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Linear Time Algorithms for Finding Articulation and Hinge
Vertices of Circular Permutation Graphs

Hirotoshi HONMA†a), Kodai ABE††, Members, Yoko NAKAJIMA†, Nonmember,
and Shigeru MASUYAMA†††, Member

SUMMARY Let Gs = (Vs, Es) be a simple connected graph. A vertex
v ∈ Vs is an articulation vertex if deletion of v and its incident edges from
Gs disconnects the graph into at least two connected components. Find-
ing all articulation vertices of a given graph is called the articulation vertex
problem. A vertex u ∈ Vs is called a hinge vertex if there exist any two
vertices x and y in Gs whose distance increase when u is removed. Finding
all hinge vertices of a given graph is called the hinge vertex problem. These
problems can be applied to improve the stability and robustness of commu-
nication network systems. In this paper, we propose linear time algorithms
for the articulation vertex problem and the hinge vertex problem of circular
permutation graphs.
key words: design and analysis of algorithms, articulation vertices, hinge
vertices, circular permutation graphs

1. Introduction

Let Gs = (Vs, Es) be a simple connected graph with |V | = n
and |E| = m. A vertex v ∈ Vs is an articulation vertex if the
deletion of v and its incident edges from Gs disconnects the
graph into at least two connected components. A graph with
no articulation vertex is called a biconnected graph. Finding
all articulation vertices of a given graph is called the artic-
ulation vertex problem. An O(n + m) time algorithm exists
for solving the articulation vertex problem in simple graphs
by using the traditional depth-first spanning tree method [1].
Moreover, efficient parallel algorithms for finding articula-
tion vertices, bridges, and biconnected components in gen-
eral graphs are given in [2], [3].

A vertex u ∈ Vs is called a hinge vertex if there exist
any two vertices x and y in Gs whose distance increase when
u is removed. A graph without hinge vertices is called a self-
repairing graph. Articulation vertices are a special case of
hinge vertices in that the removal of an articulation vertex
u changes the finite distance of some nonadjacent vertices x
and y to infinity. Finding all hinge vertices of a given graph
is called the hinge vertex problem. There exists an O(n3)
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time algorithm for solving the hinge vertex problem of a
simple graph. These problems can be applied to improve
the stability and robustness of communication network sys-
tems [4].

In many cases, more efficient algorithms can be de-
veloped by restricting the classes of graphs. For instance,
for permutation graphs, Ibarra and Zheng [5] proposed an
O(log n) time parallel algorithm using O(n/ log n) proces-
sors for the articulation vertex problem, while Ho et al. [6]
presented an O(n) time algorithm for the hinge vertex prob-
lem on permutation graphs, whose minor error was cor-
rected by [7]. Furthermore, for interval graphs, Sprague and
Kulkarni [8] proposed an O(log n) time parallel algorithms
with O(n/ log n) processors for the articulation vertex prob-
lem, and Hsu et al. [9] presented an O(n) time algorithm
for the hinge vertex problem. Kao and Horng [10] proposed
optimal O(log n) time parallel algorithms with O(n/ log n)
processors for finding all articulation vertices, bridges, and
biconnected components of circular-arc graphs, which are
a superclass of interval graphs.

Let Vp = [1, 2, . . . , n] be a vertex set and P =

[p(1), p(2), . . . , p(n)] be a permutation of Vp. A permuta-
tion graph Gp is visualized by its corresponding permutation
model Mp, which consists of two horizontal parallel lines
called the top channel and bottom channel, respectively.
Place the vertices 1, 2, . . . , n on the top channel, ordered
from left to right, and similarly, place p(1), p(2), . . . , p(n) on
the bottom channel. Next, for each i ∈ Vp, draw a straight
line from i on the top channel to i on the bottom channel.
Then, an edge (i, j) in Gp exists if and only if lines i and
j intersect in Mp. In this paper, “line” and “vertex” are
used interchangeably. An example of a permutation model
Mp and its corresponding permutation graph Gp is shown in
Fig. 1. Permutation graphs are an important subclass of per-
fect graphs, and they are used for modeling practical prob-
lems in many areas, such as biology, genetics, very large
scale integration (VLSI) design, and network planning [11].

