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Online Vertex Exploration Problems in a Simple Polygon

Yuya HIGASHIKAWA†a), Nonmember and Naoki KATOH†, Member

SUMMARY This paper considers online vertex exploration problems
in a simple polygon where starting from a point in the inside of a sim-
ple polygon, a searcher is required to explore a simple polygon to visit
all its vertices and finally return to the initial position as quickly as pos-
sible. The information of the polygon is given online. As the exploration
proceeds, the searcher gains more information of the polygon. We give a
1.219-competitive algorithm for this problem. We also study the case of a
rectilinear simple polygon, and give a 1.167-competitive algorithm.
key words: online algorithm, exploration, competitive analysis

1. Introduction

The Tohoku Earthquake attacked East Japan area on March
11, 2011. When such a big earthquake occurs in an urban
area, it is predicted that many buildings and underground
shopping areas will be heavily damaged, and it is seriously
important to efficiently explore the inside of damaged ar-
eas in order to rescue human beings left there. With this
motivation, this paper deals with Online Vertex Exploration
Problems (OVEP for short) in a simple polygon. Given a
simple polygon P, suppose the searcher is initially in the in-
side of P. Starting from the origin o, the aim of the searcher
is to visit all vertices of P at least once and to return to the
origin as quickly as possible. The information of the poly-
gon is given online. Namely, at the beginning, the searcher
has only the information of a visible part of the polygon.
As the exploration proceeds, the visible area changes. How-
ever, the information of the region which has once become
visible is assumed to be accumulated. So, as the exploration
proceeds, the searcher gains more information of the poly-
gon, and determines which vertex to visit next based on the
information obtained so far.

In general, the performance of an online algorithm is
measured by a competitive ratio which is defined as follows.
Let S denote a class of objects to be explored. When an on-
line exploration algorithm ALG is used to explore an object
S ∈ S, let |ALG(S )| denote the tour length required to ex-
plore S by ALG. Also, let |OPT(S )| denote the tour length
required to explore S by an offline optimal algorithm. Note
that an algorithm is said to be offline optimal if it is optimal
under the setting where all information of an object is given
in advance. Then the competitive ratio of ALG is defined as
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follows.

sup
S∈S
|ALG(S )|
|OPT(S )| .

Previous Work: OVEP has been extensively studied for
the case of graphs. Kalyanasundaram et al. [10] presented
a 16-competitive algorithm for planar undirected graphs.
Megow et al. [8] recently extended this result to undirected
graphs with genus g and gave a 16(1 + 2g)-competitive al-
gorithm. For the case of a cycle, Miyazaki et al. [9] gave an
optimal 1.366-competitive algorithm. All these results are
concerned with a single searcher. For the case of p(> 1)
searchers, there are some results. Fraigniaud et al. [3] gave
an O(p/ log p)-competitive algorithm for the case of a tree.
Higashikawa et al. [6] gave (p/ log p+ o(1))-competitive al-
gorithm for this problem. Dynia et al. [2] showed a lower
bound Ω(log p/ log log p) for any deterministic algorithm
for the case of a tree.

There are some papers that are related to OVEP in ge-
ometric regions (see survey paper [5]). Kalyanasundaram et
al. [10] studied the case of a polygon with holes where all
edges are required to traverse. They gave a 17-competitive
algorithm for this case. Hoffmann et al. [7] studied the prob-
lem that asks to find a tour in a simple polygon such that
every vertex is visible from some point on the tour, and gave
a 26.5-competitive algorithm.
Our Results: We will show a 1.219-competitive algorithm
for OVEP in a simple polygon, and give a lower bound re-
sult that the competitive ratio is at least 1.040 within a cer-
tain framework of exploration algorithms. Also for rectilin-
ear simple polygons, we give a 1.167-competitive algorithm,
and a lower bound 1.034.

2. Fundamental Properties and the Algorithm Strategy

In this paper, we define a simple polygon as a region in the
plane (including the boundary) enclosed by a closed polyg-
onal chain with no self-intersection. A closed polygonal
chain is defined as an alternate sequence of vertices and
edges (v1, e1, v2, e2, . . . , vn, en) such that ei is a line segment
connecting vi and vi+1 for each i (1 ≤ i ≤ n) where vn+1 = v1
is assumed. A closed polygonal chain is said to have with
no self-intersection if only consecutive (or the first and the
last) edges intersect at their common endpoints. In the fol-
lowings, we use the term a polygon to stand for a simple
polygon.

