
472
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

PAPER Special Section on Foundations of Computer Science

Static Dependency Pair Method in Rewriting Systems
for Functional Programs with Product, Algebraic Data,
and ML-Polymorphic Types

Keiichirou KUSAKARI†a), Member

SUMMARY For simply-typed term rewriting systems (STRSs) and
higher-order rewrite systems (HRSs) à la Nipkow, we proposed a method
for proving termination, namely the static dependency pair method. The
method combines the dependency pair method introduced for first-order
rewrite systems with the notion of strong computability introduced for
typed λ-calculi. This method analyzes a static recursive structure based
on definition dependency. By solving suitable constraints generated by the
analysis, we can prove termination. In this paper, we extend the method to
rewriting systems for functional programs (RFPs) with product, algebraic
data, and ML-polymorphic types. Although the type system in STRSs con-
tains only product and simple types and the type system in HRSs contains
only simple types, our RFPs allow product types, type constructors (alge-
braic data types), and type variables (ML-polymorphic types). Hence, our
RFPs are more representative of existing functional programs than STRSs
and HRSs. Therefore, our result makes a large contribution to applying
theoretical rewriting techniques to actual problems, that is, to proving the
termination of existing functional programs.
key words: rewriting systems for functional programs, termination, static
dependency pair method

1. Introduction

Various extensions of term rewriting systems (TRSs) [24]
for handling higher-order functions have been pro-
posed [10], [12], [14], [19], [20]. Simply-typed term rewrit-
ing systems (STRSs) introduced by Kusakari [14], and
higher-order rewrite systems (HRSs) introduced by
Nipkow [19] are two such extensions. In this paper, we in-
troduce rewriting systems for functional programs (RFPs),
which is an extension of TRSs with product, algebraic
data, and ML-polymorphic types. For example, the typi-
cal higher-order function foldl can be represented by the
following RFP Rfoldl:{

foldl f e nil → e
foldl f e (cons (x, xs)) → foldl f (f (e, x)) xs

Here we suppose that the function foldl has the type:

foldl : (α × β→ α)→ α→ list(β)→ α

in which α and β are type variables, and list is a type
constructor.

The static dependency pair method is a powerful

Manuscript received March 23, 2012.
Manuscript revised June 16, 2012.
†The author is with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464–8603 Japan.
a) E-mail: kusakari@is.nagoya-u.ac.jp

DOI: 10.1587/transinf.E96.D.472

method to prove termination, which was introduced on
STRSs [16], [17], and extended to HRSs [18], [22]. The
method combines the dependency pair method introduced
for first-order rewrite systems [1] with the notion of strong
computability introduced for typed λ-calculi [7], [23]. The
static dependency pair method consists in showing the non-
loopingness of each static recursion component indepen-
dently, the set of static recursion components being com-
puted through some static recursion analysis. For the RFP
Rfoldl, the static dependency pair method yields a single
static recursion component:

foldl� f e (cons (x, xs))→ foldl� f (f (e, x)) xs

To prove the non-loopingness of static recursion compo-
nents, the notions of subterm criterion and reduction pair
have been proposed. The subterm criterion was introduced
on TRSs [9], and slightly improved by extending the sub-
terms permitted by the criterion on STRSs [16], and ex-
tended on HRSs [18]. Reduction pairs [15] are an abstrac-
tion of weak-reduction order [1]. By using the subterm cri-
terion, we can prove the non-loopingness of the above static
recursion component from the following fact:

cons(x, xs) �sub xs (xs is a subterm of cons (x, xs))

By recapitulating such a termination proof by the static
dependency pair method, we obtain the following claim:

The function foldl is explicitly recursively
defined on the third argument. Hence, the func-
tion foldl is well-defined (terminating).

This claim is an assertion of the static dependency pair
method, and it may be very natural reasoning. However, it is
quite difficult to verify the claim because its reduction may
be affected by unanticipated behaviors of functions held in
higher-order variables. Actually, the static dependency pair
method is not applicable to every system. Let’s consider the
additional rule for foo : α×α→ α, and let R be the follow-
ing RFP:

Rfoldl ∪ {foo (x, y)→ foldl foo y (cons (x, nil))}

Then the RFP R is not terminating because there exists
the loop: foo (0, 0) −→

R
foldl foo 0 (cons (0, nil)) −→

R

foldl foo (foo (0, 0)) nil −→
R
foo (0, 0). As seen above,

for the non-termination of R, the infinite sequence through

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

KUSAKARI: SDP-METHOD IN REWRITING SYSTEMS FOR FUNCTIONAL PROGRAMS WITH PRODUCT, ALGEBRAIC DATA, AND ML-POLYMORPHIC TYPES
473

the “second” argument of foldl is essential, but not the
“third” argument. This example indicates that such a claim
does not hold in general. As a class in which the static de-
pendency pair method is sound, we founded the class of
plain function-passing [16], and extended this class to the
class of safe function-passing [17].

In this paper, we extend the static dependency pair
method and the class of safe function-passing to RFPs, in
which we can use arbitrary type constructors (algebraic data
types) and type variables (ML-polymorphic types). Then we
show the soundness of the static dependency pair method in
the class. Since our RFPs are more representative of existing
functional programs than STRSs and HRSs, and the class of
safe function-passing is sufficiently expressive, our result is
very practicable.

The most basic notion in the static dependency pair
method is that of the static dependency pair itself. From a
theoretical viewpoint, we may extend the static dependency
pair method onto polymorphic settings by interpreting the
static dependency pair as infinite ones in simple-type set-
tings. However this approach erases practicality of the static
dependency pair method. Hence we give polymorphism to
the static dependency pair. In order to keep the soundness of
the static dependency pair method for safe function-passing
RFPs, we split static dependency pairs into outer ones and
inner ones (cf. Definition 4.1), moreover, we introduce the
notion of outer/inner actual static dependency pairs (cf. Def-
inition 4.3). Then we can prove the soundness by a similar
story line in [17], although minor adjustments are needed in
almost all parts.

As an example showing the effectivity of the static de-
pendency pair method, there exists polymorphic-typed com-
binatory logic, which is represented as the following RFP
RCL with S : (α → β → γ) → (α → β) → α → γ and
K : α→ β→ α:

RCL =

{
S f g x → f x (g x)
K x y → x

The static dependency pair method can prove its termination
from the following two easily checked reasons:

• Each rule is not explicitly recursively defined, that is, S
and K do not occur on the right-hand sides.
• Any variable occurs in an argument position on the left-

hand sides.

Although several proofs of the termination of polymorphic-
typed combinatory logic are known [8], we believe that our
proof is very elegant.