Circular permutation graphs properly contain a set
of permutation graphs as a subclass. Rotem and Urru-
tia first introduced circular permutation graphs and pro-
vided an O(n2.376) time recognition algorithm [12]. Lou and
Sarrafzadeh showed that circular permutation graphs and
their models have several applications in VLSI layout de-
sign [13]. They presented an O(min(δn log log n, n log n) +
|E|) time algorithm for finding a maximum independent set
of a circular permutation model, where δ is the minimum
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Fig. 1 Permutation model Mp and graph Gp.

degree of vertices in the corresponding circular permutation
graph. Furthermore, they presented an O(n log log n) time
algorithm for finding the maximum clique and the chromatic
number of a circular permutation model. Subsequently, the
recognition algorithm was improved in O(m + n) time by
Sritharan [14].

In this paper, we propose linear time algorithms for the
articulation and the hinge vertex problems in circular per-
mutation graphs. Both of them can run in O(n) time. The
rest of this paper is organized as follows. Section 2 describes
some definitions of circular permutation graphs and mod-
els. Section 3 introduces the extended circular permutation
model and its properties. Sections 4 and 5 consider algo-
rithms that address both articulation and the hinge vertex
problem and the complexity of these algorithms. Section 6
concludes this paper.

2. Circular Permutation Model and Graph

We first illustrate the circular permutation model before
defining the circular permutation graph. There exist in-
ner and outer circles C1 and C2 with radii r1 < r2. Let
CP = [cp(1), cp(2), . . . , cp(n)] be a permutation of integer
sequence [1, 2, . . . , n]. Furthermore, cp−1(i), 1 � i � n,
denotes the position of the number i in CP. Consecutive
integers i, 1 � i � n, are set to be counter-clockwise on
C1. Similarly, cp(i), 1 � i � n, is set to be counter-
clockwise on C2. For each i, 1 � i � n, draw a chord
joining the two i’s, one on C1 and the other on C2, de-
noted as chord i. The geometric representation described
above is called a circular permutation model CM. Figure 2
illustrates an example of CM with 12 chords constructed by
CP = [11, 1, 5, 10, 2, 7, 6, 9, 4, 8, 3, 12]. This model is con-
sidered to be proper if any two chords i and j intersect at
most once in the CM. In this paper, we consider only proper
circular permutation graphs and models, and therefore, the
word “proper” is omitted henceforth.

Next, we introduce circular permutation graphs. An
undirected graph G is a circular permutation graph if it can
be represented by the following circular permutation model
CM: each vertex of the graph corresponds to a chord in the
annular region between two concentric circles C1 and C2,
and two vertices are adjacent in G if and only if their cor-
responding chords intersect exactly once [12]. Figure 3 il-
lustrates the circular permutation graph G corresponding to

Fig. 2 Circular permutation model CM.

Fig. 3 Circular permutation graph G.

CM shown in Fig. 2. In this example, {2, 10} is an articula-
tion vertex set and {2, 4, 8, 10} is a hinge vertex set.

Next, we consider a fictitious chord a which connects
the point a′ that is placed between 1 and 12 on C1 and
point a′′ on C2. A chord that intersects a is called a feed-
back chord. The set of all feedback chords is denoted by
F. Moreover, a set of feedback chords that intersect a in
clockwise is defined as F−, and a set of feedback chords
that intersect a counterclockwise is defined as F+. We must
place point a′′ on C2 so that |F−| = |F+| is satisfied. In
the example shown in Fig. 2, point a′′ is placed between 3
and 12 on C2. Consequently, F = {3, 4, 11, 12}, F− = {3, 4}
and F+ = {11, 12}. If a fictitious chord a exists that does not
intersect any chord in CM, a model formed by opening CM
along a is equivalent to a permutation model. This problem
can be solved by applying Ibarra et al.’s algorithm [5] be-
cause this problem is the same as that of permutation graphs.
In this paper, we assume that any fictitious chord intersects
at least one chord.
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3. Extended Circular Permutation Model

In this section, we introduce an extended circular permuta-
tion model ECM that is constructed from a CM.

