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SUMMARY PREIMAGE CONSTRUCTION problem by Kratsch and
Hemaspaandra naturally arose from the famous graph reconstruction con-
jecture. It deals with the algorithmic aspects of the conjecture. We present
an O(n8) time algorithm for PREIMAGE CONSTRUCTION on permuta-
tion graphs and an O(n4(n + m)) time algorithm for PREIMAGE CON-
STRUCTION on distance-hereditary graphs, where n is the number of
graphs in the input, and m is the number of edges in a preimage. Since
each graph of the input has n− 1 vertices and O(n2) edges, the input size is
O(n3) (, or O(nm)). There are polynomial time isomorphism algorithms for
permutation graphs and distance-hereditary graphs. However the number
of permutation (distance-hereditary) graphs obtained by adding a vertex to
a permutation (distance-hereditary) graph is generally exponentially large.
Thus exhaustive checking of these graphs does not achieve any polynomial
time algorithm. Therefore reducing the number of preimage candidates is
the key point.
key words: the graph reconstruction conjecture, permutation graphs, poly-
nomial time algorithm

1. Introduction

The graph reconstruction conjecture proposed by Ulam and
Kelly∗∗ has been studied by many researchers intensively.
We call the multi-set {G1,G2, . . . ,Gn} the deck of a graph
G = (V={v1, v2, . . . , vn}, E) if Gi is isomorphic to G − vi

for every i ∈ {1, 2, . . . , n}, where G − v is a graph obtained
from G by removing v and incident edges. A graph G is a
preimage of a deck of a graph G′ if G and G′ has the same
deck. We also say that a graph G is a preimage of the n
graphs when they are the deck of G. The graph reconstruc-
tion conjecture is that there is at most one preimage of given
n graphs (n ≥ 3). No one has given a proof nor a counter
example of this conjecture, while small graphs are verified
positively [15].

Kelly’s Lemma [11] is well-known, and is a basic tool.
It shows that, let G be any preimage of the given deck, and
let H be a graph whose number of vertices is smaller than
that of G. Then we can uniquely determine the number of
subgraphs in G isomorphic to H from the deck. Green-
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well and Hemminger extended this lemma to a more general
form [8]. We can know the degree sequence of a preimage
from these lemmas. Kelly also showed that the conjecture
is true on regular graphs, trees, and disconnected graphs.
Tutte proved that the dichromatic rank and Tutte polyno-
mials are reconstructible (i.e., looking at the deck, they are
uniquely determined) [20]. Bollobás showed that almost all
graphs are reconstructible from three well-chosen graphs in
its deck [2]. About permutation graphs, Rimscha showed
that permutation graphs are recognizable in the sense that
looking at the deck of G one can decide whether or not G
belongs to permutation graphs [21]. To be precise Rimscha
showed in the paper that comparability graphs are recogniz-
able. Even’s result [6] directly gives a proof in the case of
permutation graphs. Rimscha also showed in the same pa-
per that many subclasses of perfect graphs including perfect
graphs themselves are recognizable, and some of subclasses
are reconstructible. There are a lot of papers about the con-
jecture, and many good surveys about this conjecture. See
for example [3], [9].

There are several kinds of algorithmic problems re-
lated to the graph reconstruction conjecture. We consider
algorithmic problems proposed by Kratsch and Hemaspaan-
dra [13] described below.

• Given a graph G and a multi-set of graphs D, check
whether D is the deck of G (DECK CHECKING).
• Given a multi-set of graphs D, determine whether there

is a graph whose deck is D (LEGITIMATE DECK).
• Given a multi-set of graphs D, construct a graph whose

deck is D (PREIMAGE CONSTRUCTION).
• Given a multi-set of graphs D, compute the number of

(pairwise nonisomorphic) graphs whose decks are D
(PREIMAGE COUNTING).

Kratsch and Hemaspaandra showed that these problems are
solvable in polynomial time for graphs of bounded degree,
partial k-trees for any fixed k, and graphs of bounded genus,
in particular for planar graphs [13]. In the same paper they
proved many GI related complexity results. Hemaspaan-
dra et al. extended the results [10]. The authors presented a
polynomial time PREIMAGE CONSTRUCTION algorithm
for interval graphs [12].