Suppose that we are given a polygon P and the origin
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o in P. In what follows, we call a vertex of P a polygon ver-
tex, an edge of P a polygon edge and the closed polygonal
chain forming P the boundary of P. Let V = {v1, v2, . . . , vn}
be a polygon vertex set sorted in clockwise order along the
boundary of P and E = {e1, e2, . . . , en} be a polygon edge
set such that ei = (vi, vi+1) for 1 ≤ i ≤ n as above. For
a polygon edge e ∈ E, let v1e , v2e denote the endpoints of e
such that v1e precedes v2e in clockwise order, and let |e| de-
note the length of e. Let L denote the boundary length of
P, namely L =

∑
e∈E |e|. For any two points x, y ∈ P, let

sp(x, y) denote the shortest path from x to y that lies in the
inside of P, |sp(x, y)| be its length and |xy| be the Euclidean
distance from x to y. Note that sp(x, y) = sp(y, x) and
|xy| ≤ |sp(x, y)|. Furthermore, for any two vertices x, y ∈ V ,
let bp(x, y) denote the clockwise path along the boundary of
P from x to y and |bp(x, y)| be its length.

For a point x ∈ P and a polygon edge e ∈ E, let T (x, e)
denote the tour composed of paths sp(x, v2e), bp(v2e , v

1
e) and

sp(v1e , x), and |T (x, e)| be its length. Then, from |T (x, e)| =
|sp(x, v1e)| + |sp(x, v2e)| + |bp(v2e , v

1
e)| and |bp(v2e , v

1
e)| = L −

|e|, |T (x, e)| = L + |sp(x, v1e)| + |sp(x, v2e)| − |e| holds. The
term |sp(x, v1e)| + |sp(x, v2e)| − |e| represents the increase of
the length from L, and thus we define

inc(x, e) = |sp(x, v1e)| + |sp(x, v2e)| − |e|. (1)

Note that |T (x, e)| = L + inc(x, e). Let eopt ∈ E be a polygon
edge satisfying the following equation.

inc(o, eopt) = min
e∈E inc(o, e). (2)

In the offline version of this problem, we will prove below
that T (o, eopt) is the optimal tour.

Lemma 1: For the offline exploration problem in a poly-
gon P, the tour length of an offline optimal algorithm satis-
fies the following.

|OPT(P)| = L + inc(o, eopt).

Proof : Let a permutation π : {1, . . . , n} → {1, . . . , n}
denote the sequence of visiting polygon vertices for the
searcher. Namely the searcher visits polygon vertices in
the order of vπ(1), vπ(2), . . . , vπ(n) (see Fig. 1). Let Tπ denote
the tour composed of paths sp(o, vπ(1)) → sp(vπ(1), vπ(2)) →
· · · → sp(vπ(n), o), and |Tπ| be its length. Note that each
polygon vertex must be visited in accordance with the order
given by only π even if it may happen that Tπ passes vi earlier

Fig. 1 Example of π = [6 2 8 3 4 5 7 1].

than specified by π when vi is contained in sp(vπ(h), vπ(h+1))
for some h < π−1(i). In this case, even if Tπ passes
through vi in sp(vπ(h), vπ(h+1)), we consider vi is not visited
by this part of Tπ. If we show |Tπ| ≥ |T (o, eopt)| for any π,
then |OPT(P)| ≥ |T (o, eopt)| is shown. Furthermore, since
|OPT(P)| ≤ |T (o, eopt)| clearly holds, the lemma is proved.

At first we define an undirected graph G = (V ′, E′)
from Tπ as follows. Let V ′ be composed of polygon vertices,
self-intersection points of Tπ and the origin o. Also let E′ be
composed of line segments between consecutive vertices in
V ′ along Tπ. However we must make parallel edges where
the searcher traverses an edge more than once. Note that G
is Eulerian. Let E′1 denote a set of outermost edges of G
(see Fig. 2) and G1 = (V(E′1), E′1). Then V(E′1) contains V
and G1 is clearly Eulerian. There are two cases depending
on a position of o.
Case 1: o ∈ V(E′1). We regard G1 as the clockwise tour
from o, and without loss of generality we can assume that
for some adjacent polygon vertices, say vi, vi+1 ∈ V with
1 ≤ i ≤ n, o is on the path from vi to vi+1 on G1. Note
that the length of the shortest path from o to vi+1 on G1 is
at least |sp(o, vi+1)|, the length of the clockwise path from
vi+1 to vi on G1 is at least |bp(vi+1, vi)| (since this path on
G1 visits clockwise all polygon vertices and bp(vi+1, vi) is
the shortest path from vi+1 to vi which visits clockwise all
polygon vertices), and the length of the shortest path from vi
to o on G1 is at least |sp(vi, o)|. Thus,

|Tπ| ≥ |G1| ≥ |sp(o, vi+1)| + |bp(vi+1, vi)| + |sp(vi, o)|
= |T (o, ei)| ≥ |T (o, eopt)|.