The remainder of this paper is organized as follows.
The next section provides rewriting systems for functional
programs (RFPs) with product, algebraic data, and ML-
polymorphic types. In Sect. 3, we provide the notion of
strong computability, which gives a theoretical basis for the
static dependency pair method. We also gives the class of
safe function-passing in which the static dependency pair is
sound. In Sect. 4, we give the static dependency pair method

on RFPs. In Sect. 5, we give the notion of the subterm cri-
terion and reduction pairs that prove the non-loopingness
of the static recursion component. Concluding remarks are
presented in Sect. 6.

2. Rewriting Systems for Functional Programs

In this section, we introduce rewriting systems for func-
tional programs (RFPs) with product, algebraic data, and
ML-polymorphic types. Intuitively, algebraic data types
allow type constructors, and ML-polymorphic types al-
low type variables. RFPs are extensions of term rewriting
systems.

The set S of product, ML-polymorphic and algebraic-
data types (types for short) is generated from the set TV
of type variables by the type constructors {→,×} � TC, in
which each symbol c ∈ TC is associated with a natural num-
ber n, denoted by arity(c) = n. Formally, the set S is defined
as the least set satisfying the following properties:

• If α ∈ TV then α ∈ S.
• If σ1, σ2 ∈ S then (σ1 → σ2) ∈ S.
• If σ1, . . . , σn ∈ S then (σ1 × · · · × σn) ∈ S.
• If σ1, . . . , σn ∈ S and c ∈ TC with arity(c) = n then

c(σ1, . . . , σn) ∈ S.

A functional type or higher-order type is a type of the form
(σ1 → σ2). A product type is a type of the form (σ1 ×
· · · × σn) for n ≥ 2. A data type is either a product type
or a type of the form c(σ1, . . . , σn). We denote by Snfun

the set of non-functional types. To minimize the number
of parentheses, we assume that → is right-associative and
→ has lower precedence than ×. We shortly denote σ1 →
· · · → σn → σ0 by σn → σ0. Under these conventions,
any type σ is uniquely denoted by the form σn → σ0 with
σ0 ∈ Snfun, which we call the canonical form. A type σ is
said to be closed if no type variable occurs in σ. A type σ
is said to be an instance of a type σ′, denoted by σ′ 	 σ, if
there is a type substitution ξ such that σ = ξ(σ′).

The set Traw of raw terms generated from the set F
of function symbols and the set V of variables without
name collision is the smallest set such that (a t1 · · · tn),
(t1, . . . , tn) ∈ Traw whenever a ∈ V∪F and t1, . . . , tn ∈ Traw.

A type environment is a pair (Σ,Γ) of mappings Σ :
F → S and Γ : V → S. Under an environment (Σ,Γ),

• if Γ(x) = σn → σ0 then (x tσ1
1 · · · tσn

n)σ0 is a typed
term,
• if Σ(f) 	 σn → σ0 then (f tσ1

1 · · · tσn
n)σ0 is a typed

term, and
• (tσ1

1 , . . . , t
σn
n)σ1×···×σn is a typed term,

whenever tσ1
1 , . . . , t

σn
n are typed terms. The identity of typed

terms is denoted by ≡. We shortly denote (a)σ by aσ for
a ∈ F ∪V. For a term tσ ≡ (tσ1

1 , . . . , t
σn
n)σ1×···×σn , we identify

tσ ≡ (tσ1
1)σ1 ≡ tσ1

1 if n = 1, and tσ ≡ ()unit if n = 0, where
unit is the special type constructor with arity(unit) = 0.
No confusion arises about type environments for the dis-
cussions in this paper, because the current version of our

474
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

rewriting systems does not allow functional abstraction (λ-
abstraction) and let-expressions. Hence we omit a type envi-
ronment for typed terms, and shortly denote by T the set of
typed terms (terms for short). We often denote tσ by t : σ,
or shortly t whenever no confusion arises. We abbreviate
(a tσ1

1 · · · tσn
n)σ0 by (a tσn

n)σ0 , or shortly a tn. We often write

t u for (a tn uσm
m)σ where t ≡ (a tn)σm→σ.

Example 2.1: Let Σ(map) = (α → β) → list(α) →
list(β). Then we have

map(α→β)→list(α)→list(β) ∈ T

because of Σ(map) 	 (α → β) → list(α) → list(β).
Hence we have

(map map(α→β)→list(α)→list(β))σ ∈ T

because of Σ(map) 	 σ = ((α → β) → list(α) →
list(β))→ list(α→ β)→ list(list(α)→ list(β)).

The set of positions of a term t is the set Pos(t) of strings
over positive integers, which is inductively defined as fol-
lows: Pos(a tn) = Pos((t1, . . . , tn)) = {ε} ∪ ⋃n

i=1{ip | p ∈
Pos(ti)}. The prefix order ≺ on positions is defined by p ≺ q
iff pw = q for some w (� ε). The position ε is said to be the
root, and a position p such that p ∈ Pos(t) ∧ p1 � Pos(t)
is said to be a leaf. The subterm at position p in t, de-
noted by t|p, is defined as t|ε ≡ t, (a tn)|ip ≡ ti|p, and
(t1, . . . , tn)|ip ≡ ti|p. The symbol at position p in t, de-
noted by (t)p, is defined as (a tn)ε = a, (t1, . . . , tn)ε = tp,
(a tn)ip = (ti)p, and (t1, . . . , tn)ip = (ti)p. Here tp represents
the tuple symbol. To improve readability, we often omit the
type information. Sometimes the root symbol (t)ε in a term
t is denoted by root(t). We also define args(t) by {t1, . . . , tn}
if t has the form of a tn or (t1, . . . , tn). We denote by Sub(t)
the set of subterms of t, and by Var(t) the set of variables
occurring in t. We write t �sub u (resp. t �sub u) if u ∈ Sub(t)
(resp. u ∈ Sub(t) \ {t}). We note that σm → σ0 = σ′n → σ′0
holds whenever (x uσm

m)σ0 , (x vσ
′
n

n)σ
′
0 ∈ Sub(t) with x ∈ V.

A term t is said to be closed if σ is a closed type for any
uσ ∈ Sub(t). We denote by Tnfun the set of non-functional
typed terms, by T cls the set of closed terms, and by T cls

nfun the
set of non-functional and closed terms.

A context is a term with one occurrence of the special
symbol �σ, called a hole. A leaf context is a context where
the occurrence of � is at a leaf position. The notation C[tσ]
denotes the term obtained by substituting t into the hole of
C[�σ].

A type substitution ξ is naturally extended over
terms as (a tn)σξ ≡ (a tnξ)ξ(σ) and (tσ1

1 , . . . , t
σn
n)σξ ≡

(tσ1
1 ξ, . . . , t

σn
n ξ)ξ(σ).