Let n be the number of chords in CM. First, a point
a′ is fixed between 1 and n on C1. Next, we consider a
fictitious chord a with |F−| = |F+|. In Fig. 2, we obtain
|F−| = |F+| = 2 by placing point a′′ between 3 and 12 on
C2. ECM is formed by opening CM along a. ECM consists
of two horizontal parallel lines L1 and L2, called top and bot-
tom channels, respectively. The top channel L1 is assigned
the consecutive number i, −n+1 � i � 2n, from left to right.
The bottom channel L2 is assigned p(i), −n + 1 � i � 2n,
from left to right. Here, p(i), 1 � i � n, on L2, is assigned
a cp value on C2 in the counter-clockwise direction from
point a′′. Next, p(i), 1 � i � n, changes to p(i)− n if i ∈ F+.
Furthermore, p(i), 1 � i � n, changes to p(i) + n if i ∈ F−.
We execute p(i − n) = p(i) − n and p(n + i) = p(i) + n for
1 � i � n. For each −n + 1 � i � 2n, a straight line is
drawn from i on L1 to i on L2. After executing the above
process, ECM is constructed from CM. Figure 4 illustrates
ECM constructed from CM shown in Fig. 2. Here, p−1(i)
denotes the position of i on L2.

Circular permutation and circular-arc graphs are circu-
lar versions of permutation and interval graphs, respectively.
Moreover, as mentioned in Sect. 1, circular permutation and
circular-arc graphs are superclasses of permutation and in-
terval graphs, respectively. Efficient algorithms have been
developed that address various problems concerning permu-
tation and circular-arc graphs. However, in general, prob-
lems for circular graphs tend to be more difficult than those
for non-circular graphs. One of the reasons is that we can
not uniquely determine the starting position of an algorithm
for a circular graph due to the existence of feedback ele-
ments although it can be fixed for a non-circular graphs.

For several problems, we can develop circular versions
of the existing algorithms by constructing extended inter-
section models of the problems. By using extended inter-
section models, we can determine a start position of algo-
rithm uniquely and apply partially the algorithms of the non-
circular versions. For instance, this method has been applied
to develop efficient algorithms for the shortest path query
problem [9], [15], the articulation vertex problem [10] on
circular-arc graphs, maximum clique and chromatic number
problems [13], the spanning forest problem [16] on circular-
permutation graphs. In this paper, we use ECM to construct
efficient algorithms for articulation and hinge vertex prob-
lems.

Property 1 stated below, can be derived in a straightfor-
ward manner from the processes of constructing ECM.

Property 1: Lines i − n, i, and i + n in ECM correspond to
the vertex i in G.

Two vertices i and j are adjacent in a circular permuta-
tion graph if and only if their corresponding chords intersect
exactly once in CM. When two chords i and j (i < j) inter-

sect in CM, we distinguish the following three cases:
Case 1: i ∈ F− or j ∈ F+

In this case, lines j and i+n intersect in ECM with lines
i + n and j, respectively.
Case 2: i ∈ F+ and j ∈ F−

This case is infeasible because it implies that chords i
and j intersect twice in CM.
Case 3: Remaining conditions for i and j

In these cases, lines i and j intersect in ECM.
Based on the above mentioned information, we can

state Property 2 as follows:

Property 2: Let i and j (i < j) be two vertices in G. Then,
vertex i is adjacent to j if and only if lines i and j, or lines i
and j − n, or lines i + n and j intersect in ECM.

Some notations that form the basis of the algorithms
in Sects. 4 and 5 are defined as follows: The set of all lines
that intersect line i in ECM is denoted by N(i). In addition,
N[i] = N(i)∪ {i}. For line i in ECM, the following functions
are defined: TR(i) = max{ j | j ∈ N[i]} and S TR(i) =
max{ j | j ∈ (N[i] \ TR(i)) ∪ {i}}. DR(i) = { k | S TR(i) <
k < TR(i)}. T L(i) = min{ j | j ∈ N[i]} and S T L(i) =
min{ j | j ∈ (N[i] \ T L(i)) ∪ {i}}. DL(i) = { k | T L(i) < k <
S T L(i)}. BR(i) = k such that p−1(k) = max{ p−1( j) | j ∈
N[i]}. BL(i) = k such that p−1(k) = min{ p−1( j) | j ∈ N[i]}.
A(i) and B(i) for line i are defined as follows: A(i) = |{ j |
j � i, p−1( j) > i}| and B(i) = |{ j | j > i, p−1( j) � i}|.
Table 1 shows TR(i), S TR(i), DR(i), T L(i), S T L(i), DL(i),
BR(i), BL(i), A(i), and B(i) for ECM shown in Fig. 4.