Case 2: o � V(E′1). Let E′2 = E \ E′1 and G2 = (V(E′2), E′2),
and then let G3 denote the connected component of G2

which contains o. Let u ∈ V ′ be an intersection point of G1

and G3, and we assume that u is on the path from vi to vi+1

in G1 for some vi, vi+1 ∈ V with 1 ≤ i ≤ n. Clearly G3 is also
Eulerian, hence there are paths on G3, p1 from o to u and p2

from u to o, which share no edge. In the same way as Case
1, we obtain |G1| ≥ |sp(u, vi+1)| + |bp(vi+1, vi)| + |sp(vi, u)|.
Thus,

|Tπ| ≥ |p1| + |G1| + |p2|
≥ |sp(o, u)|+|sp(u, vi+1)|+|bp(vi+1, vi)|+|sp(vi, u)|

+|sp(u, o)|
≥ |T (o, ei)| ≥ |T (o, eopt)|.

�

Fig. 2 Illustration of outermost edges of G (represented by thick lines).
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Fig. 3 Illustration of VP(P, x) (represented by the shaded area).

Fig. 4 Illustration of blocking vertices b1 and b2, virtual vertices b∗1 and
b∗2, cut edges b1b∗1 and b2b∗2, virtual edge b∗1b∗2, and invisible polygons
IP(P, o, b1) and IP(P, o, b2).

For two points x, y ∈ P, we say that y is visible from x
if the line segment xy contains no points of the outside of P.
Then the visibility polygon VP(P, x) is

VP(P, x) := {y ∈ P | y is visible from x}.
Note that an edge of the visibility polygon is not necessarily
a polygon edge (see Fig. 3). For a polygon vertex b and a
point x ∈ P, we call b a blocking vertex with respect to x
if b is visible from x and there is the unique polygon edge
incident to b such that any point on the edge except b is not
visible from x. Let b∗ be a point where the extension of the
line segment xb towards b first intersects the boundary of P.
Then we call b∗ a virtual vertex and the line segment bb∗ a
cut edge. Note that although a blocking vertex is always a
polygon vertex, a virtual vertex may not coincide with any
polygon vertex. Also let ê be a polygon edge containing
some virtual vertices then we regard a visible part of ê as
a new edge, which we call a virtual edge. Note that a cut
edge bb∗ divides P in two areas, a polygon which contains
VP(P, x) and the other not. We call the latter area an invisible
polygon IP(P, x, b) (see Fig. 4). Notice that VP(P, x) and
IP(P, x, b) share a cut edge bb∗. We assume that there is a
blocking vertex b with respect to the origin o since otherwise
an optimal solution can be found by Lemma 1. Then we
have the following lemma.

Lemma 2: For an invisible polygon IP(P, o, b) defined by
a blocking vertex b, let e ∈ E be a polygon edge such that
both of its endpoints are in IP(P, o, b), and w ∈ V be a poly-
gon vertex adjacent to b which is not in IP(P, o, b). Then

inc(o, (b, w)) < inc(o, e).

Proof : First, we remark a simple fact. Let x, y, z be points
in P such that both line segments xz and zy are lying in the
inside of P. Then the following inequality obviously holds.

Fig. 5 Illustration of sp(b, v1e ), sp(b, v2e ) and sp(o, w) (the shaded area
represents IP(P, o, b)).

|sp(x, y)| ≤ |xz| + |zy|. (3)

Notice that the equality holds only when either (i) sp(x, y) is
a line segment xy and z is on xy, or (ii) sp(x, y) is composed
of two line segments xz and zy, i.e., y is not visible from x
and z is a blocking vertex with respect to x.

See Fig. 5. From the above observation and since b is
visible from o, i.e., |sp(o, b)| = |ob|,
|sp(o, w)| < |ob| + |bw| = |sp(o, b)| + |bw|. (4)

Besides, from the triangle inequality with respect to b, v1e
and v2e ,

inc(b, e) = |sp(b, v1e)| + |sp(b, v2e)| − |e| ≥ 0. (5)

Furthermore both sp(o, v1e) and sp(o, v2e) pass through b.
Hence, we have

|sp(o, b)| + |sp(b, v1e)| = |sp(o, v1e)|
and |sp(o, b)| + |sp(b, v2e)| = |sp(o, v2e)|. (6)

Thus,

inc(o, (b, w)) = |sp(o, b)| + |sp(o, w)| − |bw|
< |sp(o, b)| + |sp(o, b)| + |bw| − |bw| (from (4))

≤ 2|sp(o, b)| + |sp(b, v1e)| + |sp(b, v2e)| − |e| (from (5))

= inc(o, e) (from (6))

holds. �

For eopt defined by (2), the following corollary is im-
mediate from Lemma 2.

