
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013
443

PAPER Special Section on Foundations of Computer Science

Inapproximability of Maximum r-Regular Induced Connected
Subgraph Problems∗

Yuichi ASAHIRO†a), Hiroshi ETO††b), Nonmembers, and Eiji MIYANO††c), Member

SUMMARY Given a connected graph G = (V, E) on n vertices, the
Maximum r-Regular Induced Connected Subgraph (r-MaxRICS) problem
asks for a maximum sized subset of vertices S ⊆ V such that the in-
duced subgraph G[S ] on S is connected and r-regular. It is known that
2-MaxRICS and 3-MaxRICS areNP-hard. Moreover, 2-MaxRICS cannot
be approximated within a factor of n1−ε in polynomial time for any ε > 0
unless P = NP. In this paper, we show that r-MaxRICS are NP-hard for
any fixed integer r ≥ 4. Furthermore, we show that for any fixed integer
r ≥ 3, r-MaxRICS cannot be approximated within a factor of n1/6−ε in
polynomial time for any ε > 0 unless P = NP.
key words: induced connected subgraph, regularity, NP-hardness, inap-
proximability

1. Introduction

In this paper we only consider simple, undirected, and un-
weighted graphs with no loops and no multiple edges. Let
G = (V(G), E(G)) be a graph, where V(G) and E(G) denote
the set of vertices and the set of edges in G, respectively. A
graph GS is a subgraph of a graph G if V(GS ) ⊆ V(G) and
E(GS ) ⊆ E(G). For a subset of vertices S ⊆ V(G), by G[S ],
we mean the subgraph of G induced on S , which is called
the induced subgraph.

For the graph maximization problems, an algorithm
ALG is called a σ-approximation algorithm and ALG’s ap-
proximation ratio is σ if OPT (G)/ALG(G) ≤ σ holds for
every input graph G, where ALG(G) and OPT (G) denote
the objective function values of solutions obtained by ALG
and an optimal algorithm, respectively.

The problem Maximum Induced Subgraph (MaxIS)
for a fixed property Π is the following class of problems
([GT21] in [4]): Given a graph G, find the maximum num-
ber of vertices that induces a subgraph satisfying the prop-
erty Π. The problem MaxIS is very universal; a lot of
graph optimization problems can be formulated as MaxIS
by specifying appropriately the property Π. For example,
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Fig. 1 An input graph G and a maximum induced connected 3-regular
subgraph.

if the property Π is “GS is bipartite”, then we wish to find
the largest induced bipartite subgraph of a given graph G.
Therefore, MaxIS is one of the most important problems
in the fields of graph theory and combinatorial optimiza-
tion, and thus extensively studied in these decades. Unfor-
tunately, however, it is well known that the MaxIS problem
is intractable for a large class of interesting properties. For
example, in [8], Lund and Yannakakis prove that the Max-
imum Induced Subgraph problem for the natural properties
such as planar, outerplanar, bipartite, complete bipartite,
acyclic, degree-constrained, chordal, and interval cannot be
approximated within a factor of n1−ε in polynomial time for
any positive constant ε unless P = NP, where n is the num-
ber of the vertices in the input graph.

1.1 Our Problems and Results

A graph is r-regular if the degree of every vertex is exactly
r. The regularity of graphs must be one of the most basic
properties. In this paper we consider the following variant of
the MaxIS problem, i.e., the desired properties the induced
subgraph must satisfy are regularity and connectivity:

Maximum r-Regular Induced Connected Subgraph
(r-MaxRICS)

Input: A graph G = (V, E).
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S ] on S is con-
nected and r-regular.

For example, if the graph illustrated in Fig. 1 is an input of
3-MaxRICS, then the subgraph induced by the “white” ver-
tices has the maximum size of six.