4. Articulation Vertex Algorithm

In this section, we present an algorithm AVC that finds all ar-
ticulation vertices of a circular permutation graph. Let ECM
be an extended circular permutation model constructed from
CM. We say a path exists between i and j if either line i di-
rectly intersects line j, or there exist lines k1, k2, . . . , ks in
ECM such that line i intersects k1, k1 intersects k2, . . . , ks−1

intersects ks, and ks intersects line j. Moreover, two lines
i and j in ECM belong to the same line component if there
exists a path between i and j. In Fig. 4, line 8 is a cut line
for lines 10 and 11.

4.1 Properties of Articulation Vertex

Ibarra and Q. Zheng [5] provided Lemma 1, which is a nec-
essary and sufficient condition for the articulation vertex in
a permutation graph Gp.

Lemma 1 ([5]): Let Gp be a permutation graph corre-
sponding to a permutation model Mp. A vertex v is an ar-
ticulation vertex of Gp if and only if there exists an integer
i (1 � i � n) such that either of the following conditions
holds in Mp:

(1) v = TR(p(i)) for B(i) = 1, A(i − 1) = 1, and p(i) < i,
(2) v = BR(i) for A(i) = 1, B(i − 1) = 1, and p−1(i) < i.
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Fig. 4 Extended circular permutation model ECM.

Table 1 Example of TR(i), S TR(i), T L(i), S T L(i), BR(i), BR(i), A(i) and B(i).

i −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p(i) −3 4 −4 3 0 −1 1 5 10 2 7 6 9 16 8 15 12 11 13 17

p−1(i) −3 −7 2 1 3 6 0 −2 4 8 7 11 9 5 14 13 15 18 12 10
TR(i) −2 −2 4 4 4 10 4 4 5 10 10 16 10 10 16 16 16 22 16 16

S TR(i) −3 −2 3 3 3 5 3 4 5 7 7 10 9 10 15 15 15 17 15 16
DR(i) 6. . . 9 8,9 8,9 11. . . 15
T L(i) −4 −10 −1 −1 1 2 −1 −4 2 6 6 8 8 2 11 11 13 14 11 8

S T L(i) −3 −6 −1 0 1 2 0 −1 5 6 7 8 9 6 11 12 13 14 14 14
DL(i) −3,−2 3,4 3. . . 5
BR(i) −4 −4 −1 −1 1 2 2 2 2 6 6 8 8 8 11 11 13 14 12 11
BL(i) −2 −2 4 4 4 4 4 4 5 10 10 10 10 10 16 16 16 16 16 16
A(i) 2 2 2 1 1 1 1 1 1 1 1 1 2
B(i) 2 2 2 1 1 1 1 1 1 1 1 1 2

av1(i) 10 10 16
av2(i) 2 2 8

Let G = (V, E), |V | = n be a circular permutation
graph corresponding to a circular permutation model CM,
and ECM be an extended circular permutation model con-
structed from CM. Hence, Lemmas 2 and 3 follow from
Lemma 1.

Lemma 2: TR(p(i)) is a cut line for i − 1 and i in ECM if
B(i) = 1, A(i − 1) = 1 and p(i) < i.

(Proof) By Lemma 1–(1), the elimination of line TR(p(i))
from ECM disconnects it into at least two line components
when B(i) = 1, A(i − 1) = 1 and p(i) < i. Assume that ECM
is divided into two line components, namely M1 and M2 by
removing line TR(p(i)) (Fig. 5). We show that M1 and M2

include lines i − 1 and line i, respectively.
From condition A(i− 1) = 1, ECM has a line j(� i− 1)

with p−1( j) > i− 1. We assume that p−1( j) > i. There exists
some line r(� i − 1) with p−1(r) = i from condition p(i) < i.
It follows A(i − 1) � 2 and contradicts the hypothesis of
A(i − 1) = 1. Hence, such a line r does not exist. This
implies that p−1( j) = i and line j has maximum p−1 value in
M1.