Corollary 1: For an invisible polygon IP(P, o, b) defined
by a blocking vertex b, let e ∈ E be a polygon edge both
endpoints of which are in IP(P, o, b). Then e cannot be eopt.

Based on Corollary 1, candidates of eopt are polygon edges
or virtual edges in VP(P, o).

In what follows, we propose an online algorithm,
AOE(Avoiding One Edge). By Lemma 1, an offline opti-
mal algorithm chooses a polygon edge eopt which satisfies
(2). But we cannot obtain the whole information about P.
So, the seemingly best strategy based on the information of
VP(P, o) is to choose an edge of VP(P, o) in the same way
as an offline optimal algorithm, assuming that there is no
invisible polygon, namely P = VP(P, o). Let E∗1 denote a
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polygon edge set composed of all e ∈ E such that both end-
points of e are visible from o, E∗2 denote a set of virtual edges
on the boundary of VP(P, o) and E∗ = E∗1 ∪ E∗2. Also for a
virtual edge e ∈ E∗2, endpoints of e are labeled as v1e , v2e in
clockwise order around o and as in (1), let inc(o, e) denote
the value of |sp(o, v1e)| + |sp(o, v2e)| − |e|. Let e∗ ∈ E∗ be an
edge satisfying the following equation.

inc(o, e∗) = min
e∈E∗ inc(o, e) (7)

Then Algorithm AOE is described as follows.

Step 1: Choose e∗ ∈ E∗ satisfying (7).
Step 2: If e∗ ∈ E∗1 then let ê = e∗, else let ê be a polygon

edge containing e∗.
Step 3: Follow the tour T (o, ê).

3. Competitive Analysis of AOE

3.1 Upper Bound for AOE

First, we show the following lemma.

Lemma 3: Let x be a point on the boundary of P and e∗ be
an edge satisfying (7). If x is visible from the origin o, then

inc(o, e∗)
2

≤ |ox|.

Proof : Let e′ ∈ E∗ be an edge of VP(P, o) containing x.
Then from (3), we have |ox| ≥ |sp(o, v1e′ )| − |xv1e′ | and |ox| ≥
|sp(o, v2e′ )| − |xv2e′ |. Therefore, we obtain

2|ox| ≥ |sp(o, v1e′ )| + |sp(o, v2e′ )| − |xv1e′ | − |xv2e′ |
= |sp(o, v1e′ )| + |sp(o, v2e′ )| − |e′| ≥ inc(o, e∗),

namely |ox| ≥ inc(o, e∗)/2. �

Furthermore, we show a lemma which plays a crucial role
in our analysis.

Lemma 4: Let L be the length of the boundary of P and
e∗ be an edge satisfying (7). Then the following inequality
holds.

L ≥ π · inc(o, e∗). (8)

Proof : Let C be a circle centered at the origin o with the
radius of inc(o, e∗)/2. From Lemma 3, any polygon edge
does not intersect C. Thus L is greater than the length of the
circumference of C, namely

L ≥ 2π · inc(o, e∗)
2

= π · inc(o, e∗)

holds. �

Theorem 1: The competitive ratio of Algorithm AOE is at
most 1.319.

Proof : The tour length of Algorithm AOE obviously sat-
isfies

|AOE(P)| = L + inc(o, e∗).

On the other hand, the tour length of an offline optimal al-
gorithm satisfies |OPT(P)| = L + inc(o, eopt) holds from
Lemma 1. By the triangle inequality, inc(o, eopt) ≥ 0,
namely |OPT(P)| ≥ L holds. Thus we have

|AOE(P)|
|OPT(P)| ≤

L + inc(o, e∗)
L

= 1 +
inc(o, e∗)

L
.

From this and (8),

|AOE(P)|
|OPT(P)| ≤ 1 +

inc(o, e∗)
π · inc(o, e∗)

= 1 +
1
π
≤ 1.319

is obtained. �

Theorem 1 gives an upper bound of the competitive
ratio. In the followings, we will obtain a better bound by
a detailed analysis. First, we improve a lower bound of
|OPT(P)|. Note that for some points x, y, z ∈ P such that
both y and z are visible from x and the line segment yz is
lying in the inside of P, we call ∠yxz the visual angle at x
formed by yz.