A term substitution is a mapping with finite domain,
denoted by θ = {xσ1

1 := tσ1
1 , . . . , x

σn
n := tσn

n }. Each sub-

stitution θ is naturally extended over terms as (a tσn
n)σθ =

a′ uk tnθ if a ∈ V and θ(aσn→σ) = a′ uk; (a tn)θ = a tnθ if
a ∈ F ; (t1, . . . , tn)θ = (t1θ, . . . , tnθ).

A pair (lσ, rσ) of terms with the same type under the

same type environment is said to be a rewrite rule, denoted
by lσ → rσ, if root(l) ∈ F and Var(l) ⊇ Var(r) hold. We
note that the condition root(l) ∈ F guarantees that l has the
form of a ln, but not the form of (l1, . . . , ln). A rewriting sys-
tem for functional programs (RFP) is a finite set of rewrite
rules. As a matter of course, we note that the rules of an
RFP R share a type environment Σ. For any rewrite rule
lσ → rσ, we define the set Act(l→ r) of actual rewrite rules
as: uσ

′ → vσ′ ∈ Act(lσ → rσ) iff there is a type substitution
ξ such that u ≡ lξ zk, v ≡ rξ zk, and ξ(σ) = σn → σ0 with
k ≤ n, and σ′ = σk+1 → · · · → σn → σ0, where each zσi

i
is a fresh variable. The reduction relation −→

R
of an RFP R

is defined by s −→
R

t iff s ≡ C[lθ] and t ≡ C[rθ] for some ac-
tual rewrite rule l → r ∈ Act(R), leaf context C[], and term
substitution θ.

Example 2.2: Let Rlist be the following RFP:

Rlist =

{
hd (cons (x, xs)) → x
tl (cons (x, xs)) → xs

Here we suppose that nil : list(α), cons : α×list(α)→
list(α), hd : list(α)→ α, and tl : list(α)→ list(α).
Then Act((hd (cons (xα, xslist(α))α×list(α))list(α))α → xα)
consists of the rules that have the following form:

(hd (cons (xσ, xslist(σ))σ×list(σ))list(σ)zσn
n)σ0→(xzσn

n)σ0

where σ = σn → σ0 and each σi is an arbitrary type.
Also, Act((tl (cons (xα, xslist(α))α×list(α))list(α))list(α) →
xslist(α)) consists of the rules that have the following form:

(tl (cons (xσ, xslist(σ))σ×list(σ))list(σ))list(σ)

→ xslist(σ)

where σ is an arbitrary type.

Example 2.3: Let Rmap be the following RFP:{
map f nil → nil

map f (cons (x, xs)) → cons (f x, map f xs)

We suppose that map : (α → β) → list(α) → list(β).
Here Nat is a type of natural numbers, which are represented
in the usual way by 0 : Nat and succ : Nat → Nat, Then
we have the following reduction for R = Rlist ∪ Rmap:

hd (map map (cons (succ, nil))) (cons (0, nil))

−→
R
hd (cons (map succ, map map nil)) (cons (0, nil))

−→
R
hd (cons (map succ, nil)) (cons (0, nil))

−→
R
map succ (cons (0, nil))

−→
R
cons (succ 0, map succ nil)

−→
R
cons (succ 0, nil)

A term t is terminating or strongly normalizing if there
exists no infinite reduction sequence starting from t. Then
we denote SN(t). An RFP R is said to be terminating or
strongly normalizing if every term is so. We denote by TS N

the set of strongly normalizing terms. We also define sets
T¬S N = T \ TS N and T args

S N = {t | args(t) ⊆ TS N}.
Since actual rewrite rules are closed under type substi-

tution, we obtain the following proposition.

KUSAKARI: SDP-METHOD IN REWRITING SYSTEMS FOR FUNCTIONAL PROGRAMS WITH PRODUCT, ALGEBRAIC DATA, AND ML-POLYMORPHIC TYPES
475

Proposition 2.4: Let R be an RFP. If s −→
R

t then sξ −→
R

tξ for any type substitution ξ. Hence if any closed term is
terminating then R is terminating.

3. Strong Computability, Safety Function and Safe
Function-Passing

The theoretical basis of the static dependency pair method
is given by the notion of strong computability, which is in-
troduced for proving the termination of typed λ-calculi [7],
[23]. Unfortunately the static dependency pair method is
not applicable to every RFP, that is, there exists a non-
terminating RFP that has no static recursive structure. The
following one rule RFP is such an example.

(foo (bar f α→β)α)β → (f (bar f α→β)α)β

From a technical viewpoint, this problem arises from the
reason that strong computability is not closed under the
subterm relation. For the example, some terms that are
not strongly computable are accidentally passed through the
higher-order variable f from the left-hand side to the right-
hand side, because even if an actual argument (bar t) of foo
is strongly computable, its subterm t may not be strongly
computable.

From this observation, we proposed notions of plain
function-passing [16] and of safe function-passing [17], un-
der which the static dependency pair method works well. In
this section, we extend the notion of safe function-passing to
RFPs, with the notions of a strong computability predicate
and a safety function.

To increase reusability, we divide an abstract frame-
work from these constructions. Note that any proof in the
following sections will not refer to any discussion in the
constructing section (Sect. 3.2). Any proof in the following
sections will refer only to the abstract framework (Sect. 3.1).

3.1 Abstract Framework

Definition 3.1: Let R be an RFP. A predicate SC over
closed terms is said to be a strong computability predicate if
the following properties hold:

(SC1) For any t ∈ T cls, if SC(t) then SN(t).
(SC2) For any tσ1→σ2 , uσ1 ∈ T cls, if SC(t) and SC(u) then
SC(t u).

(SC3) For any tσ1→σ2 ∈ T cls, if SC(t u) for all uσ1 ∈ T cls

such that SC(u) then SC(t).
(SC4) For any t, u ∈ T cls, if SC(t) and t −→

R
u then SC(u).

(SC5) For any t ∈ T cls
nfun, ifSC(u) for all u ∈ T cls∩(args(t)∪

{t′ | t −→
R

t′}) then SC(t).

We denote TS C = {t | SC(t)}, T¬S C = {t | ¬SC(t)}, and
T args

S C = {t | args(t) ⊆ TS C}.

Definition 3.2: For a strong computability predicate SC, a
function Safe is said to be a safety function if it satisfies the
following properties:

(S1) If u ∈ Safe(t) and t ∈ T args
S C then SC(u), for any t, u ∈

T cls.
(S2) If u ∈ Safe(t) then uθ ∈ Safe(tθ) for any t, u ∈ T cls

and term substitution θ.
(S3) If u ∈ Safe(t) then uξ ∈ Safe(tξ) for any closed type

substitution ξ.

Definition 3.3: An RFP R is said to be safe function-
passing if there exists a safety function Safe for a strong
computability predicate such that for any l → r ∈ R and
a rn ∈ Sub(r) with a ∈ V, there exists k (k ≤ n) such that
a rk ∈ Safe(l). A safe function-passing RFP is often shortly
denoted by SFP-RFP.