According to Lemma 1–(1), only line TR(p(i)) con-
nects M1 and M2. Furthermore, by the condition B(i) = 1,
TR(p(i)) > i and p−1(TR(p(i))) < i. Since ECM is con-
structed under the condition that |F−| = |F+|, there are i
positions from 1 to i on L2. However, i + 1 positions are
required from 1 to i on L2 when p−1(i) < i. This is the con-
tradiction of the pigeonhole principle. Thus, p−1(i) > i.

Hence, for two lines i − 1 and i, p−1(i − 1) < i and

Fig. 5 Example of Lemma 2.

p−1(i) > i, respectively. Furthermore, line p(i) has maxi-
mum p−1 value in M1 and only line TR(p(i)) connects M1

and M2. Hence, M1 and M2 include lines i− 1 and i, respec-
tively. �

Lemma 3: BR(i) is a cut line for i and i + 1 in ECM if
A(i) = 1, B(i − 1) = 1, and p−1(i) < i.

(Proof) Lemma 3 is symmetric to Lemma 2. Hence, its proof
is similar to that of Lemma 2. �

Lemma 4: Let G = (V, E) be a circular permutation graph
corresponding to ECM. A vertex v is an articulation vertex
of G if and only if elimination of line v disconnects ECM
into at least three line components.

(Proof) Sufficiency of this condition obviously holds; thus,
we only prove necessity. Consider a case of where ECM
is divided into just two line components M1 and M2 by re-
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Algorithm 1: Algorithm AVC
Input: CP = {p(1), p(2), . . . , p(n)} of a circular

permutation graph G.
Output: Articulation vertices of G.
(Step 1)
Construct ECM and compute p−1(i);
(Step 2)
Compute TR(i), BR(i) for i in ECM;
(Step 3)
Compute A(i) and B(i) for i in ECM;
(Step 4)
/* Compute av1(i) */ ;
for each 1 � i � n do

if (B(i) = 1 and A(i − 1) = 1 and p(i) < i) then
av1(i) = TR(p(i)) ;

end
(Step 5)
/* Compute av2(i) */;
for each 1 � i � n do

if (A(i) = 1 and B(i − 1) = 1 and p−1(i) < i) then
av2(i) = BR(i) ;

end
(Step 6)
for each 1 � i � n do

Normalize av1(i);
Normalize av2(i);

end
(Step 7)
if av1(i) has at least two same values for 1 � i � n then
av1(i) is an articulation vertex ;
if av2(i) has at least two same values for 1 � i � n then
av2(i) is an articulation vertex ;

Function Normalize v{
if v < 1 then v := v + n ;
if v > n then v := v − n ;
return v ;
}

moving line v from ECM. M1 includes some copies of lines
that are in M2, and M2 includes some copies of lines that are
on M1 subject to conditions F � ∅ and |F−| = |F+|. Thus,
ECM is divided into M1 and M2, but a graph corresponding
to M1 ∪ M2 is connected.

In the following lemma, assume that ECM is divided
into k(� 3) line components M1,M2, . . . ,Mk when line v
is removed from ECM. Here, M1 includes some copies of
lines that are in Mk, and Mk also includes some copies of
lines that are in M1. Thus, the subgraph corresponding to
M1 ∪ Mk is connected. Hence, G − v is a graph with k − 1
connected components (M2, . . . ,Mk−1,M1 ∪ Mk). That is,
G − v is disconnected. �

Lemma 5: Let G = (V, E) be a circular permutation graph
corresponding to ECM. A vertex v is an articulation vertex
of G if and only if there exist at least two identical values

of v for 1 � i � n such that either of the following two
conditions holds in ECM;

(1) v = TR(p(i)) for B(i) = 1 and A(i− 1) = 1 and p(i) < i.
(2) v = BR(i) for A(i) = 1 and B(i − 1) = 1 and p−1(i) < i.

