if λ1 � λ2,

A′−E′A′C′+B′−E′B′C′+E′F′D′, if λ=λ1=λ2,
(11)

where

A=
λk1

1 λ
k2
2

(k2−1)!(λ1+λ2)k1+k2−1 ·
k1−1∑
h=0

(k1+k2−2−h)!(λ1+λ2)h

(k1 − 1 − h)!λh+1
1

,

B=
λk1

1 λ
k2
2

(k2−1)!(λ1+λ2)k1+k2−1 ·
k1−1∑
l=0

(k1+k2−2−l)!(λ1+λ2)l(−1)l

(k1 − 1 − l)!λl+1
2 l!

·
k1+k2−2−l∑

h=0

(l + h)!(λ1 + λ2)h

h!λh
2

,

C=
λ2k1

1 λ
k2
2

(λ1 − λ2)k1 (k2 − 1)!(λ1 + λ2)k1+k2−1

·
k1−1∑
l=0

(k1+k2−2−l)!(λ1+λ2)l(−1)l

(k1 − 1 − l)!λl+1
2 l!

·
k1+k2−2−l∑

h=0

(l+h)!(λ1+λ2)h

h!λh
2

·
l+h∑
q=0

λ
q
2(−1)q

q!(λ1 − λ2)q
·

k1−1∑
v=0

T vtact
(q + k1 − 1 − v)!(λ1 − λ2)v

v!(k1 − 1 − v)! ,

D=
k1−1∑
u=0

T u
tactλ

u
1

u!
,

E=
λ2k1

1 λ
k2
2

(λ1 − λ2)k1 (k2 − 1)!(λ1 + λ2)k1+k2−1
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·
k1−1∑
l=0

(k1+k2−2−l)!(λ1+λ2)l(−1)l

(k1 − 1 − l)!λl+1
2 l!

·
k1+k2−2−l∑

h=0

(l+h)!(λ1+λ2)h

h!λh
2

·
l+h∑
q=0

λ
q
2(−1)q

q!(λ1 − λ2)q
·

k1−1∑
v=0

T vtact
(q + k1 − 1 − v)!(λ1 − λ2)v

v!(k1 − 1 − v)!

·
q+k1−1−v∑
w=0

(−1)wTwtact(λ1 − λ2)w

w!
,

F=e−λ1Ttact , G=e−λ2Ttact ,

A′=
1

(k2 − 1)!2k1+k2−1
·

k1−1∑
h=0

(k1 + k2 − 2 − h)!2h

(k1 − 1 − h)!
,

B′=
1

(k2−1)!2k1+k2−1
·
k1−1∑
l=0

(k1+k2−2−l)!2l(−1)l

(k1 − 1 − l)!l!

·
k1+k2−2−l∑

h=0

(l + h)!2h

h!
,

C′=
k1−1∑
u=0

T u
tactλ

u
1

u!
,

D′=
1

(k2 − 1)!2k1+k2−1
·

k1−1∑
l=0

(k1 + k2 − 2 − l)!2l(−1)l

(k1 − 1 − l)!l!

·
k1+k2−2−l∑

h=0

(l + h)!2h

h!
·

l+h∑
q=0

λqT q
tact

q!

·
k1−1∑
v=0

1
(q + k1 − v)(−1)vv!(k1 − 1 − v)! ,

E′=e−λTtact , F′=λk1 T k1
tact(−1)k1 .

This is a closed form formula of Pr(Ei), from which the ap-
proximate collision probability 1−Pr(Ei)n−1 is also obtained
in a closed form formula. These formulae contain parame-
ters n, Ttact, and parameters of the Erlang distributions.

6. Derivation of Collision Probability for the General
Model for m Pieces of Equipment

It is possible to extend the above derivation for m = 2 to
the general model for m pieces of equipment in a straight-
forward manner. In this section, we sketch its derivation.

We first introduce the following random variables:

Xl =

l∑
j=1

T ( j)
i −

l−1∑
j=1

T ( j)
i+1 − Ttact for all 1 ≤ l ≤ m.