Since a clique is connected and regular, the Maximum
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Clique problem is related to r-MaxRICS in some sense. The
Maximum clique is very difficult even to approximate [6].
Clearly, however, the problem of finding a clique of a con-
stant degree is solvable in polynomial time. On the other
hand, r-MaxRICS is hard even if r is a small constant as
follows: The problem 2-MaxRICS is known as Longest In-
duced Cycle or Chordless Cycle problem since an induced
connected 2-regular subgraph means a chordless cycle in the
input graph. In [7] Kann shows the following inapproxima-
bility of 2-MaxRICS:

Theorem 1 ([7]): 2-MaxRICS cannot be approximated in
polynomial time within a factor of n1−ε for any constant ε >
0 unless P = NP,where n is the number of vertices in the
input graph.

In [3] Bonifaci, Di Iorio, and Laura consider the fol-
lowing problem and show its NP-hardness:

Maximum Regular Induced Subgraph (MaxRIS)

Input: A graph G = (V, E).
Goal: Find a maximum subset of vertices S ⊆ V such

that the induced subgraph G[S ] on S is regular.

Recall that, in our problem r-MaxRICS, the degree of
the output subgraph must be r, but, MaxRIS does not specify
the value of the degree. Thus, strictly speaking, MaxRIS is
slightly different from r-MaxRICS, but the same reduction
introduced in [3] shows the following intractability when
r = 3:

Theorem 2 ([3]): 3-MaxRICS is NP-hard.

However, it would be hard to show the hardness of ap-
proximating r-MaxRICS for r ≥ 3 by using a similar reduc-
tion with small modification to the reduction in [3]. In this
paper, by using a different gap-preserving reduction, we first
show the following inapproximability of 3-MaxRICS.

Theorem 3: 3-MaxRICS cannot be approximated in poly-
nomial time within a factor of n1/6−ε for any constant ε > 0
unless P = NP,where n is the number of vertices in the
input graph.

Furthermore, by using additional ideas to the reduction,
we show the same inapproximability of r-MaxRICS for any
fixed integer r ≥ 4.

Corollary 1: For any fixed integer r ≥ 4, r-MaxRICS can-
not be approximated in polynomial time within a factor of
n1/6−ε for any constant ε > 0 unless P = NP,where n is the
number of vertices in the input graph.

The proofs of Theorem 3 and Corollary 1 will be given
in Sect. 3.

Fig. 2 An input graph G and a maximum induced 3-regular subgraph.

1.2 Related Work

Recently, the problem of finding a maximum induced sub-
graph having regularity is very popular. Many researchers
study the following variant, that is, the connectivity prop-
erty is not imposed on the induced subgraph.

Maximum r-Regular Induced Subgraph (r-MaxRIS)

Input: A graph G = (V, E).
Goal: Find a maximum subset of vertices S ⊆ V such

that the induced subgraph G[S ] on S is r-regular.

For example, suppose that the input graph of 3-MaxRIS is
illustrated in Fig. 2, which is the same as one in Fig. 1. Then,
the three connected components induced by the “white” ver-
tices has the maximum size of 12.

Now we do not require the connectivity constraint.
Thus, the problems when r = 0 and r = 1 correspond
to the well studied Maximum Independent Set and Maxi-
mum Induced Matching problems, respectively. The former
problem is hard even to approximate [6]. The NP-hardness
of the latter problem is also shown in [1], [11]. In [10]
Orlovich, Finke, Gordon, and Zverovich prove the Max-
imum Induced Matching cannot be approximated within a
factor of |V |1/2−ε in polynomial time for any ε > 0. The
parameterized complexity and exact exponential algorithms
of r-MaxRIS are studied in [9] and [5], respectively. Very
recently, in [2] Cardoso, Kamińsi, and Lozin prove that r-
MaxRIS is NP-hard for any value of r ≥ 3. Motivated by
this result, we investigate the complexity of the connected
version problem r-MaxRICS for r ≥ 3 in this paper.