3.2 Constructing a Strong Computability Predicate and a
Safety Function

To formulate the notion of safe function-passing in a sim-
ple type setting, we introduced notions of peeling types
and peeling orders [17]. We extend these notions to RFPs,
and construct a strong computability predicate and a safety
function.

Definition 3.4: A set PT of peeling types is a set of data
types. We define PT	 = {σ | σ′ 	 σ for some σ′ ∈ PT }. A
well-founded quasi order �S on types is said to be a peeling
order if the following properties hold:

• σ1 → σ2 �S σi (i = 1, 2) for any closed types σ1 and
σ2.
• If σ′ �S σ then ξ(σ′) �S ξ(σ) for any closed type

substitution ξ.

We define the set Sub�SPT (t) of peeled subterms as the smallest
set satisfying the following properties:

• args(t) ⊆ Sub�SPT (t),
• if u ≡ (a uσn

n)σ ∈ Sub�SPT (t), σ ∈ PT	, and σ �S σi then
ui ∈ Sub�SPT (t), and
• if u ≡ (uσ1

1 , . . . , u
σn
n)σ ∈ Sub�SPT (t), σ ∈ PT	, and σ �S

σi then ui ∈ Sub�SPT (t).

For a set PT of peeling types and a peeling order �S, we
define the function Safe as Safe(t) = Sub�SPT (t) ∪ {u | t �sub

uσ, σ is a data type such that σ � PT	}.

Definition 3.5: For a set PT of peeling types and peeling
order �S, we define S C(tσ) as follows:

• In case of tσ ∈ T cls
nfun and σ � PT	, S C(t) is defined as

SN(t).
• In case of tσ ∈ T cls

nfun and σ ∈ PT	, S C(t) is defined as

SN(t) and S C(u) for any uσ
′ ∈ T cls ∩⋃{args(t′) | t ∗−→

R

t′} such that σ �S σ′.
• In case of tσ1→σ2 ∈ T cls, S C(t) is defined as S C(t u) for

all uσ1 ∈ T cls with S C(u).

Theorem 3.6: The predicate S C given in Definition 3.5 is
a strong computability predicate.

476
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Proof.: We first prove the well-definedness of S C, that is,
S C(t) is defined for any t ∈ T cls. Assume that S C is not
well-defined.

Let tσ0

0 be a minimal term with respect to �S such that
S C(t0) is undefined. From the minimality of t0, we have
σ0 ∈ PT	, SN(t0), and there exist t′0 and t1 such that t0

∗−→
R

t′0,
tσ1
1 ∈ args(t′0), σ0 ∼S σ1, and S C(t1) is undefined, where ∼S

is the equivalence part of �S.
Since σ0 ∼S σ1, t1 is also a minimal term with re-

spect to �S such that S C(t1) is undefined. By applying the
procedure above, we obtain t′1 and t2 such that t1

∗−→
R

t′1,
tσ2
2 ∈ args(t′1), σ1 ∼S σ2, and S C(t2) is undefined.

By applying this procedure repeatedly, we obtain
t′2, t
′
3, . . . and t3, t4, . . . such that ti

∗−→
R

t′i and ti+1 ∈ args(t′i)
for i = 2, 3, Since �sub∪−→R is well-founded on terminat-
ing terms, this contradicts with SN(t0).

Next we will prove that the predicate S C satisfies the
conditions in Definition 3.1. The conditions (SC2), (SC3),
and (SC5) are trivial.

(SC4) Let S C(tσ) and t −→
R

t′. We prove S C(t′) by induction
on σ. The case σ ∈ Snfun is trivial. Suppose that σ =
σ1 → σ2. Let uσ1 be an arbitrary term such that S C(u)
holds. Then S C(t u) follows from S C(t) and (SC2).
Since (t u)σ2 −→

R
t′ u, we have S C(t′ u) by the induction

hypothesis. Hence, S C(t′) follows from (SC3).
(SC1) We prove the following claims by simultaneous in-

duction on σ.

(i) If S C(tσ) then SN(t).
(ii) S C(xσ) for all x ∈ V.

Let σn → σ0 be the canonical form of σ. The case
n = 0 is trivial. Suppose that n > 0.
(i): From the induction hypothesis (ii), an arbitrary
variable zσ1

1 is strongly computable. From (SC2), we
have S C(t z1). From the induction hypothesis (i), t z1

is terminating, hence so is t.
(ii): Assume that ¬S C(zσ) for some variable z.
From (SC3), there exist strongly computable terms
uσ1

1 , . . . , u
σn
n such that z un is not strongly computable.

From the induction hypothesis (i), each ui is terminat-
ing, hence so is z un. Since (z un)σ0 is not strongly com-
putable and σ0 ∈ Snfun, we have σ0 ∈ PT	 and there
exist terms v′ and v such that z un

∗−→
R
v′, v ∈ args(v′),

and v is not strongly computable. Since root(l) � V for
all l → r ∈ R, there exists i such that ui

∗−→
R
v. From

(SC4), ui is not strongly computable. This is a contra-
diction. �

Theorem 3.7: The function Safe given in Definition 3.4 is
a safety function.

Proof.: (S1) Let t, u ∈ T cls, u ∈ Safe(t) and t ∈ T args
S C . We

prove S C(u).
If u ∈ {u | t�sub uσ, σ is a data type such that σ � PT	},
then S C(u) follows from u �sub t ∈ T args

S C and (SC1).
Suppose that uσ ∈ Sub�SPT (t). Then we have either
u ∈ args(t) or there exists vσ

′ ∈ Sub�SPT (t) such that

u ∈ args(v), σ′ ∈ PT	, and σ′ �S σ. In the former
case, we have S C(u) because of tθ ∈ T args

S C . In the lat-
ter case, it suffices to show that S C(u) whenever S C(v),
which is directly deduced from the definition of S C.

(S2) It is obvious because �sub is closed under term substi-
tutions, and any term substitution does not change type
information.

(S3) It is obvious because �S and PT	 are closed under
closed type substitutions. �

Example 3.8: We show that Rfoldl as discussed in the In-
troduction is safe function-passing.

Since types can be interpreted as first-order terms (we
interpret a product type σ1 × · · · × σn as a first-order term
tpn(σ1, . . . , σn)), we construct the peeling order �S by us-
ing the recursive path order >rpo [5] with the argument filter-
ing method [1] over first-order term rewriting systems. We
take the argument filtering function by π(tpn) = n, π(→) =
[1, 2], and π(c) = [1, . . . , arity(c)] for any c ∈ TC. Then
the order �πrpo, defined as σ1 �πrpo σ2 iff π(σ1) �rpo π(σ2),
becomes a peeling order. We take PT as the set of all data
types.