The random variable Xl means the time difference between
the time when job Ji is completed on piece of equipment
Ml and the time when job Ji+1 is completed on the previous
piece of equipment Ml−1. Therefore, Xl ≤ 0 is the event that,
under the assumption that there are only two consecutive
jobs Ji and Ji+1, there is no collision between Ji and Ji+1 on
piece of equipment Ml. Then, by Lemma 1, the probability
of event Ei occurring is given as follows:

Pr(Ei) = Pr

⎛⎜⎜⎜⎜⎜⎜⎝
l∑

j=1

T ( j)
i ≤ Ttact +

l−1∑
j=1

T ( j)
i+1 : 1 ≤ l ≤ m

⎞⎟⎟⎟⎟⎟⎟⎠
= Pr (Xl ≤ 0 : 1 ≤ l ≤ m)

=

∫∫
. . .

∫
S ′1

f (x1, x2, . . . , xm)dx1dx2 · · · dxm,

S ′1 : xl ≤ 0 for all 1 ≤ l ≤ m, (12)

where f (x1, x2, . . . , xm) is the joint probability density func-
tion of random variables Xl for all 1 ≤ l ≤ m.

These variables are transformed by y1 = x1, y j = x j −
x j−1, and S ′1 is expressed as S ′2:

S ′2 :
j∑

i=1

yi ≤ 0 for all 1 ≤ j ≤ m.

The Jacobian J for xi =
∑i

j=1 y j for all 1 ≤ i ≤ m, which
corresponds to S ′1, is given by

J =
∂(x1, x2, . . . , xm)
∂(y1, y2, . . . , ym)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...
...
...
. . .

...
1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1.

Therefore, Eq. (12) becomes as follows:
∫∫

· · ·
∫

S 2

g(y1, y2, . . . , ym)
∣∣∣J ∣∣∣ dy1dy2 · · · dym

=

∫ 0

−∞
dy1

∫ −y1

−∞
dy2 · · ·

∫ −∑m−1
i=1 yi

−∞
g1(y1)g2(y2) · · · gm(ym)dym,

(13)

where g(y1, y2, . . . , ym) is the joint probability density func-
tion of random variables

Y1 = T (1)
i − Ttact,

Yj = T ( j)
i − T ( j−1)

i+1 for 2 ≤ j ≤ m,

and each g j(y j) is the pdf of Yj. The random variable Yj

means the time difference between the processing time of
job Ji on piece of equipment Mj and the processing time of
job Ji+1 on the previous piece of equipment Mj−1. Note that
the equality in Eq. (13) holds because we assume all Yj are
independent of each other.

The g1(y1) is given by Eq. (8), and g j(y j) for all 2 ≤
j ≤ m are given by the convolution of two pdfs of T ( j)

i and

−T ( j−1)
i+1 . Since the derivation of Eq. (13) into a closed form

formula is similar to the one shown in the previous section,
we have omitted the details. Therefore, the approximate col-
lision probability 1−Pr(Ei)n−1 is also given in a closed form
formula.

We close this section by the following simple obser-
vation that holds for the general distribution of processing
time. From Eq. (12),
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Pr(Ei) = Pr

⎛⎜⎜⎜⎜⎜⎜⎝
l∑

j=1

T ( j)
i ≤ Ttact +

l−1∑
j=1

T ( j)
i+1 : 1 ≤ l ≤ m

⎞⎟⎟⎟⎟⎟⎟⎠
we know that Pr(Ei) is an increasing function of Ttact. This
naturally implies that 1 − Pr(Ei)n−1 is a decreasing function
of Ttact.

Proposition 1: The approximate collision probability 1 −
Pr(Ei)n−1 is monotonically decreasing with tact time for the
general distribution of processing time.

7. Numerical Results and Computer Simulation

Based on the above formulae, we obtain some numerical re-
sults by using MATHEMATICA [12]. For our computation
in this section, the number of jobs is set to n = 1, 000, and
the parameters of the Erlang distributions are set so that the
expectation of the processing time on each piece of equip-
ment becomes equal to one (i.e., k = λ in Eq. (1)).