We present an O(n8) time algorithm for PREIM-
AGE CONSTRUCTION on permutation graphs, and an

∗∗Determining the first person who proposed the graph recon-
struction conjecture is difficult, actually. See [9] for the detail.
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O(n4(n+m)) time algorithm for PREIMAGE CONSTRUC-
TION on distance-hereditary graphs, where m is the num-
ber of edges in a preimage†. Since permutation graphs
and distance-hereditary graphs have characterizations by
forbidden graphs, it is easy to see that every graph in
the deck of a permutation (distance-hereditary) graph is a
permutation (generalized distance-hereditary) graph. Note
that while a distance-hereditary graph is connected, some
graphs obtained by removing a vertex from it are not nec-
essarily connected, therefore, the deck contains general-
ized distance-hereditary graphs††. We propose PREIMAGE
CONSTRUCTION algorithm for a deck consisting of per-
mutation (generalized distance-hereditary) graphs. We state
our main theorems below.

Theorem 1: There is an O(n8) time PREIMAGE CON-
STRUCTION algorithm for a deck D consisting of n per-
mutation graphs.

Theorem 2: There is an O(n4(n + m)) time PREIMAGE
CONSTRUCTION algorithm for a deck D consisting of n
generalized distance-hereditary graphs.

2. Preliminaries

2.1 Notations

All the graphs in this paper are simple. We denote the com-
plement of graph G by G.

Let G = (V, E) be a graph, and let V ′ ⊂ V is a vertex
subset of G. We denote by G[V ′] the graph induced by V ′
from G.

We denote by NG(v) the neighbor set of vertex v, and
by NG[v] the closed neighbor set of vertex v in graph G.
“Closed” means that NG[v] contains v itself. Vertices u and
v are called strong twins if NG[u] is equal to NG[v], and weak
twins if NG(u) is equal to NG(v).

Let S be a set, and s ∈ S . We denote S \ {s} by S − s.
Given two graphs G1 = (V1, E1) and G2 = (V2, E2) on

the disjoint vertex sets (V1 ∩ V2 = ∅), graph G = (V1 ∪
V2, E1 ∪E2) is a disjoint union of G1 and G2. Disjoint union
of three or more graphs is defined in the analogous way.

We now define graph H(2n). H(2n) is a bipartite graph
(X,Y, E) such that X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and
{xi, y j} ∈ E iff i ≤ j. See Fig. 1.

Let π = (π1, . . . , πn) be a permutation of 1, . . . , n. A
permutation diagram of π is a set of n line segments l1, . . . , ln
that connect two parallel lines L1, L2 on Euclidean plane

Fig. 1 Graph H(2n).

such that end-points of l1, . . . , ln appear in this order on L1,
and appear in the order of π1, . . . , πn on L2. A permutation
diagram defines a permutation in a natural way. See Fig. 2.
We denote by πV the permutation whose permutation dia-
gram is obtained by reversing that of π vertically, by πH the
permutation whose permutation diagram is obtained by re-
versing that of π horizontally, and by πR the permutation
whose permutation diagram is obtained by reversing that of
π both vertically and horizontally†††.

2.2 Permutation Graphs

Let π be a permutation of the numbers 1, 2, . . . , n. G(π) =
(V, E) is a graph satisfying that

• V = {1, . . . , n}, and
• {i, j} ∈ E ⇔ (i − j)(π−1

i − π−1
j ) < 0.

A graph G is called a permutation graph if there exists a per-
mutation π such that G is isomorphic to G(π). Equivalently a
graph G is a permutation graph if there exists a permutation
π such that G is an intersection model of the permutation
diagram of π.

A graph G is a permutation graph if and only if both G
and its complement G are comparability graphs [6]. Thus if
a graph G is a permutation graph, G is also a permutation
graph.

For two permutation graphs G1 = (V1, E1) and G2 =

(V2, E2) satisfying |V1| = |V2| = n, there is an O(n2) time
algorithm that determines if G1 and G2 are isomorphic [18].

Gallai characterized comparability graphs with the for-
bidden subgraphs [7]. Since permutation graphs are equiv-
alent to comparability and co-comparability graphs [6],
the characterization of permutation graphs is easily ob-
tained. A graph G is a permutation graph if and only
if G is (Ck+6, T2, X2, X3, X30, X31, X32, X33, X34, X36,
XF2k+3

1 , XFk+1
2 , XFk

3, XFk
4, XF2k+3

5 , XF2k+2
6 , co-Ck+6, co-T2,

co-X2, co-X3, co-X30, co-X31, co-X32, co-X33, co-X34,
co-X36, co-XF2k+3

1 , co-XFk+1
2 , co-XFk

3, co-XFk
4, co-XF2k+3

5 ,

co-XF2k+2
6 , and odd-hole)-free. See Fig. 3.