The first rule of Rfoldl trivially satisfies the desired
property. Suppose that t ≡ foldl f e (cons (x, xs)). Then:

• we have f , e, cons (x, xs) ∈ Sub�SPT (t) because of
args(t) ⊆ Sub�SPT (t),
• we have (x, xs) ∈ Sub�SPT (t) because of

(cons (x, xs)α×list(α))list(α) ∈ Sub�SPT (t), list(α) ∈
PT , and π(list(α)) = list(α) �rpo list(α) =
π(α × list(α)), and
• we have x, xs ∈ Sub�SPT (t) because of

(xα, xslist(α))α×list(α) ∈ Sub�SPT (t), α × list(α) ∈
PT , π(α × list(α)) = list(α) �rpo list(α) =
π(list(α)), and π(α × list(α)) = list(α) �rpo α =
π(α).

Hence we have Safe(t) = { f , e, cons (x, xs), (x, xs), x, xs},
and then the second rule of Rfoldl also satisfies the desired
property. Therefore Rfoldl is safe function-passing.

4. Static Dependency Pair Method

The static dependency pair method is a powerful method
to prove termination, which was introduced on STRSs [16],
[17], and extended to HRSs [18], [22]. In this section, we
extend the method to RFPs.

Definition 4.1: Let R be an SFP-RFP. All root symbols
of the left-hand sides of rewrite rules, denoted by DR, are
called defined symbols. whereas all other function symbols,
denoted by CR, are constructors.

For each f ∈ DR, we provide a new function symbol
f �, called the marked-symbol of f . For each t ≡ a tn with
a ∈ DR, we define the marked term t� by a� tn.

A pair 〈 l�, a� rn 〉, denoted by l� → a� rn, is said to
be an outer static dependency pair in R if there exists a rule
l→ a rn ∈ R satisfying the following conditions:

KUSAKARI: SDP-METHOD IN REWRITING SYSTEMS FOR FUNCTIONAL PROGRAMS WITH PRODUCT, ALGEBRAIC DATA, AND ML-POLYMORPHIC TYPES
477

• a ∈ DR, and
• a rk � Safe(l) for all k (≤ n).

A pair 〈 l�, a� rn 〉, denoted by l� → a� rn, is said to
be an inner static dependency pair in R if there exist a non-
empty leaf-context C[] and l → C[a rn] ∈ R satisfying the
two conditions above.

A static dependency pair in R is an outer or inner static
dependency pair. We denote by S DP(R) the set of static
dependency pairs in R.

Example 4.2: We consider the SFP-RFP Rsigma, that is the
union of Rfoldl, Rmap and the following rules:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

add (0, y) → y
add (succ x, y) → succ (add (x, y))

sum → foldl add 0
sigma f xs → sum (map f xs)

where Rfoldl and Rmap are displayed in the Introduction and
Example 2.3, respectively. Here we suppose that add :
Nat × Nat → Nat, sum : list(Nat) → Nat, and sigma :
(α→ Nat)→ list(α)→ Nat. The sum function calculates
the total sum for an input list, and the function sigma f xs
calculates Σi∈xs f (i). Note that similar to Example 3.8 we
can prove that Rsigma is safe function-passing. Then there
are three outer static dependency pairs:

foldl� f e (cons (x, xs)) → foldl� f (f (e, x)) xs
sum� → foldl� add 0

sigma� f xs → sum� (map f xs)

and there are four inner static dependency pairs:

map� f (cons (x, xs)) → map� f xs
add� (succ x, y) → add� (x, y)

sum� → add�

sigma� f xs → map� f xs

Definition 4.3: Let R be an SFP-RFP. For any outer static
dependency pair u� → v�, we define the set Act(u� → v�) of
actual outer static dependency pairs as: s� → t� ∈ Act(u� →
v� : σ) iff s� and t� are closed terms, and there is a type
substitution ξ such that s� ≡ u�ξ zn, t� ≡ v�ξ zn, and the
canonical form of ξ(σ) is τn → τ, where each zτi

i is a fresh
variable.

For any inner static dependency pair u� → v�, we define
the set Act(u� → v�) of actual inner static dependency pairs
as: s� → t� ∈ Act(u� : σ′ → v� : σ) iff s� and t� are closed
terms, and there is a type substitution ξ such that s� ≡ u�ξ z′n,
t� ≡ v�ξ zm, and the canonical form of ξ(σ′) and ξ(σ) are
τ′n → τ′ and τm → τ, respectively, where each z′i : τ′i and
zi : τi are fresh variables.

An actual static dependency pair in R is an ac-
tual outer/inner static dependency pair. We denote by
Act(S DP(R)) the set of actual static dependency pairs in R.

Definition 4.4: Let R be an SFP-RFP. A sequence u�1 →
v
�
1, u
�
2 → v

�
2, . . . of static dependency pairs in R is said to

be a static dependency chain in R if there exist s�1 → t�1 ∈

Act(u�1 → v
�
1), s�2 → t�2 ∈ Act(u�2 → v

�
2), . . ., and term

substitutions θ1, θ2, . . . such that for any i, t�i θi
∗−→
R

s�i+1θi+1,
siθi, tiθi ∈ T args

S C , and siθi, tiθi � TS C.

Lemma 4.5: If an SFP-RFP R is not terminating then
T cls

nfun ∩ T¬S C ∩ T args
S C � ∅.

Proof.: From Proposition 2.4, we have T cls ∩ T¬S N � ∅.
From (SC1), we have T cls ∩ T¬S C � ∅.

Let s be a minimal term in T cls ∩ T¬S C with respect to
term size. From the minimality, we have s ∈ T args

S C . Hence,
we have T cls ∩ T¬S C ∩ T args

S C � ∅.
Let tσ be a minimal term in T cls∩T¬S C ∩T args

S C with re-
spect to type size. It suffices to show that t ∈ Tnfun. Assume
that σ = σ1 → σ2. From (SC3), there is uσ1 ∈ T cls ∩ TS C

such that (t u)σ2 ∈ T¬S C. From t ∈ T args
S C , we have (t u)σ2 ∈

T args
S C . Since the size σ2 is less than the size σ1 → σ2, we

have (t u) � T cls ∩ T¬S C ∩ T args
S C . It is a contradiction. �

Lemma 4.6: Let R be an SFP-RFP. If tσ ∈ T cls ∩ T¬S C ∩
T args

S C then root(t) ∈ DR.