Lemma 5: For an edge e∗ ∈ E∗ satisfying (7), let d =
inc(o, e∗) and θ (0 ≤ θ ≤ π) be a visual angle at o formed by
a visible part of eopt. Then

|OPT(P)| ≥ L + d − d sin
θ

2
. (9)

Proof : We first show the following claim.

Claim 1: Let b1 ∈ V (resp. b2) be the polygon vertex vis-
ible from o such that the path sp(o, v1eopt

) (resp. sp(o, v2eopt
))

passes through b1 (resp. b2) (see Fig. 6). Then

inc(o, eopt) ≥ |ob1| + |ob2| − |b1b2|. (10)

Proof : This claim is obtained from |sp(o, v1eopt
)| = |ob1| +

|sp(b1, v
1
eopt

)|, |sp(o, v2eopt
)| = |ob2| + |sp(b2, v

2
eopt

)| and |eopt | =
|sp(v1eopt

, v2eopt
)| ≤ |sp(b1, v

1
eopt

)| + |b1b2| + |sp(b2, v
2
eopt

)|. �

From (10), we have

|OPT(P)| = L + inc(o, eopt) ≥ L + |ob1| + |ob2| − |b1b2|.
(11)

Fig. 6 Illustration of a visible part of eopt from o.
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Fig. 7 Illustration of u1 and u2.

Furthermore b1 and b2 satisfy |ob1| ≥ d/2 and |ob2| ≥ d/2
from Lemma 3. Hence there exist points u1, u2 on line seg-
ments ob1, ob2 such that |ou1| = |ou2| = d/2 (see Fig. 7).
Then, from the triangle inequality with respect to u1, u2 and
b1,

|u1u2| ≥ |u2b1| − |b1u1| = |u2b1| −
(
|ob1| − d

2

)

holds. Similarly we have

|u2b1| ≥ |b1b2| − |u2b2| = |b1b2| −
(
|ob2| − d

2

)
.

Thus we have

d − |u1u2| ≤ d −
{
|u2b1| −

(
|ob1| − d

2

)}

≤ d
2
+ |ob1| −

{
|b1b2| −

(
|ob2| − d

2

)}
= |ob1| + |ob2| − |b1b2|. (12)

In addition, the length of u1u2 satisfies the following equa-
tion.

|u1u2| = d
2
· 2 sin

θ

2
= d sin

θ

2
. (13)

By (11), (12) and (13),

|OPT(P)| ≥ L + d − |u1u2| = L + d − d sin
θ

2

is shown. �

Secondly, we show a better lower bound of L.

Lemma 6: Let d and θ as defined in Lemma 5. Then

L ≥ d
(
π − θ

2
+ tan

θ

2

)
. (14)

Proof : Let C be a circle centered at o with radius d/2.
From Lemma 3, any polygon edge does not intersect C.
Also let endpoints of a visible part of eopt from o be w1, w2

in clockwise order around o. Then, we consider two cases;
(Case 1) ∠ow1w2 ≤ π/2 and ∠ow2w1 ≤ π/2 and (Case 2)
∠ow1w2 > π/2 and ∠ow2w1 ≤ π/2 (see Figs. 8, 9). Note that
the case of ∠ow1w2 ≤ π/2, ∠ow2w1 > π/2 can be treated in a
manner similar to Case 2.

Fig. 8 Illustration of Case 1 in the proof of Lemma 6.

Fig. 9 Illustration of Case 2 in the proof of Lemma 6.

Case 1: Let w∗1 (resp. w∗2) be a point on the line segment ow1

(resp. ow2) such that w1w2 is parallel to w∗1w
∗
2 and the line

segment w∗1w
∗
2 touches the circle C and let h be a tangent

point of w∗1w
∗
2 and C. Also let ∠w1oh = xθ and ∠w2oh =

(1 − x)θ with some x (0 ≤ x ≤ 1). Then the length of w∗1w
∗
2

satisfies

|w∗1w∗2| =
d
2

tan xθ +
d
2

tan(1 − x)θ.

The right-hand side of this equation attains the minimum
value when x = 1/2. Thus

|w∗1w∗2| ≥
d
2

tan
θ

2
+

d
2

tan
θ

2
= d tan

θ

2
. (15)

Furthermore the sum of the visual angle at o formed by a
visible part of the boundary other than w1w2 is equal to 2π−
θ. Hence we have

L ≥ d
2

(2π − θ) + |w1w2|. (16)

Since |w1w2| ≥ |w∗1w∗2| obviously holds, from (15) and (16),
we obtain

L ≥ d
2

(2π − θ) + d tan
θ

2
= d

(
π − θ

2
+ tan

θ

2

)
.