2. Notation

By (u, v) we denote an edge with endpoints u and v. For a
vertex u, the set of vertices adjacent to u in G is denoted
by NG(u) or simply by N(u), and (u,NG(u)) denotes the set
{(u, v) | v ∈ NG(u)} of edges. Let the degree of a vertex u be
denoted by deg(u), i.e., deg(u) = |N(u)|. A (simple) path P
of length � from a vertex v0 to a vertex v� is represented as
a sequence of vertices such that P = 〈v0, v1, · · · , v�〉, and |P|
denotes the length of P. A cycle C of length � is similarly de-
noted by C = 〈v0, v1, · · · , v�−1, v0〉, and |C| denotes the length
of C. A chord of a path (cycle) 〈v0, · · · , v�〉 (〈v0, · · · , v�−1, v0〉)
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is an edge between two vertices of the path (cycle) that is not
an edge of the path (cycle). A path (cycle) is chordless if it
contains no chords, i.e., an induced cycle must be chordless.
Let G1, G2, · · ·, G� be � graphs and also let vi and v′i be two
vertices in Gi for 1 ≤ i ≤ �. Then, 〈G1,G2, · · · ,G�〉 denotes
a graph G = (V(G1)∪V(G2)∪ · · · ∪V(G�), E(G1)∪E(G2)∪
· · · ∪ E(G�) ∪ {(v′1, v2), (v′2, v3), · · · , (v′�−1, v�)}). That is, two
adjacent graphs Gi−1 and Gi are connected by only one edge
(v′i−1, vi) and G roughly forms a path, which will be called
path-like structure. Similarly, 〈G1,G2, · · · ,G�,G1〉 roughly
forms a cycle, which will be called cycle-like structure.

Let MaxP1 and MaxP2 be maximization problems. A
gap-preserving reduction, say, Γ, from MaxP1 to MaxP2

comes with four parameter functions, g1, α, g2 and β.
Given an instance x of MaxP1, the reduction Γ com-
putes an instance y of MaxP2 in polynomial time such
that if OPTMaxP1 (x) ≥ g1(x), then OPTMaxP2 (y) ≥ g2(y),
and if OPTMaxP1 (x) < g1(x)/α(|x|), then OPTMaxP2 (y) <
g2(y)/β(|y|), where OPTMaxP1 (x) and OPTMaxP2 (y) denote
the objective function values of optimal solutions to the in-
stances x and y, respectively. Note that α(|x|) is the approx-
imation gap, i.e., the hardness factor of approximation for
MaxP1 and the gap-preserving reduction Γ shows that there
is no β(|y|) factor approximation algorithm for MaxP2 unless
P = NP (see, e.g., Chapter 29 in [12]).

3. Hardness of Approximating
r-MaxRICS

In this section we give the proofs of Theorem 3 and Corol-
lary 1. The hardness of approximating r-MaxRICS for r ≥ 3
is shown via a gap-preserving reduction from Longest In-
duced Cycle problem, i.e., 2-MaxRICS. Consider an input
graph G = (V(G), E(G)) of 2-MaxRICS with n vertices and
m edges. Then, we construct a graph H = (V(H), E(H)) of
r-MaxRICS. First we show the n1/6−ε inapproximability of
3-MaxRICS and then the same n1/6−ε inapproximability of
the general r-MaxRICS problem for r ≥ 4.

Let OPT2(G) (and OPTr(H), respectively) denote the
number of vertices of an optimal solution for G of 2-
MaxRICS (and H of r-MaxRICS, respectively). Let V(G) =
{v1, v2, · · · , vn} of n vertices and E(G) = {e1, e2, · · · , em} of
m edges. Let g(n) be a parameter function of the instance
G. Then we provide the gap preserving reduction such that
(C1) if OPT2(G) ≥ g(n), then OPTr(H) ≥ 4(n3 + 1) × g(n),
and (C2) if OPT2(G) < g(n)

n1−ε for a positive constant ε, then

OPTr(H) < 4(n3 + 1)× g(n)
n1−ε . As we will explain it, the num-

ber of vertices in the reduced graph H is O(n6). Hence the
approximation gap is n1−ε = Θ(|V(H)|1/6−ε) for any constant
ε > 0. By redefining |V(H)| = n, we obtain the n1/6−ε inap-
proximability of r-MaxRICS.