Proof.: Assume that root(t) � DR. Let σn → σ0 be the
canonical form of σ. From (SC3), there are uσ1

1 , . . . , u
σn
n

such that ∀i.S C(ui) and ¬S C(t un). Then the termination of
t un follows from root(t) � DR, t un ∈ T args

S C and (SC1).
From (SC5) there exists t1 ∈ T cls such that t un −→R t1

with ¬S C(t1), because t un ∈ T cls
nfun ∩ T¬S C ∩ T args

S C . From

root(t un) � DR and (SC4), we have t1 ∈ T cls
nfun∩T¬S C∩T args

S C

and root(t1) � DR. In a similar way, there is a t2 ∈
T cls

nfun ∩T¬S C ∩T args
S C such that t1 −→R t2 and root(t2) � DR. By

applying this procedure repeatedly, we construct an infinite
sequence t un −→R t1 −→R t2 −→R · · ·, which leads to a contradic-
tion with the termination of t un. �

Lemma 4.7: Let R be an SFP-RFP. If t ∈ TS N ∩ T cls
nfun ∩

T¬S C ∩T args
S C then there exist l→ r ∈ Act(R) and θ′ such that

t� ∗−→
R

l�θ′, lθ′ ∈ T cls
nfun ∩ T¬S C ∩ T args

S C , and rθ′ ∈ T¬S C.

Proof.: We proceed by induction on t ordered by −→
R

. From
t ∈ T args

S C and (SC5), there exist t′ ∈ T¬S C such that t −→
R

t′. In
the case where a root redex is rewritten in t −→

R
t′, there exist

l → r ∈ Act(R) and θ′ such that t ≡ lθ′ −→
R

rθ′ ≡ t′. Then
the desired property holds. In other cases, since t′ ∈ T args

S C

follows from (SC4), the desired property follows from the
induction hypothesis. �

Lemma 4.8: Let R be an SFP-RFP. For any t ∈ T cls
nfun ∩

T¬S C ∩ T args
S C , there exist u� → v� ∈ Act(S DP(R)) and term

substitution θ such that t� ∗−→
R

u�θ and uθ, vθ ∈ T cls
nfun ∩ T¬S C ∩

T args
S C .

Proof.: Let tσ
′ ∈ T cls

nfun ∩ T¬S C ∩ T args
S C . Then t ∈ T args

S N

follows from t ∈ T args
S C and (SC1).

• Consider the case of t � TS N . Since t ∈ T args
S N , there

exist closed rewrite rule l → r ∈ Act(R) and closed
term substitution θ′ such that t� ∗−→

R
l�θ′ and lθ′, rθ′ ∈

T¬S N . From (SC1) and (SC4), we have lθ′ ∈ T cls
nfun ∩

T¬S C ∩ T args
S C and rθ′ ∈ T¬S C.

478
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Fig. 1 The static dependency graph of Rsigma.

• Consider the case of t ∈ TS N . From Lemma 4.7, there
exist closed rewrite rule l → r ∈ Act(R) and closed
term substitution θ′ such that t� ∗−→

R
l�θ′, lθ′ ∈ T cls

nfun ∩
T¬S C ∩ T args

S C , and rθ′ ∈ T¬S C.

In both cases above, we have lθ′ ∈ T cls
nfun ∩ T¬S C ∩ T args

S C

and {v′′ ∈ Sub(r) | v′′θ′ ∈ T¬S C} � ∅ because r ∈ Sub(r)
and ¬SC(rθ′). Let v′ : σ be a minimal size term in {v′′ ∈
Sub(r) | v′′θ′ ∈ T¬S C} and σm → σ0 be the canonical form
of σ. From (SC3), there exist strongly computable closed
terms vσm

m such that v′θ′ vm ∈ T¬S C. From the minimality of
v′, we have v′θ′ ∈ T args

S C . Hence we have v′θ′ vm ∈ T cls
nfun ∩

T¬S C ∩ T args
S C . From Lemma 4.6, v′ has the form of a rn with

a ∈ DR.
Now take v by a rn zm, where each zσi

i is a fresh variable,
and θ(x) is defined by vi if x = zi (i = 1, . . . ,m); otherwise
by θ′(x). Then we have lθ ≡ lθ′ and vθ ≡ v′θ′ vm. Hence we
have t� ∗−→

R
l�θ and lθ, vθ ∈ T cls

nfun ∩ T¬S C ∩ T args
S C . It suffices to

show that l� → v� ∈ Act(S DP(R)).
Since l → r ∈ Act(R), there exist f lq → r′ ∈ R and ξ

such that l ≡ f lqξ yk and r ≡ r′ξ yk where each yi is a fresh
variable.

Consider the case of v′ ≡ r. Then r′ has the form of
a r′n−k such that ri ≡ r′iξ for any i = 1, . . . , n−k, and rk+i ≡ yi

for any i = n− k+1, . . . , k. Assume a r′p ∈ Safe(l′) for some
p (≤ n − k). From (S3), we have a rp ∈ Safe(l). From (S1),
(S2) and lθ ∈ T args

S C , we have SC(a rpθ). From (SC2), we
have SC(vθ), which leads to a contradiction. Hence l� → v�
is an actual outer static dependency pair.

Consider the case of v′ ≡ yi for some i ≤ k. Since v′

has the form of a rn, this is not the case.
Consider the case of v′ ∈ Sub(r′ξ) \ {r′ξ}. Then there

exists a r′n ∈ Sub(r′) such that v′ ≡ a rn ≡ a r′nξ. As-
sume a r′p ∈ Safe(l′) for some p (≤ n). From (S3), we have
a rp ∈ Safe(l). From (S1), (S2) and lθ ∈ T args

S C , we have
SC(a rpθ). From (SC2), we have SC(vθ), which leads to a
contradiction. Hence l� → v� is an actual inner static depen-
dency pair. �

We give the fundamental theorem of the static depen-
dency pair method.

Theorem 4.9: Let R be an SFP-RFP. If there exists no in-
finite static dependency chain then R is terminating.

Proof.: Assume that R is not terminating. From Lemma
4.5, there exists t ∈ T cls

nfun∩T¬S C∩T args
S C . By applying Lemma

4.8 repeatedly, we have an infinite static dependency chain,
which leads to a contradiction. �

We now introduce the notions of static dependency
graph, static recursion component and non-loopingness. As
usual, the termination of SFP-RFPs can be proved by prov-
ing the non-loopingness of each static recursion component.
These proofs are similar to other dependency pair methods.

Definition 4.10: Let R be an SFP-RFP. The static depen-
dency graph of R is a directed graph, in which nodes are
S DP(R) and there exists an arc from u� → v� to u′� → v′� if
u� → v�, u′� → v′� is a static dependency chain.

Example 4.11: The static dependency graph of the SFP-
RFP Rsigma (cf. Example 4.2) is displayed in Fig. 1.

Definition 4.12: Let R be an SFP-RFP. A static recursion
component in R is a set of nodes in a strongly connected sub-
graph of the static dependency graph of R. Using S RC(R)
we denote the set of static recursion components in R.