Fig. 2 The permutation diagram of permutation (2, 5, 1, 4, 3).

†The number of edges in a preimage is reconstructible for any
graphs. See [11]
††We define generalized distance-hereditary graphs later. They

are intuitively not necessarily connected version of distance-
hereditary graphs.
†††For those who want concrete description, it is easy to see that

πV = π−1 holds. Using a notion π = (πn, . . . , π1), πH = π−1
−1

, and

πR = π−1 also hold.
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Fig. 3 Forbidden graphs of permutation graphs are these graphs (k ≥ 0),
the complements of them, and odd-holes.

Fig. 4 Forbidden graphs of distance hereditary graphs (k ≥ 0).

2.3 Distance-Hereditary Graphs

A distance-hereditary graph G = (V, E) is a connected graph
such that, in any connected induced subgraph H of G, any
pair of vertices u and v in H has the same distance as in G.

We can check if the given two distance-hereditary
graphs are isomorphic in O(n+m) time, where n is the num-
ber of the vertices and m is the number of edges [16].

It is known that a connected graph G is distance-
hereditary if and only if G is (house, hole, domino and gem)-
free [1]. See Fig. 4.

One of the good properties of distance-hereditary
graphs is that a distance-hereditary graph can be generated
from a single vertex by the following operations:

(a) Add a new vertex and connect it to one vertex in the
graph by an edge.

(b) Copy a vertex so that the new vertex and the original
one are weak twins.

(c) Copy a vertex and connect the new vertex and the orig-
inal one by an edge so that they are strong twins.

In fact, this is another characterization of distance-
hereditary graphs [1].

Thinking not necessarily connected version of distance-
hereditary graphs is sometimes convenient. Thus, we de-
fine such a graph class. A graph G is generalized distance-
hereditary graph if G is a disjoint union of distance-
hereditary graphs. It is easy to see that a generalized
distance-hereditary graphs is a graph not containing house,
hole, domino, and gem as an induced subgraph.

2.4 Modular Decomposition

Modular decomposition is a strong tool for developing fast
algorithms in many areas. Here we summarize it. For the
detail see for example [4], [19].

Let G = (V, E) be a graph. The subset M ⊂ V is a
module in G, if for all the vertices u, v ∈ M and w ∈ V \ M,
{u,w} ∈ E if and only if {v,w} ∈ E. A module M in G is
trivial if M = V , M = ∅, or |M| = 1. G is called a prime
(with respect to modular decomposition) if G contains only
trivial modules. A module M is strong if it does not overlap
any other modules in G, i.e.,

M ∩ M′ = ∅, M ⊂ M′, or M′ ⊂ M

(for ∀M′ : module in G)

holds. We call a module that contains at least two vertices a
multi-vertex module.

A modular decomposition tree of a graph G is a tree
whose each node corresponds to each strong module of G
such that for any two nodes N1 and N2 which correspond to
modules M1 and M2 respectively, N1 is an ancestor of N2 if
and only if M1 contains M2. We sometimes say that strong
module M1 is a parent of strong module M2, and M2 is a
child of M1, if the node corresponding to M1 is the parent of
the node corresponding to M2 in the modular decomposition
tree.

A strong multi-vertex module M in graph G such that
the graph obtained from G[M] by contracting every its child
module to a vertex has no edge is parallel module. A strong
multi-vertex module M in graph G such that the graph ob-
tained from G[M] by contracting every its child module to
a vertex is a complete graph is series module. Let M′ be a
strong multi-vertex module. If M′ is not a parallel module,
and M′ is not a series module, then M′ is called a prime
module. A graph induced by a prime module is connected
in both G and G [19]. We show an example of a permutation
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Fig. 5 An example of a permutation graph, its permutation diagram, and
its modular decomposition tree.

graph and its modular decomposition tree in Fig. 5.
We say a strong multi-vertex module M is minimal if

every child of M is a module of one vertex. Note that every
graph of the size more than one has at least one minimal
strong multi-vertex module. We introduce a basic lemma.