Firstly, we compute the collision probability for m =
1, i.e. Eq. (2), as shown in Fig. 4, where the horizontal
axis denotes the tact time Ttact. It shows that, as the tact
time passes a certain threshold, the collision probability de-
creases rapidly, clearly exhibiting the trade-off between the
tact time and the collision probability.

We consider the optimization problem presented in [1],
which minimizes the tact time by including the collision
probability as part of the input. Therefore, we denote by
T ∗tact the minimum tact time under the condition that the col-
lision probability is less than or equal to α% (0 ≤ α ≤ 100).
In this section, α is set to one. In Fig. 4, T ∗tact is about 1.49,
which is 1.49 times the expectation of the processing time.

Note that the variance of the Erlang distribution for
Fig. 4 is k1/λ

2
1 = 0.01. We also test smaller variances, 0.001

and 0.0001, and the results are shown in Fig. 5 and Fig. 6, re-
spectively. They show that T ∗tact for these variances are about
1.15 and 1.05, respectively, indicating that T ∗tact decreases as
the variance of processing time decreases.

Next, using Eq. (11) we compute the approximate col-
lision probability Eq. (7) for m = 2. The numerical results
are shown in Fig. 7, Fig. 8, and Fig. 9, for variances 0.2,
0.1 and 0.0667, respectively. The resulting T ∗tact are about

Fig. 4 Collision probability when m = 1, k1 = 100, λ1 = 100 (variance
= 0.01), and n = 1, 000.

Fig. 5 Collision probability when m = 1, k1 = 1, 000, λ1 = 1, 000 (vari-
ance = 0.001), and n = 1, 000.

Fig. 6 Collision probability when m = 1, k1 = 10, 000, λ1 = 10, 000
(variance = 0.0001), and n = 1, 000.

Fig. 7 Collision probability when m = 2, k1 = 5, k2 = 5, λ1 = 5, λ2 = 5
(variance = 0.2), and n = 1, 000.

Fig. 8 Collision probability when m = 2, k1 = 10, k2 = 10, λ1 = 10,
λ2 = 10 (variance = 0.1), and n = 1, 000.
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Fig. 9 Collision probability when m = 2, k1 = 15, k2 = 15, λ1 = 15,
λ2 = 15 (variance = 0.0667), and n = 1, 000.

Table 1 Collision probability (CP) evaluated by simulation when m = 2,
k1 = 100, k2 = 100, λ1 = 100, λ2 = 100 (variance = 0.01), and n = 1, 000.
[%]

Ttact 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90
CP 99.52 90.25 61.37 30.59 12.40 4.42 1.44 0.44 0.12 0.03

Table 2 Collision probability (CP) evaluated by simulation when m = 2,
k1 = 1, 000, k2 = 1, 000, λ1 = 1, 000, λ2 = 1, 000 (variance = 0.001), and
n = 1, 000. [%]

Ttact 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30
CP 100.0 99.60 84.16 42.21 13.48 3.35 0.72 0.13 0.02 0.00

5.15, 3.72, and 3.15, respectively, again showing that T ∗tact
decreases with the variance.

We also carried out the following simulations to eval-
uate the exact probabilities. The procedure is stated as fol-
lows: given the number of jobs n, the number of pieces of
equipment m, the tact time Ttact, the parameters of the Erlang
distribution, and a positive integer c (specifying the number
of iterations, which is related to the accuracy), derive the
collision probability by the following algorithm [1].

Simulation Algorithm
Step 1: loop := 1.
Step 2: Generate the processing time t( j)

i (1 ≤ i ≤ n, 1 ≤
j ≤ m) randomly from the Erlang distribution.

Step 3: Based on the condition in Lemma 1, check whether
a collision occurs. Let loop := loop + 1. If loop ≤ c,
return to Step 2; otherwise go to Step 4.

Step 4: Output the collision probability (the number of col-
lisions observed in Step 3)/c.

The computation time is Θ(cmn). Throughout all sim-
ulations, we use Mersenne Twister [10] as the pseudoran-
dom generator, and the number of iterations is set to c =
1, 000, 000.

In Figs. 4–9, the obtained simulation results are indi-
cated by black dots. As numerical results and simulation
results are reasonably close in most cases, we may conclude
that simulation results are reasonably accurate and our ap-
proximation is justified.