(Proof) Assume that condition (1) holds for i1 and i2, i.e.,
v = TR(p(i1)) = TR(p(i2)) for 1 � i1 < i2 � n. By
Lemma 2, v is a cut line for i1 − 1 and i1, and is also a
cut line for i2 − 1 and i2. Hence, the elimination of line v
disconnects ECM into three line components M1, M2, and
M3 that include i1 − 1, i1, and i2, respectively. By Lemma 4,
G is disconnected because ECM is divided into at least three
line components. Thus, vertex v is an articulation vertex of
G. In a similar manner, we can prove case (2). �

We show an example in which vertex 10 is recognized
as an articulation vertex by applying Lemma 5. In Fig. 4,
when i = 6, B(i) = 1, A(i − 1) = 1, and p(i) = 2 < i, and
consequently, v = TR(p(i)) = TR(p(6)) = 10. Similarly,
when i = 8, B(i) = 1, A(i − 1) = 1, and p(i) = 6 < i, and
thus, v = TR(p(i)) = TR(6) = 10 holds true. Thus, we
can obtain 10 as the articulation vertex because the values
(v = 10) appear for i = 6 and 8.

4.2 Analysis of Algorithm AVC

The algorithm used to find all articulation vertices of a
circular permutation graph is described formally in Algo-
rithm AVC.

Next, we analyze the complexity of Algorithm AVC.
In Step 1, we construct a circular permutation model ECM
that can be executed in O(n) time. In Step 2, TR(i) and
BR(i) are computed. In Step 3, A(i) and B(i) are obtained.
The above preprocessing steps take O(n) time [5]. Steps 4–
6 compute av1(i) and av2(i) by applying Lemma 5 and they
run in O(n) time. By applying Step 6 of Algorithm AVC, we
obtain av1(i) and av2(i) in Table 1. After executing Step 7,
all articulation vertices of a circular permutation graph are
correctly found. In Table 1, each of av1 and av2 has two
identical values, 10 and 2, respectively. Thus, vertices 10
and 2 are articulation vertices. Hence, we obtain the follow-
ing theorem:

Theorem 1: Algorithm AVC can solve the articulation ver-
tex problem of circular permutation graph in O(n) time.

5. Hinge Vertex Algorithm

In this section, we present Algorithm HVC for finding all
hinge vertices of circular permutation graphs. A vertex u is
considered to be a hinge vertex if there exist any two vertices
x and y in G whose distance increase by removing u.

5.1 Properties of Articulation Vertex

The following Lemma 6 proposed by Chang et al. [17] char-
acterizes the hinge vertices of a simple graph Gs.
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Fig. 6 Example of Lemma 8.

Lemma 6 ([17]): For a simple graph Gs, a vertex u is a
hinge vertex of Gs if and only if there exist two nonadjacent
vertices x < y such that u is the only vertex adjacent to both
x and y in Gs.

Lemma 7 provides the necessary and sufficient condi-
tion for hinge vertices in a permutation graph presented by
Ho et al. [6].

Lemma 7 ([6]): Let Gp be a permutation graph corre-
sponding to a permutation model Mp. A vertex u is a hinge
vertex of Gp if and only if there exist two vertices x < y;
such that either of the following conditions holds in Mp:

(1) u = TR(x) for y ∈ DR(x) and p−1(BR(x)) < p−1(y),
(2) u = T L(y) for x ∈ DL(y) and p−1(x) < p−1(BL(y)).

Let G = (V, E), |V | = n be a circular permutation
graph corresponding to a circular permutation model CM,
and ECM be an extended circular permutation model con-
structed from CM. Lemmas 8 and 9 follow from Lemmas 6
and 7, respectively.

Lemma 8: A vertex u = TR(x) is a hinge vertex of G if
there exist two vertices x < y ∈ V satisfying y ∈ DR(x),
p−1(BR(x)) < p−1(y), TR(y) < x + n, and p−1(BR(y)) <
p−1(x + n) in ECM.