Lemma 3 (Gallai [7]): A minimal strong multi-vertex
module that is a prime module induces a prime.

Let G = (V, E) be a prime. We say that G is critical if
G − v is not a prime for any v ∈ V . It is known that a critical
graph G = (V, E) is isomorphic to H(|V |) or to H(|V |) [17].
Hence the number of vertices in a critical graph is always
even.

It is known that a permutation graph G that is a prime
with respect to modular decomposition has a unique repre-
sentation [4], [14]. Note that G(π), G(πV), G(πH), and G(πR)
are isomorphic. Thus the sentence “G has a unique represen-
tation” here means that there are at most four permutations
π, πV, πH, and πR whose representing graphs are isomorphic
to G.

3. Polynomial Time Reconstruction Algorithm

Our algorithm outputs preimages that are permutation
(distance-hereditary) graphs. However it is possible that
a non-permutation (non-distance-hereditary) graph has a
deck that consists of permutation (generalized distance-

hereditary) graphs, though it is exceptional. Since consid-
ering this case all the time in the main algorithm makes it
complex, we attempt to get done with this special case in
Sect. 3.1.

Then we present DECK CHECKING algorithms for
permutation graphs and distance-hereditary graphs. Since
an O(n2) time isomorphism algorithm for permutation
graphs [18] and a linear time one for distance-hereditary
graphs [16] are known, developing polynomial time DECK
CHECKING algorithms is not very difficult.

Next we present our main algorithms. We first show
an algorithm for permutation graphs, and then show one for
distance-hereditary graphs. Our main algorithm for permu-
tation graphs has two parts. One is for a preimage G that has
a minimal strong multi-vertex module M such that G[M]
is not critical, and the other part is for otherwise. In both
the parts, we construct polynomially many candidates of a
preimage, and use DECK CHECKING algorithm to check
whether each candidate is a preimage. Since we of course
do not know the properties of a preimage when we are given
an input deck, we execute both these two parts for the input
deck.

3.1 Non-permutation (Non-distance-hereditary) Graph
Preimage Case

Let D be a deck consisting of n graphs G1,G2, . . . ,Gn. It is
clear that G1,G2, . . . ,Gn have the same number of vertices
n − 1, and that the number of vertices in a preimage G is
n. Note that, if G is not a permutation (distance-hereditary)
graph though G1,G2, . . . ,Gn are permutation (generalized
distance-hereditary) graphs, G must be one of the forbid-
den graphs. Since the number of the forbidden graphs of
the size n is O(1), we can check if one of them is a preim-
age of the input graphs in the polynomial time with DECK
CHECKING algorithm which we will describe in the next
subsection. The time complexity is O(n4) for a deck con-
sisting of permutation graphs, and O(n2(n + m)) for a deck
consisting of generalized distance-hereditary graphs, since
the time complexity of the DECK CHECKING algorithm is
O(n4) for permutation graphs and O(n2(n + m)) for general-
ized distance-hereditary graphs, where m is the number of
edges in G.

Theorem 4: If n permutation graphs G1,G2, . . . ,Gn have a
preimage G that is not a permutation graph, we can recon-
struct G from G1,G2, . . . ,Gn in O(n4) time.

Theorem 5: If n distance-hereditary graphs G1,G2, . . . ,Gn

have a preimage G that is not a distance-hereditary graph,
we can reconstruct G from G1,G2, . . . ,Gn in O(n2(n + m))
time.

3.2 DECK CHECKING

Given a deck D that consists of permutation (generalized
distance-hereditary) graphs, and given a preimage candidate
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G = (V, E) whose deck consists of permutation (generalized
distance-hereditary) graphs, we first prepare the deck D̂ of
G in O(|V |(|V |+|E|)) time. Then we can check if D and D̂ are
the same by using the isomorphism algorithms in [18] and
[16] O(|V |2) times. They costs O(|V |2 · |V |2)=O(|V |4) time for
permutation graphs, and O(|V |2(|V |+ |E|)) time for distance-
hereditary graphs. Therefore we obtain the theorems below.

Theorem 6: There is O(|V |4) time DECK CHECKING al-
gorithm for a deck that consists of permutation graphs, and
a preimage candidate G = (V, E) whose deck consists of
permutation graphs.