3.1 Reduction for r = 3

Without loss of generality, we can assume that there is
no vertex whose degree is one in the input graph G of 2-
MaxRICS. The reason is that such a vertex does not con-

tribute to any feasible solution, i.e., a cycle, of 2-MaxRICS
and can be removed from G.

The constructed graph H consists of (i) n subgraphs, H1

through Hn, which are associated with n vertices, v1 through
vn, respectively, and (ii) m edge sets, E1 through Em, which
are associated with m edges, e1 through em, respectively.
Now we only give a rough outline of the construction and
explain the details later. See Fig. 3. If an input instance G
of 2-MaxRICS is the left graph, then the reduced graph H
of 3-MaxRICS is illustrated in the right graph, where some
details are omitted due to the space. Since the graph G
has five vertices, v1 through v5, the graph H has five sub-
graphs, H1 through H5, each of which is illustrated by a
dotted oval. One can see that each Hi roughly consists of(

deg(vi)
2

)
= deg(vi)(deg(vi) − 1)/2 path-like structures. For ex-

ample, since two vertices v1 and v2 are connected via the
edge e1 in G, u1,2 in H1 is connected to u2,1 in H2. Similarly
to e2 through e6, there are five edges, (u1,3, u3,1), (u3,4, u4,3),
(u2,4, u4,2), (u2,5, u5,2), and (u4,5, u5,4) in H. The edge (γ1, γ2)
between path-like structures labeled by P1,2,5 in H2 and by
P3,4,5 in H4 plays an important role as described later.

(i) Here we describe the construction of the ith sub-
graph Hi in detail for every i (1 ≤ i ≤ n). See Fig. 4, which
illustrates Hi. Suppose that the set of vertices adjacent to vi
is N(vi) = {vi1 , vi2 , . . . , videg(vi) }, where i j ∈ {1, 2, · · · n} \ {i} for
1 ≤ j ≤ deg(vi). The subgraph Hi = (V(Hi), E(Hi)) includes
deg(vi) vertices, ui,i1 through ui,ideg(vi) that correspond to the
vertices adjacent to vi, and deg(vi)(deg(vi) − 1)/2 path gad-
gets, Pi1,i,i2 , Pi1,i,i3 , · · ·, Pi1,i,ideg(vi) , Pi2,i,i3 , · · ·, Pideg(vi)−1,i,ideg(vi) ,
where two vertices ui,i j and ui,ik are connected via the path
gadget Pij,i,ik for vi j , vik ∈ N(vi). As an example, in Fig. 4,
the top vertex ui,i1 and the bottom ui,i4 are connected via
Pi1,i,i4 . Each path gadget Pij,i,ik includes n3 subgraphs, P1

i j,i,ik

through Pn3

i j,i,ik
, where, for each 1 ≤ p ≤ n3,

V(Pp
i j,i,ik

) = {wp,1
i j,i,ik
, w

p,2
i j,i,ik
, w

p,3
i j,i,ik
, γ

p
i j,i,ik
},

E(Pp
i j,i,ik

) = (γp
i j,i,ik
, {wp,1

i j,i,ik
, w

p,2
i j,i,ik
, w

p,3
i j,i,ik
})

∪{(wp,1
i j,i,ik
, w

p,2
i j,i,ik

), (wp,2
i j,i,ik
, w

p,3
i j,i,ik

)}.