Case 2: Let w∗1 (resp. w∗2) be a point on the line segment ow1
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(resp. ow2) such that w1w2 is parallel to w∗1w
∗
2 and |ow∗1| =

d/2 (the circumference of C passes through w∗1). Also let
w∗∗2 an intersection point of the line segment ow2 and the
line perpendicular to the line segment ow1 through w∗1. Then

|w∗1w∗2| > |w∗1w∗∗2 | =
d
2

tan θ ≥ d tan
θ

2
.

In the same way as Case 1, we obtain L ≥ d(π − θ/2 +
tan(θ/2)). �

By Lemma 5 and 6, we prove the following theorem.

Theorem 2: The competitive ratio of Algorithm AOE is at
most 1.219.

Proof : Let d and θ as defined in Lemma 5. Since
|AOE(P)| = L + d holds, from (9), (14), we have

|AOE(P)|
|OPT(P)| ≤

L + d

L + d − d sin θ2

≤ d(π − θ2 + tan θ2 ) + d

d(π − θ2 + tan θ2 ) + d − d sin θ2

=
π − θ2 + tan θ2 + 1

π − θ2 + tan θ2 + 1 − sin θ2
(0 ≤ θ ≤ π).

(17)

In the followings, we compute the maximum value of (17),

max
0≤θ≤π

⎧⎪⎪⎨⎪⎪⎩z(θ) =
π − θ2 + tan θ2 + 1

π − θ2 + tan θ2 + 1 − sin θ2

⎫⎪⎪⎬⎪⎪⎭ . (18)

Generally the following fact about the fractional program is
known [1], [11].

Fact 1: Let X ⊆ Rn, f : Rn → R and g : Rn → R. Let us
consider the following fractional program formulated as

maximize

{
h(x) =

f (x)
g(x)

∣∣∣∣∣ x ∈ X

}
, (19)

where g(x) > 0 is assumed for any x ∈ X. Let x∗ ∈
argmaxx∈X h(x) denote an optimal solution of (19) and
λ∗ = h(x∗) denote the optimal value. Furthermore, with
a real parameter λ, let hλ(x) = f (x) − λg(x) and M(λ) =
maxx∈X hλ(x). Then M(λ) is monotone decreasing for λ and
the followings hold.
(i) M(λ) < 0 ⇔ λ > λ∗, (ii) M(λ) = 0 ⇔ λ = λ∗,
(iii) M(λ) > 0⇔ λ < λ∗.

In the same way as Fact 1, with a real parameter λ, we
define zλ(θ) and M(λ) for z(θ) as follows.

zλ(θ) = π − θ2 + tan
θ

2
+ 1

− λ
(
π − θ

2
+ tan

θ

2
+ 1 − sin

θ

2

)
(0 ≤ θ ≤ π),

M(λ) = max
0≤θ≤π

zλ(θ).

From Fact 1 (ii), λ∗ satisfying M(λ∗) = 0 is equal to (18),

i.e., the maximum value of z(θ). Hence we only need to
compute λ∗.

Finally, let θ∗λ ∈ argmax0≤θ≤π zλ(θ), then we show θ∗λ is
unique. A derivative of zλ(θ) is calculated as

dzλ
dθ
= −λ − 1

2
tan2 θ

2
+
λ

2
cos
θ

2
.

This derivative is monotone decreasing in the interval 0 ≤
θ ≤ π, therefore zλ(θ) is concave in this interval, then
θ∗λ is unique. Indeed when λ = 1.219, θ∗λ � 2.0706
then M(1.219) � −0.0010 < 0. Also when λ = 1.218,
θ∗λ � 2.0718 then M(1.218) � 0.0029 > 0. Thus we obtain
1.218 < λ∗ < 1.219. �

3.2 Lower Bound for AOE

Theorem 3: The competitive ratio of Algorithm AOE is at
least 1.040.

Proof : We consider how Algorithm AOE works for a
polygon Pbad illustrated in Fig. 10. We assume that the
greater arc from h to c in clockwise order of a circle with
radius 10.00 centered at o in the figure is in fact a chain com-
posed of sufficiently many small polygon edges of length ε.
For each small edge s along the arc hc, inc(o, s) = 20.00− ε
holds. The algorithm calculates the increase of a virtual
edge (e, f ) as inc(o, (e, f )) � 10.00 + 8.18 + 10.00 + 8.18 −
16.36 = 20.00. Comparing these two values, the algo-
rithm chooses a polygon edge (a, b) in the arc hc. Since
L � 136.26 holds, the tour length of Algorithm AOE for
Pbad satisfies

|AOE(Pbad)| � 136.26 + 20.00 − ε ≥ 156.26 − ε. (20)

On the other hand, (d, g) = eopt because inc(o, (d, g)) �
13.89 < 20.00 − ε holds. Thus the tour length of an offline
optimal algorithm for Pbad satisfies

|OPT(Pbad)| � 136.26 + 13.89 ≤ 150.16. (21)

From (20) and (21), we obtain

|AOE(Pbad)|
|OPT(Pbad)| ≥

156.26 − ε
150.16

≥ 1.0406 − ε

150.16
.