Theorem 7: There is O(|V |2(|V | + |E|)) time DECK
CHECKING algorithm for a deck that consists of general-
ized distance-hereditary graphs, and a preimage candidate
G = (V, E) whose deck consists of generalized distance-
hereditary graphs.

3.3 Non-critical Case for Permutation Graph PREIMAGE
CONSTRUCTION

First we consider the case that a preimage G = (V, E) has
a minimal strong multi-vertex module M such that |M| ≥ 3,
and G[M] is not critical. If M is a prime module, since G[M]
is a prime due to Lemma 3, G[M] has a vertex v such that
G[M] − v is a prime, and hence M − v is a minimal strong
multi-vertex module of G[M] − v. If M is not a prime mod-
ule, due to the definition of modular decomposition, G[M]
is a complete graph, or G[M] consists of isolated vertices.
And thus G[M] also has a vertex v such that M − v is a min-
imal strong multi-vertex module of G[M] − v.

We search for a preimage by adding a vertex v to every
minimal strong multi-vertex module M′ of every graph in
the deck to check if M′ is the desired M − v. For every can-
didate, we use the DECK CHECKING algorithm to check
if it is a preimage.

If we can specify NG(v), we can construct a candidate
of G. We can easily specify NG(v)\M′, since M′∪{v} should
be a module in G, i.e., every vertex in M′ and v should seem
the same from the vertices in V \ M′. Thus the remaining
task is to specify NG(v) ∩ M′.

Due to the definition of a modular decomposition, M′ is
one of a clique, a collection of isolated vertices, and a mod-
ule that induces a prime. It is not difficult to construct the
candidate of G if M′ is a clique, or M′ consists of isolated
vertices, since we know the degree sequence of G,† that is,
we know the degree degG(v) of v in G. To be concrete, we
have to connect v to degG(v) − |NG(v) \ M′| vertices in M′.

Next we consider the case that G[M′] is a prime. A
permutation graph that is a prime with respect to modular
decomposition has a unique representation [4], [14]. Thus
there are only O(n2) ways of connection of v and vertices
in M′. Note that the number of permutation diagrams ob-
tained by adding a line segment to a permutation diagram is
clearly O(n2), since there are O(n) choices for the end-point
on L1, and there are O(n) choices for the end-point on L2.

Fig. 6 The algorithm for the case that a preimage has a module that does
not induce a critical graph.

Therefore by checking each of O(n2) candidates whether it
is a preimage with the DECK CHECKING algorithm, we
have a polynomial time algorithm. We show in Fig. 6 the
whole algorithm for the case that a preimage has a module
that does not induce a critical graph.

We now mention the time complexity of the algorithm
in Fig. 6. There are n graphs in the deck. Each graph in the
deck has O(n) minimal strong multi-vertex modules. We can
compute these modules in O(n+m) time [5]. The time com-
plexity of DECK CHECKING is O(n4). We can compute a
permutation diagram of a permutation graph in O(n + m)
time. Therefore the time complexity of the algorithm is
O(n · n((n + m) + n2 · n4)) = O(n8). Hence we have the
theorem below.

Theorem 8: If a preimage G = (V, E) that is a permutation
graph has a minimal strong multi-vertex module M such that
|M| ≥ 3, and G[M] is not critical, we can reconstruct G in
O(n8) time.

3.4 Critical Case for Permutation PREIMAGE CON-
STRUCTION

Lastly we consider the case that for every minimal strong
multi-vertex module M of a preimage G = (V, E), G[M] is
critical, or every minimal strong multi-vertex module has
the size two.

Assume that all the minimal strong multi-vertex mod-
ules of G have the size two. Since a module of the size two
makes twins, the reconstruction of G is easy in this case.
Any graph G′ in the deck is obtained by removing a vertex
that is one of twins from G. Thus G can be reconstructed by
copying a vertex in G′. We make weak and strong twins of
each vertex of every graph in the deck, and check whether
the obtained graph is a preimage by the DECK CHECKING
algorithm. This achieve a polynomial time algorithm.