Note that the above number “n3” of the subgraphs Pp
i j,i,ik

’s
comes from the upper bound of the total number of path
gadgets: Each Hi contains deg(vi)(deg(vi) − 1)/2 path gad-
gets and thus, in total, deg(vi)(deg(vi)−1)/2×n path gadgets
in H1 through Hn, which is bounded above by n3. Thus, we
want to prepare n3 subgraphs Pp

i j,i,ik
’s (or, more precisely, we

want to prepare n3 γ-vertices which are defined later).
In the path gadget Pij,i,ik , two vertices w1,1

i j,i,ik
and wn3,3

i j,i,ik
are respectively identical to the vertices ui,i j and ui,ik pre-
pared in the above. For 2 ≤ p ≤ n3, contiguous two
subgraphs Pp−1

i j,i,ik
and Pp

i j,i,ik
are connected by one edge

(wp−1,3
i j,i,ik
, w

p,1
i j,i,ik

) except for a pair Pq−1
i j,i,ik

and Pq
i j,i,ik

for some

q: the two subgraphs Pq−1
i j,i,ik

and Pq
i j,i,ik

are connected by a

path of length four 〈wq−1,3
i j,i,ik
, β1

i j,i,ik
, β2

i j,i,ik
, β3

i j,i,ik
, w

q,1
i j,i,ik
〉. This
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Fig. 3 Input graph G (left) and reduced graph H (right).

Fig. 4 Subgraph Hi.

q can be arbitrary since we just want to insert the path of
length four into the path gadget, and as an example, q = 3 in
the path gadget Pi1,i,i4 in Fig. 4. Finally, we prepare a special

vertex αi, and αi is connected to all {β1
ii,i,ik
, β2

ii,i,ik
, β3

ii,i,ik
}’s. In

the following, α1, α2, · · ·, αn are called α-vertices. Simi-
larly, β-vertices and γ-vertices mean the vertices labeled by
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Fig. 5 Ek connecting Hi and H j.

β and γ, respectively. Since each path gadget has 4n3 + 3
vertices (two of which are shared with other path gadgets),
the total number of vertices in Hi is

|V(Hi)| = deg(vi)(deg(vi) − 1)(4n3 + 1)
2

+ deg(vi) + 1,

i.e., there are O(n5) vertices in Hi.
(ii) Next we explain construction of the edge sets E1

through Em. Now suppose that ek connects vi with v j for i �
j. Also suppose that the sets of vertices adjacent to vi and v j

are N(vi) = { j, i2, · · · , ideg(vi)} and N(v j) = {i, j2, · · · , jdeg(v j)},
respectively. Then, (ui, j, u j,i) ∈ Ek where ui, j ∈ V(Hi) in
the ith subgraph Hi and u j,i ∈ V(Hj) in the jth subgraph
Hj. Furthermore, by the following rules, γ-vertices in the
path gadgets are connected: See Fig. 5. No vertex other than
ui, j in the path gadget Px,i,y for x = j or y = j in Hi is
connected to any vertex in Hj. Similarly, no vertex other
than u j,i in the path gadget Ps, j,t for s = i or t = i in Hj is
connected to any vertex in Hi. For a path gadgets Px,i,y in
Hi, where j � {x, y} we prepare a set of edges as follows.
Let D = mink∈{i, j}{deg(vk)(deg(vk) − 1)/2 − (deg(vk) − 1)}.
• In Px,i,y, there are n3 γ-vertices, γ1

x,i,y through γn3

x,i,y.

Consider D γ-vertices among those n3 γ-vertices, the

(( j−1)n2+1)th vertex γ( j−1)n2+1
x,i,y through the (( j−1)n2+

D)th vertex γ( j−1)n2+D
x,i,y .

• Next take a look at the jth subgraph Hj and the path
gadgets Ps, j,t’s for i � {s, t}. Note that the number of
such gadgets is deg(v j)(deg(v j) − 1)/2 − (deg(v j) − 1)
and hence at least D. Then, consider the ((i−1)n2+1)th
vertex γ(i−1)n2+1

s, j,t in each Ps, j,t. Here, the term “+1” in
the superscript of γ comes from the assumption that
j1 = i; if jk = i, we consider the ((i − 1)n2 + k)th γ-
vertex.
• Then, we can choose any function f which assigns each

element in {1, . . . ,D} to a string s, j, t such that i � {s, t}

and it holds f (b) � f (c) if b � c. Finally, we connect

γ
( j−1)n2+k
x,i,y with γ(i−1)n2+1

f (k) for 1 ≤ k ≤ D. It is important
that the path gadget Px,i,y is connected to Ps, j,t via only
one edge.