By letting ε be sufficiently small, the theorem follows. �

Fig. 10 Illustration of a polygon Pbad in the proof of Theorem 3.
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4. Competitive Analysis for Rectilinear Polygon

In this section, we analyze the competitive ratio of AOE for
a rectilinear polygon (see Fig. 11). Generally a rectilinear
polygon is defined as a simple polygon all of whose interior
angles are π/2, π or 3π/2. Polygon edges of the rectilinear
polygon are classified as horizontal or vertical edges. Sup-
pose that we are given a rectilinear polygon R and the origin
o in R. Let R′ be the minimum enclosing rectangle of R.
Then we define the height of R′ as the height of R and also
the width of R′ as the width of R. Note that the searcher
follows the Euclidean shortest path even if he/she is in the
rectilinear polygon.

4.1 Upper Bound for AOE

Lemma 7: For an edge e∗ ∈ E∗ satisfying (7), let d =
inc(o, e∗) and θ (0 ≤ θ ≤ π) be a visual angle at o formed by
a visible part of eopt. Then

L ≥ max
{
4d, 2d + 2d tan

θ

2

}
. (22)

Proof : First, we show L ≥ 4d. Let C be a circle centered
at o with the radius of d/2. From Lemma 3, any polygon
edge of R does not intersect C. Thus each of the height and
width of R is at least d (the diameter of C), namely L ≥ 4d
holds (see Fig. 12).

Secondly, we show L ≥ 2d + 2d tan(θ/2). Note that
we should just consider the case of 4d ≤ 2d + 2d tan(θ/2),

Fig. 11 Illustration of a rectilinear polygon.

Fig. 12 Illustration of the minimum enclosing rectilinear polygon of C
(represented by thick lines) which is enclosed by R (represented by thin
lines).

namely π/2 ≤ θ ≤ π because L ≥ 4d has been proved. With-
out loss of generality we can assume that eopt is a horizontal
edge. We label endpoints of a visible part of eopt from o
as w1, w2 in clockwise order around o. Let w∗1 (resp. w∗2)
be a point on the line segment ow1 (resp. ow2) such that
w1w2 is parallel to w∗1w

∗
2 and the line segment w∗1w

∗
2 touches

the circle C and h be a tangent point of w∗1w
∗
2 and C (see

Fig. 13). Also let ∠w1oh = xθ and ∠w2oh = (1 − x)θ with
some x (0 ≤ x ≤ 1). Then the length of w∗1w

∗
2 satisfies

|w∗1w∗2| =
d
2

tan xθ +
d
2

tan(1 − x)θ

≥ d
2

tan
θ

2
+

d
2

tan
θ

2
= d tan

θ

2
.

Thus the width of R is at least d tan(θ/2) and the height of R
is at least d, then L ≥ 2d + 2d tan(θ/2) holds. �

Theorem 4: For a rectilinear polygon, the competitive ra-
tio of Algorithm AOE is at most 1.167.

Proof : Based on (22), we consider two cases; (Case 1)
0 ≤ θ < π/2 and (Case 2) π/2 ≤ θ ≤ π. Note that 4d >
2d + 2d tan(θ/2) holds in Case 1 and 4d ≤ 2d + 2d tan(θ/2)
holds in the other.
Case 1: From L ≥ 4d and (9), we obtain

|AOE(P)|
|OPT(P)| ≤

4d + d

4d + d − d sin θ2
=

5

5 − sin θ2

<
5

5 − sin π4
≤ 1.165.