Now we consider the case that some of minimal strong
multi-vertex modules in G have the size more than two. Let
M be a minimal strong multi-vertex module of G whose

†Kelly’s lemma directly gives the degree sequence of a preim-
age. See [11].
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Fig. 7 The algorithm for the case that a preimage has a module that in-
duces a critical graph.

size is more than two. Then since G[M] is a critical graph,
G[M] is isomorphic to H(|M|) or H(|M|) (Fig. 1). The ver-
tices x1 and x2 are almost twins in both the H(|M|) and
H(|M|). In fact NH(|M|)(x1) and NH(|M|)(x2) differ only in
y1, and NH(|M|)[x1] and NH(|M|)[x2] also differ only in y1.
We denote by v1 and v2 the vertices in M corresponding
to x1 and x2 such that |NG[M](v1)| = |NG[M](v2)| + 1, or
|NG[M][v1]| = |NG[M][v2]| + 1 holds. Since M is a module
of G, NG(v1) contains exactly one vertex in addition to the
vertices in NG(v2), or NG[v1] contains exactly one vertex in
addition to the vertices in NG[v2].

Now we consider G − v2. G − v2 must be in the deck.
Thus we check for every graph G′ in the deck if it is G − v2.
If G′ is G − v2, we can reconstruct G from G′ by copying a
vertex in G′ and removing an edge. We show the algorithm
in Fig. 7.

We now focus on the time complexity. There are O(n)
graphs in the deck. The number of vertices in each graph is
O(n). We have to remove O(n) edges in each iteration. The
time complexity of DECK CHECKING is O(n4). Thus the
total time complexity of the algorithm is O(n · n · n · n4) =
O(n7). Thus we have the theorem below.

Theorem 9: If every minimal strong multi-vertex module
of a graph G induces a critical graph, or if every minimal
strong multi-vertex module of a graph G has the size two,
we can reconstruct G in O(n7) time.

Combining Theorem 4, 8, and 9, we have the Theo-
rem 1.

3.5 Distance-Hereditary Graph PREIMAGE CON-
STRUCTION

Distance-hereditary graph G = (V, E) can be constructed
either (a) adding a degree one vertex, (b) adding a weak
twin, or (c) adding a strong twin to a distance hereditary

graph [1]. Thus, there exists in the deck D of G a distance-
hereditary graph G∗ such that G∗ is obtained by removing a
degree one vertex, a weak twin, or a strong twin. For ev-
ery graph G′ in D, we check if G′ can be G∗ by adding a
degree one vertex, weak twin, strong twin. Adding a de-
gree one vertex takes O(1) time, and the number of ways of
adding is O(|V |). Adding a weak twin and a strong twin
takes O(|E|) time, and the number of ways of adding is
O(|V |). However the total cost is O(|V | + |E|), since every
edge copied exactly twice. For all the candidate of G∗, we
use the O(|V |2(|V |+|E|)) time DECK CHECKING algorithm.
Therefore total time complexity is O(|V | · (|V | + (|V | + |E|) +
|V | · |V |2(|V | + |E|)))=O(|V |4(|V | + |E|)).

4. Concluding Remarks

Since we can use PREIMAGE CONSTRUCTION algo-
rithms for LEGITIMATE DECK and PREIMAGE COUNT-
ING, we also have the LEGITIMATE DECK and PREIM-
AGE COUNTING algorithms running in the same time
complexity for permutation (distance-hereditary) graphs.
These results do not help directly the proofs of the graph
reconstruction conjecture on permutation graphs. The con-
jecture on permutation (distance-hereditary) graphs still re-
mains to be open.

We presented a polynomial time algorithm for
PREIMAGE CONSTRUCTION on permutation graphs and
distance-hereditary graphs. PREIMAGE CONSTRUC-
TION on interval graphs is solvable in polynomial time [12].
Kratsch and Hemaspaandra showed that PREIMAGE CON-
STRUCTION on graph class C is GI-hard if the graph iso-
morphism is GI-hard on C [13]. Remaining famous graph
class that we can find in [4] on which graph isomorphism is
not GI-hard is circular-arc graphs (of course there are other
non-GI-hard classes such as threshold graphs. However we
mention here higher classes in the hierarchy of the inclusion
relation). PREIMAGE CONSTRUCTION on circular-arc
graphs may be a challenging problem. Another interesting
graph class is circle graphs. Ma and Spinrad showed that a
circle graph G has a unique representation if G is a prime
with respect to split decomposition [14]. Split decomposi-
tion is a generalization of modular decomposition. There-
fore it may be possible that PREIMAGE CONSTRUCTION
on circle graphs is solvable in polynomial time in a similar
way described in this paper. Circle graphs contain permuta-
tion graphs and distance-hereditary graphs.
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