Each subgraph Hi has O(n5) vertices and thus the total
number of vertices |V(H)| = O(n6). Clearly, this reduction
can be done in polynomial time. In the next two subsections,
we show that both conditions (C1) and (C2) are satisfied by
the above reduction.

3.2 Proof of Condition (C1)

Without loss of generality, suppose that a longest induced
cycle in G is C∗ = 〈v1, v2, · · · , v�, v1〉 of length �, and thus
OPT2(G) = |C∗| = � ≥ g(n). Then we select the follow-
ing subset S of 4(n3 + 1) × � vertices and the induced sub-
graph G[S ]:

S = V(P�,1,2) ∪ {α1} ∪ V(P1,2,3) ∪ {α2}
∪ · · · ∪ V(P�−1,�,1) ∪ {α�}.

For example, take a look at the graph G illustrated in
Fig. 3 again. One can see that the longest induced cycle in G
is 〈v1, v3, v4, v2, v1〉. Then, we select the connected subgraph
induced on the following set of vertices:

V(P2,1,3) ∪ {α1} ∪ V(P1,3,4) ∪ {α3}
∪V(P2,4,3) ∪ {α4} ∪ V(P1,2,4) ∪ {α2}

It is easy to see that the induced subgraph is 3-regular and
connected. Hence, the reduction satisfies the condition (C1).

3.3 Proof of Condition (C2)

We show that the reduction satisfies the condition (C2) by
showing its contraposition. Suppose that OPT3(H) ≥ 4(n3+

1) · g(n)
n1−ε holds for a positive constant ε, and S ∗ is an optimal
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Fig. 6 Modified path gadget in the proof of Corollary 1.

set of vertices such that the subgraph H[S ∗] induced on S ∗ is
connected and 3-regular. In the following, one of the crucial
observations is that we can select at most one path gadget
from each subgraph Hi into the optimal set S ∗ of vertices,
and if a portion of the path gadget is only selected, then the
induced subgraph cannot be 3-regular.

(I) See Fig. 4 again. Suppose for example that two path
gadgets Pi1,i,i4 and Pi2,i,i3 are selected, and put their vertices
into S ∗. In order to make the degree of β-vertices three, we
need to also select αi. However, the degree of α1 becomes
six. This implies that we can select at most three β-vertices
from each subgraph Hi.

(II) From the above observation (I), we consider the
case that at most two of β1

j,i,k, β2
j,i,k, and β3

j,i,k are selected for

some i, j, k. Let us assume that we select β1
j,i,k and β2

j,i,k (β1
j,i,k

and β3
j,i,k, resp.) are put into S ∗, but β3

j,i,k (β2
j,i,k, resp.) is

not selected. Then, the degree of β2
j,i,k (β1

j,i,k and β3
j,i,k, resp.)

is at most 2 even if we select αi, i.e., the induced subgraph
cannot be 3-regular. By a similar reason, we cannot select
only one of the β-vertices. Hence, if we select β-vertices, all
of the three β-vertices in one path gadget must be selected.

As for w-vertices, a similar discussion can be done: For
example, if we select wp,1

j,i,k and wp,3
j,i,k for some i, j, k, p, but

w
p,2
j,i,k (γp

j,i,k, resp.) is not selected, then the degree of γp
j,i,k

(wp,2
j,i,k, resp.) is only 2. Thus, we need to select all the ver-

tices of the part Pp
k,i, j if we select some vertices from it.

Combining two observations above, one can see that
the edges connecting Pp−1

k,i, j and Pp
k,i, j, or w-vertices and β-

vertices are necessary to make the degrees of the vertices
three. As a result, we can conclude that if only a part of one
path gadget is chosen, then the induced subgraph obtained
cannot be 3-regular.