Case 2: From L ≥ 2d + 2d tan(θ/2) and (9), we obtain

|AOE(P)|
|OPT(P)| ≤

2d + 2d tan θ2 + d

2d + 2d tan θ2 + d − d sin θ2

=
3 + 2 tan θ2

3 + 2 tan θ2 − sin θ2
. (23)

We will compute the maximum value of (23) as in the proof
of Theorem 2 by defining zλ(θ) and M(λ) for a real parame-
ter λ as follows.

zλ(θ) = 3 + 2 tan
θ

2

− λ
(
3 + 2 tan

θ

2
− sin

θ

2

) (
π

2
≤ θ ≤ π

)
M(λ) = max

π
2≤θ≤π

zλ(θ)

Fig. 13 Illustration of the minimum enclosing rectangle of C
(represented by thick lines) such that θ is more than π/2.
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Let θ∗λ ∈ argmax0≤θ≤π zλ(θ), then a derivative of zλ(θ) is cal-
culated as

dzλ
dθ
= −(λ − 1)

1

cos2 θ
2

+
λ

2
cos
θ

2
.

This derivative is monotone decreasing in the interval π/2 ≤
θ ≤ π, therefore zλ(θ) is concave in this interval, then θ∗λ
is unique. Indeed when λ = 1.167, θ∗λ � 1.7026 then
M(1.167) � −0.0044 < 0. Also when λ = 1.166, θ∗λ �
1.7056 then M(1.166) � 7.6 × 10−5 > 0. Thus we obtain
1.166 < λ∗ < 1.167. �

4.2 Lower Bound for AOE

Theorem 5: The competitive ratio of Algorithm AOE for
a rectilinear polygon is at least 1.034.

Proof : We consider how Algorithm AOE works for a
polygon RPbad illustrated in Fig. 14. Let m̃ f denote the
polygonal chain from m to f in clockwise order around o
composed of segments mn, np, pq, qc, cd, de and e f in the
figure. We assume that m̃ f is in fact a chain composed of
sufficiently many small polygon edges of length ε. Notice
that segments mn and e f are edges of length ε. Also we can
assume that ab is a polygon edge in the middle of q and c
such that |oa| = |ob| � 10.00. Then inc(o, (a, b)) � 20.00− ε
and inc(o, s) ≥ 20.00 − ε holds for each small edge s along
m̃ f . The algorithm calculates the increase of a virtual edge
(i, j) as inc(o, (i, j)) � 10.00+ 8.56+ 10.00+ 8.56− 17.12 =
20.00. Thus the algorithm chooses the polygon edge (a, b).
Since L � 172.48 holds, the tour length of Algorithm AOE
for RPbad satisfies

|AOE(RPbad)| � 172.48 + 20.00 − ε ≥ 192.48 − ε.
(24)

On the other hand, (h, k) = eopt because inc(o, (h, k)) �
13.58 < 20.00 − ε holds. Thus the tour length of an offline
optimal algorithm for RPbad satisfies

|OPT(RPbad)| � 172.48 + 13.58 ≤ 186.07. (25)

From (24) and (25), we obtain

|AOE(RPbad)|
|OPT(RPbad)| ≥

192.48 − ε
186.07

≥ 1.0344 − ε

186.07
.

By letting ε be sufficiently small, the theorem follows. �

Fig. 14 Illustration of a rectilinear polygon RPbad in the proof of
Theorem 5.

5. Discussion and Open Problems

In Lemma 5, the lower bound of |OPT(P)| given by (9) is
not tight, and in Lemma 6, the lower bound of the bound-
ary length L given by (14) is also not tight. Hence, we be-
lieve that the upper bound of the competitive ratio can be im-
proved: the least upper bound for a simple polygon (resp. a
rectilinear polygon) could be close to the lower bound 1.040
(resp. 1.034) given in Sect. 3.2.

As one of many variations of OVEP, we could consider
OVEP with multiple searchers. In this problem, all searchers
are initially at the same origin o ∈ P. The goal of the explo-
ration is that each polygon vertex is visited by at least one
searcher and that all searchers return to the origin o. We re-
gard the time when the last searcher comes back to the origin
as the cost of the exploration. Note that our algorithm can be
easily adapted to the case of OVEP with 2-searchers. For an
offline exploration problem with k-searchers, Frederickson
et al. [4] proposed a (e + 1 − 1/k)-approximation algorithm,
where e is the approximation ratio of some 1-searcher algo-
rithm. Their idea is splitting a tour given by some 1-searcher
algorithm into k parts such that the cost of each part is equal,
where the cost of a part is the length of the shortest tour from
o which passes along the part. When k = 2, we can apply
this idea to our algorithm as follows. First, choose simi-
larly e∗ ∈ E∗ satisfying (7). Then let one searcher go to
v1e∗ and walk counterclockwise along the boundary of P, and
let symmetrically the other go to v2e∗ and walk clockwise.
When two searchers meet at a point on the boundary, two
searchers come back together to o along the shortest path
in the inside of P. In this case, we obtain an upper bound
1.719. However, when k ≥ 3, the above-mentioned idea
cannot be directly applied. So, it remains open.
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