Example 4.13: The static dependency graph of Rsigma (cf.
Example 4.11) has three strongly connected subgraphs.
Thus, the set S RC(Rsigma) consists of the following three
components:

{add� (succ x, y)→ add� (x, y)},
{map� f (cons (x, xs))→ map� f xs},
{foldl� f e (cons (x, xs))→ foldl� f (f (e, x)) xs}

Definition 4.14: Let R be an SFP-RFP. A static recursion
component C ∈ S RC(R) is said to be non-looping if there
exists no infinite static dependency chain in which only pairs
in C occur and every u� → v� ∈ C occurs infinitely many
times.

From Theorem 4.9, we obtain the following corollary.

Corollary 4.15: Let R be an SFP-RFP. If all static recur-
sion components are non-looping then R is terminating.

5. Proving Non-loopingness

When proving termination by dependency pair methods,

KUSAKARI: SDP-METHOD IN REWRITING SYSTEMS FOR FUNCTIONAL PROGRAMS WITH PRODUCT, ALGEBRAIC DATA, AND ML-POLYMORPHIC TYPES
479

non-loopingness should be shown for each recursion com-
ponent (cf. Corollary 4.15). To prove the non-loopingness
of components, the notions of subterm criterion and reduc-
tion pair have been proposed. The subterm criterion was
introduced on TRSs [9], and slightly improved by extending
the subterms permitted by the criterion on STRSs [16], and
extended on HRSs [18]. Reduction pairs [15] are an abstrac-
tion of the notion of the weak-reduction orders [1]. In this
section, we extend the notions to RFPs.

Definition 5.1: A pair (�, >) of relations on terms is a re-
duction pair if � and > satisfy the following properties:

• > is well-founded and closed under term substitutions,
• � is closed under contexts, type substitutions and term

substitutions,
• and � · > ⊆ > or > · � ⊆ >.

In particular, � is said to be a weak reduction order if (�,�
\ �) is a reduction pair.

Definition 5.2: Let R be an RFP and C be a set of static de-
pendency pairs. We say that C satisfies the subterm criterion
if there exists a function π fromDR to non-empty sequences
of positive integers such that:

(i) u|π(root(u)) �sub v|π(root(v)) for some u� → v� ∈ C, and
(ii) the following conditions hold for any u� → v� ∈ C:

• u|π(root(u)) �sub v|π(root(v)),
• (u)p � V for all p ≺ π(root(u)), and
• q � ε⇒ (v)q ∈ CR for all q ≺ π(root(v)).

Theorem 5.3: Let R be an SFP-RFP. Then, C ∈ S RC(R)
is non-looping if C satisfies one of the following properties:

• There is a reduction pair (�, >) such that R ⊆ �,
Act(C) ⊆ � ∪ >, and Act(u� → v�) ⊆ > for some
u� → v� ∈ C.
• C satisfies the subterm criterion.

Proof.: Assume that there exists an infinite static depen-
dency chain u�0 → v

�
0, u
�
1 → v

�
1, u
�
2 → v

�
2, · · · in which

only pairs in C occur and every u� → v� ∈ C occurs in-
finitely many times. From the definition of the static de-
pendency chain, there are s�1 → t�1 ∈ Act(u�1 → v

�
1),

s�2 → t�2 ∈ Act(u�2 → v
�
2), . . ., and term substitutions θ1, θ2, . . .

such that for any i, t�i θi
∗−→
R

s�i+1θi+1, siθi, tiθi ∈ T args
S C , and

siθi, tiθi � TS C.

• Suppose that there is a reduction pair (�, >) such that
R ⊆ �, Act(C) ⊆ � ∪ >, and Act(u� → v�) ⊆ > for
some u� → v� ∈ C. Since � is closed under contexts,
type substitutions and term substitutions, ∗−→

R
⊆ � fol-

lows from R ⊆ �. Since > is closed term substitutions,
s�i θi(� ∪ >)t�i θi for any i follows from Act(C) ⊆ � ∪ >.

Hence we have s�0θ0(�∪>)t�0θ0 � s�1θ1(�∪>)t�1θ1 � · · ·.
From Act(u� → v�) ⊆ > for some u� → v� ∈ C, this
sequence contains infinitely many >. This is a contra-
diction with the well-foundedness of > and � · > ⊆ >
or > · � ⊆ >.

• Suppose that C satisfies the subterm criterion. We note
that u|p �sub v|p (resp. u|p �sub v|p) guarantees s|p �sub t|p
(resp. s|p�sub t|p) for any static dependency pair u� → v�
and s� → t� ∈ Act(u� → v�).
We denote π(root(ui)) by pi for each i. Since t�i θi

∗−→
R

s�i+1θi+1, we have root(ti) = root(si+1). From the last
two conditions in (ii) of the subterm criterion, we have
tiθi|pi+1

∗−→
R

si+1θi+1|pi+1 for each i. Hence, from the
first condition in (ii) of the subterm criterion, we have
s0θ0|p0 �sub t0θ0|p1

∗−→
R

s1θ1|p1 �sub t1θ1|p2

∗−→
R

s2θ2|p2 �sub

t2θ1|p3

∗−→
R
· · ·. From the condition (i) of the subterm

criterion, this sequence contains infinitely many �sub.
Since �sub is well-founded and �sub · −→R ⊆ −→R · �sub,
there exists an infinite rewriting relation starting from
s0θ0|p0 , that is, s0θ0|p0 is not terminating. Since p0 is
non-empty, we have s0θ0 � T args

S N . From the definition
of the static dependency chain, we have s0θ0 ∈ T args

S C .
From (SC1), we have s0θ0 ∈ T args

S N , which leads to a
contradiction. �

Example 5.4: Let π(add)=1.1, π(map)=2, and π(foldl)=
3. Then, every static recursion component C (cf. Example
4.13) satisfies the subterm criterion in the underlined posi-
tions below.

{add� (succ x, y)→ add� (x, y)},
{map� f (cons (x, xs))→ map� f xs},
{foldl� f e (cons (x, xs))→ foldl� f (f (e, x)) xs}

Hence, from Theorem 5.3 these static recursion components
are non-looping. Therefore the termination of Rsigma fol-
lows from Corollary 4.15.

In the Introduction, we said that the polymorphic-typed
combinatory logic is an example that shows the strong effi-
cacy of the static dependency pair method. Finally together
with other well-known combinators [13], we give an elegant
termination proof by the static dependency pair method.

Example 5.5: Let R be the following RFP:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(S f α→β→γ gα→β xα)γ → f x (g x)
(K xα yβ)α → x

(I xα)α → x
(B xα→β yγ→α zγ)β → x (y z)

(B′ xα→β yβ→γ zα)γ → y (x z)
(C xα→β→γ yβ zα)γ → x z y

(J xα→β→β yα zβ wα)β → x y (x w z)
(W xα→α→β yα)β → x y y

Since any variable occurs in an argument position on the
left-hand sides, R is trivially safe function-passing. Since
S DP(R) = ∅ and hence S RC(R) = ∅, the termination of R
follows from Corollary 4.15.