We then checked by simulation the probability for
smaller variances of processing times. The results are shown
in Tables 1 and 2, from which we read that T ∗tact are about

Table 3 Collision probability evaluated by simulation when k j = 1, 000,
λ j = 1, 000 (variance = 0.001) for all 1 ≤ j ≤ m, and n = 1, 000. [%]

Ttact

m 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65
3 91.39 19.27 1.21 0.04 0.00 0.00 0.00 0.00 0.00 0.00
4 99.99 77.83 16.32 1.52 0.09 0.00 0.00 0.00 0.00 0.00
5 100.0 99.16 57.61 11.35 1.29 0.11 0.01 0.00 0.00 0.00
6 100.0 100.0 91.23 37.52 7.19 0.98 0.10 0.01 0.00 0.00
7 100.0 100.0 99.40 71.11 22.36 4.26 0.63 0.07 0.01 0.00
8 100.0 100.0 99.99 92.39 47.06 12.72 2.46 0.39 0.05 0.01
9 100.0 100.0 100.0 98.95 72.81 27.97 6.95 1.37 0.23 0.03

1.80 and 1.24, respectively. Finally, we checked the proba-
bility in some cases of larger m and larger parameter values
of the Erlang distribution. The simulation results are shown
in Table 3, where k j = 1, 000, λ j = 1, 000 for all 1 ≤ j ≤ m,
i.e., the expectation and variance are 1 and 0.001, respec-
tively. From Table 3, we confirmed that the collision proba-
bility increases with m, but decreases with Ttact. Table 3 also
shows that T ∗tact increases with m.

8. Conclusions

In the model presented in [1], it is assumed that the process-
ing time of each piece of equipment is a random variable that
follows a continuous probability distribution. In [1], two
cases were specifically discussed, in which processing time
followed a normal and an exponential distribution. In this
paper, we have assumed, considering the features of actual
processing times, that processing time follows an Erlang
distribution, which is a new focus of observation. Moreover,
since our model is simple, it has broad utility and the poten-
tial of having a wide domain of applicability in the field of
mass production and not just in the manufacture of FPDs
and semiconductors.

We presented a closed form formula of the approximate
collision probability in the model comprising of m pieces of
equipment when the processing time of each piece of equip-
ment follows an Erlang distribution. This closed form is an
extension of the one presented in [1], which showed a closed
form of the approximate collision probability when the pro-
cessing time follows an exponential distribution. We have
also shown numerical results, as well as computer simula-
tion results. Our approximate formula has reasonable accu-
racy, as experimentally confirmed.

There are also cases where numerical results and sim-
ulation results are different. For example, since the approxi-
mate formula is expressed using the (n − 1)-th power, when
the number of jobs n is very small and the value for the colli-
sion probability is relatively large, cases of small percentage
differences between numerical results and simulation results
exist. It could be considered as one possible area of future
work to reveal this phenomenon mathematically from the
viewpoint of guaranteeing accuracy.

Presenting a closed form for the case of general m can
be considered as another area of future work. Since such an
expression may be very complicated, it can be assumed that
some recursive formulae may be useful.
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Additionally, it may become hard to obtain numerical
values from the closed form depending on parameter con-
ditions. For example, when comparing such values with
simulation results in Table 3, overflow might occur trying
to perform numerical computation for the closed form using
MATHEMATICA. Solving this is a possible area of further
work. Moreover, research related to the computable order
for the parameters is also an area of future interest.

Finally, we discuss some differences between the
model presented in this paper and an actual FPD production
line. In a real FPD production line, in order to avoid a colli-
sion between substrates, a substrate will not be transported
to the next piece of equipment if it is occupied. In this situa-
tion, the substrate may be kept at the current piece of equip-
ment even if the required process on it has been completed.
This is referred to as tandem queues with blocking. How-
ever, considering chemicals, heat treating, etc., it is not very
acceptable to allow waiting on a piece of equipment because
FPD quality could decay. As another solution for avoiding
collisions, buffers could be made before each piece of equip-
ment. Analyzing the collision probability with buffer space
included is also a potential area of future research.
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