(Proof) (⇒) If u is a hinge vertex of G, by Lemma 7, u =
TR(x), S TR(x) < y < TR(x), and p−1(BR(x)) < p−1(y)
in ECM. This indicates that line x does not intersect line
y and u is the only line intersecting both lines x and y in
ECM (Fig. 6). Assume that TR(y) > x + n or p−1(BR(y)) >
p−1(x + n). If TR(y) > x + n, the line TR(y) intersects both
lines y and x + n. Note that line x + n is a copy of line
x. That is, both lines x + n and x correspond to the same
vertex x. This contradicts the assumption that u is the only
vertex adjacent to vertices x and y in G. Furthermore, if
p−1(BR(y)) > p−1(x + n), line BR(y) intersects both y and
x + n. This is found to be contradictory to the assumption.
Thus, necessity is satisfied.
(⇐) By Lemma 7, if u = TR(x), y ∈ DR(x), and
p−1(BR(x)) < p−1(y), u is the only line that intersects both
lines x and y in ECM. Furthermore, as TR(y) < x + n and
p−1(BR(y)) < p−1(x + n), no line intersects both lines y and
x + n. This implies that vertex u is the only vertex adjacent
to both vertices x and y in G. Therefore, sufficiency is satis-
fied. �

Algorithm 2: Algorithm HVC
Input: CP = {p(1), p(2), . . . , p(n)} of a circular

permutation graph G.
Output: Hinge vertices of G.
(Step 1)
Construct ECM and compute p−1(i);
(Step 2)
Compute TR(i), S TR(i), BR(i) for 1 � i � n;
(Step 3)
Compute T L(i), S T L(i), BL(i) for 1 � i � n;
(Step 4) /* Compute hinge vertices */ ;
for each y ∈ DR(x) do

if p−1(BR(x) < p−1(y), TR(y) < x + n and
p−1(BR(y)) < p−1(x + n)) then Normalize TR(x) to
obtain the hinge vertex ;

end
(Step 5)
for each x ∈ DL(y) do

if p−1(x) < p−1(BL(y)), y − n < T L(x), and
p−1(y − n) < p−1(BL(x)) then Normalize T L(y) to
obtain the hinge vertex ;

end

Function Normalize v{
if v < 1 then v := v + n ;
if v > n then v := v − n ;
return v ;
}

Lemma 9: A vertex u = T L(y) is a hinge vertex of G if
there exist two vertices x < y ∈ V satisfying x ∈ DL(y),
p−1(x) < p−1(BL(y)), y − n < T L(x), and p−1(y − n) <
p−1(BL(x)) in ECM.

(Proof) Lemma 9 is symmetric to Lemma 8. Hence, its proof
is similar to that of Lemma 8. �

We show an example where vertex 4 is recognized
as a hinge vertex by applying Lemma 8. In Fig. 4, for
x = 8 and y = 13, y = 13 ∈ DR(x) = {11, 12, 13, 14, 15},
p−1(BR(x)) = 14 < p−1(y) = 15, TR(y) = 16 < (x+n) = 20,
and p−1(BR(y)) = 15 < p−1(x + 2) = 23 hold. Hence,
TR(x) = TR(8) = 16 is a hinge vertex for 8 and 13 by
Lemma 8. Normalization indicates that vertex 4 is a hinge
vertex for 8 and 1.

5.2 Analysis of Algorithm HVC

The algorithm for finding all articulation vertices of a cir-
cular permutation graph is described formally in Algo-
rithm HVC.

Next, we analyze the complexity of Algorithm HVC.
In Step 1, we construct a circular permutation model ECM
that can be executed in O(n) time. TR(i), S TR(i), and BR(i)
are computed in Step 2. T L(i), S T L(i), and BL(i) are com-
puted in Step 3. Preprocessing steps 2 and 3 take O(n)
time [17]. Steps 4 and 5 find all hinge vertices by applying
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Lemmas 8 and 9, respectively, and they run in O(n) time.
After executing Step 5, all hinge vertices of a circular per-
mutation graph are correctly found. Hence, we have the fol-
lowing theorem:

Theorem 2: Algorithm HVC can solve the hinge vertex
problem of a circular permutation graph in O(n) time.

6. Concluding Remarks

In this paper, we proposed an algorithm that runs in O(n)
time to find all articulation vertices of a circular permu-
tation graph. Our algorithm is constructed by employing
Ibarra’s algorithm [5]. Furthermore, we presented an algo-
rithm that runs in O(n) time to find all hinge vertices of a cir-
cular permutation graph. Our algorithm partially uses Ho’s
algorithm [6]. In future, we will continue this research by
extending the results to other classes of graphs.
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