6. Concluding Remarks

In this paper, we present the static dependency pair method,
which proves the termination of SFP-RFPs.

480
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

To prove termination effectively, the argument filtering
method and the notion of usable rules are indispensable. The
argument filtering method generates reduction pairs from re-
duction orders. The method was introduced for TRSs [1],
and extended to STRSs [14], [17], and to HRSs [22]. In fu-
ture research we will extend the method to RFPs. The notion
of usable rules optimize a constraint generated by the depen-
dency pair method. This analysis was first conducted for
TRSs [6], [9], and has been extended to STRSs [17], [21],
and to HRSs [22]. In the future we will extend the notion
on RFPs.

To generate reduction pairs by the argument filtering
method, it is also indispensable to construct reduction or-
ders. Recently, an effective and practicable reduction or-
der, namely higher-order recursive path orderings, was in-
troduced [3], [4], [11]. We will import the orderings to RFPs
in the future.

Since the static dependency pair method cannot apply
to every RFP, it is important to expand its applicable class.
To design the notion “General Scheme” for proving termina-
tion, Blanqui, Jouannaud, and Okada introduced the notion
of accessibility [2]. Several extensions of the accessibility
was introduced [3], [4]. We think that the accessibility has
the similar motivation as our safety function. Hence, by im-
porting the notion to our static dependency pair method, we
can expect to expand the applicable class. This will also be
future work. We note that the abstract framework for the
strong computability and the safety function in Sect. 3 has
the purpose of this future work.

Developing a termination prover for RFPs based on our
results will also be future work.

Acknowledgments

We would like to thank the anonymous referees for their
helpful comments.

This work was supported by KAKENHI #24500012.

References

[1] T. Arts and J. Giesl, “Termination of term rewriting using depen-
dency pairs,” Theor. Comput. Sci., vol.236, pp.133–178, 2000.

[2] F. Blanqui, J.-P. Jouannaud, and M. Okada, “Inductive-data-type
systems,” Theor. Comput. Sci., vol.272, pp.41–68, 2002.

[3] F. Blanqui, “Computability closure: Ten years later,” in Essay
in Honour of Jean-Pierre Jouannaud’s 60 Birthday, LNCS 4600,
pp.68–88, 2007.

[4] F. Blanqui, J.-P. Jouannaud, and A. Rubio, “The computability path
ordering: The end of a quest,” Proc. 17th EACSL Annual Conf. on
Computer Science Logic (CSL2008), LNCS 5213, pp.1–14, 2008.

[5] N. Dershowitz, “Orderings for term-rewriting systems,” Theor.
Comput. Sci., vol.17, no.3, pp.279–301, 1982.

[6] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke, “Mecha-
nizing and improving dependency pairs,” J. Automated Reasoning,
vol.37, no.3, pp.155–203, 2006.

[7] J.-Y. Girard, “Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur,” PhD thesis, Univer-
sity of Paris VII, 1972.

[8] J.R. Hindley and J.P. Seldin, Introduction to Combinators and
λ-Calculus, Cambridge Univ. Press, 1986.

[9] N. Hirokawa and A. Middeldorp, “Tyrolean termination tool: Tech-
niques and features,” Inf. Comput., vol.205, no.4, pp.474–511, 2007.

[10] J.-P. Jouannaud and M. Okada, “A computation model for executable
higher-order algebraic specification languages,” Proc. LICS’91,
pp.350–361, 1991.

[11] J.-P. Jouannaud and A. Rubio, “Polymorphic higher-order recursive
path orderings,” JACM, vol.54, no.1, pp.1–48, 2007.

[12] J.W. Klop, “Combinatory reduction systems,” PhD thesis, Utrecht
Universiteit, The Netherlands, 1980. (Published as Mathematical
Center Tract 129.)

[13] K. Bimbó, Combinatory Logic: Pure, Applied and Typed, Chapman
and Hall/CRC, 2011.

[14] K. Kusakari, “On proving termination of term rewriting systems
with higher-order variables,” IPSJ Transactions on Programming,
vol.42, no.SIG 7 (PRO 11), pp.35–45, 2001.

[15] K. Kusakari, M. Nakamura, and Y. Toyama, “Elimination transfor-
mations for associative-commutative rewriting systems,” J. Auto-
mated Reasoning, vol.37, no.3, pp.205–229, 2006.

[16] K. Kusakari and M. Sakai, “Enhancing dependency pair method us-
ing strong computability in simply-typed term rewriting systems,”
Applicable Algebra in Engineering, Communication and Comput-
ing, vol.18, no.5, pp.407–431, 2007.

[17] K. Kusakari and M. Sakai, “Static dependency pair method for
simply-typed term rewriting and related techniques,” IEICE Trans.
Inf. & Syst., vol.E92-D, no.2, pp.235–247, Feb. 2009.

[18] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui, “Static dependency
pair method based on strong computability for higher-order rewrite
systems,” IEICE Trans. Inf. & Syst., vol.E92-D, no.10, pp.2007–
2015, Oct. 2009.

[19] N. Nipkow, “Higher-order critical pairs,” Proc. 6th Annual IEEE
Symposium on Logic in Computer Science, pp.342–349, 1991.

[20] V. van Oostrom, “Confluence for abstract and higher-order rewrit-
ing,” PhD thesis, Vrije Universiteit Amsterdam, The Netherlands,
1994.

[21] T. Sakurai, K. Kusakari, M. Sakai, T. Sakabe, and N. Nishida, “Us-
able rules and labeling product-typed terms for dependency pair
method in simply-typed term rewriting systems,” IEICE Trans. Inf.
& Syst. (Japanese Edition), vol.J90-D, no.4, pp.978–989, April
2007.

[22] S. Suzuki, K. Kusakari, and F. Blanqui, “Argument filterings and
usable rules in higher-order rewrite systems,” IPSJ Transactions on
Programming, vol.4, no.2, pp.1–12, 2011.

[23] W.W. Tait, “Intensional interpretation of functionals of finite type,”
J. Symbolic Logic, vol.32, pp.198–212, 1967.

[24] Terese, Term rewriting systems, Cambridge Tracts in Theoretical
Computer Science, vol.55, Cambridge University Press, 2003.

Keiichirou Kusakari received B.E. from
Tokyo Institute of Technology in 1994, received
M.E. and the Ph.D. degree from Japan Ad-
vanced Institute of Science and Technology in
1996 and 2000. From 2000, he was a research
associate at Tohoku University. He transferred
to Nagoya University’s Graduate School of In-
formation Science in 2003 as an assistant pro-
fessor and became an associate professor in
2006. His research interests include term rewrit-
ing systems, program theory, and automated the-

orem proving. He is a member of IPSJ and JSSST.