(III) From (I) and (II), we can assume that if some ver-
tices of a path gadget are selected into S ∗, it means that all
vertices of the path gadget are selected. For example, sup-
pose that Pi1,i,i4 is selected. Since the degree of the endpoint
ui,i1 (ui,i4 ) of Pi1,i,i4 is only 2, we have to put at least one ver-
tex into S ∗ from another subgraph adjacent to Hi, say, a ver-
tex u j,i in Hj. This implies that the induced subgraph H[S ∗]
forms a cycle-like structure 〈Hi1 ,Hi2 , · · · ,Hij ,Hi1〉 connect-
ing Hi1 ,Hi2 , · · · ,Hij ,Hi1 in order, where {i1, i2, · · · , i j} ⊆
{1, 2, · · · , n}.

We mention that such an induced subgraph H[S ∗] is
3-regular if and only if the corresponding subgraph in the

original graph G is an induced cycle. The if-part is clear
by the discussion of the previous section. Let us look at
the induced subgraph H[V(P2,1,3) ∪ V(P1,3,4) ∪ V(P3,4,5) ∪
V(P2,5,4) ∪ V(P1,2,5)] in the right graph H shown in Fig. 3.
Then, the induced subgraph includes the edge (γ1, γ2) and
thus the degrees of γ1 and γ4 are 4. The reason why the in-
duced subgraph cannot be 3-regular comes from the fact that
the cycle 〈v1, v3, v4, v5, v2, v1〉 includes the chord edge (v1, v4)
in the original graph G. The edges between γ-vertices are
placed because there is an edge between their correspond-
ing vertices in G. As a result, the assumption that H[S ∗]
is an optimal solution, i.e., 3-regular, implies that the corre-
sponding induced subgraph in the original graph G forms a
cycle 〈vi1 , vi2 , · · · , vi j , vi1〉.

Since the number of vertices in each path gadget
is 4(n3 + 1), OPT2(G) ≥ g(n)

n1−ε holds by the assumption

OPT3(H) ≥ 4(n3 + 1) · g(n)
n1−ε . Therefore, the condition (C2) is

also satisfied.

3.4 Reduction for r ≥ 4

In this section, we give a brief sketch of the ideas to prove
Corollary 1, i.e., the O(n1/6−ε) inapproximability for r-
MaxRICS for any fixed integer r ≥ 4.

The proof is very similar to that of Theorem 3. The
main difference between those proofs is the structure of each
path gadget. See Fig. 6, which shows the modified path gad-
get. (i) We replace each of γ-vertices in Fig. 4 with the com-
plete graph Kr−2 of r − 2 vertices, and then connect one γ-
vertex in Hi and one γ-vertex in Hj for i � j by a similar
manner to the reduction for the case r = 3. (ii) As for β-
vertices, we prepare Kr−2 of r − 2 vertices, say, β1, · · · , βr−2,
and two vertices, say, β0 and βr−1, such that each of the two
vertices β0 and βr−2 is adjacent to all the vertices in Kr−2.
Then, all of the β-vertices are connected to the α-vertex
similar to the reduction for r = 3. Since the reduction re-
quires n3 γ-vertices to connect all the pairs of Hi’s, which
is independent of the value of r, the path gadget consists
of � n3

r−2  subgraphs, say, P1
j,i,k through P�n

3/(r−2)
j,i,k . As a result,

the total number of vertices in the constructed graph remains
O(n6). This completes the proof and thus we can obtain the
n1/6−ε inapproximability of the general r-MaxRICS problem
for r ≥ 4.
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4. Conclusion

In this paper, we have shown that r-MaxRICS is NP-hard
for any fixed integer r ≥ 4. Furthermore, we have shown
that r-MaxRICS for any fixed integer r ≥ 3 cannot be ap-
proximated within a factor of n1/6−ε in polynomial time for
any ε > 0 unless P = NP. An apparent future work is to
prove a stronger hardness ratio for r-MaxRICS. Also, it is
an interesting topic for further researches to investigate the
(in) tractability and the (in) approximability of r-MaxRICS
on subclasses of graphs such as planar graphs and degree-
bounded graphs.
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