
502
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

LETTER Special Section on Foundations of Computer Science

Generalized Chat Noir is PSPACE-Complete∗

Chuzo IWAMOTO†a), Member, Yuta MUKAI††, Yuichi SUMIDA†††, Nonmembers,
and Kenichi MORITA†, Member

SUMMARY We study the computational complexity of the following
two-player game. The instance is a graph G = (V, E), an initial vertex s ∈
V , and a target set T ⊆ V . A “cat” is initially placed on s. Player 1
chooses a vertex in the graph and removes it and its incident edges from the
graph. Player 2 moves the cat from the current vertex to one of the adjacent
vertices. Players 1 and 2 alternate removing a vertex and moving the cat,
respectively. The game continues until either the cat reaches a vertex of T
or the cat cannot be moved. Player 1 wins if and only if the cat cannot be
moved before it reaches a vertex of T . It is shown that deciding whether
player 1 has a forced win on the game on G is PSPACE-complete.
key words: PSPACE-complete, computational complexity, two-player
game, Chat Noir

1. Introduction

Chat Noir is a cat capture game on a particular graph hav-
ing a regular board-like structure (see Fig. 1). The graph is
composed of n×n vertices, and all vertices except boundary
vertices have degree six. There are 4(n − 1) boundary ver-
tices in an (n×n)-graph (You can play a (11×11)-Chat Noir
at the web site [1]. The French word “Chat Noir” means
“Black Cat”).

Initially, the cat is on a non-boundary vertex, and
several vertices are colored grey. Grey vertices are re-
garded as removed vertices, and the cat cannot be moved
to them. Alternately, (i) player 1 chooses a vertex in the
graph and removes it and its incident edges from the graph,
and (ii) player 2 moves the cat from the current vertex to
one of the adjacent vertices. Here, player 1 must not remove
the vertex on which the cat is currently placed. The game
continues until either the cat reaches a boundary vertex or
the cat cannot be moved. Player 1 wins if and only if the cat
cannot be moved before it reaches a boundary vertex.

In this paper, we study the computational complexity
of the generalized version of Chat Noir.

Manuscript received March 15, 2012.
Manuscript revised June 8, 2012.
†The authors are with the Graduate School of Engineering,

Hiroshima University, Higashihiroshima-shi, 739–8527 Japan.
††The author is with Fujitsu Corporation, Kawasaki-shi, 211–

8588 Japan.
†††The author is with West Japan Railway Company, Osaka-shi,

530–8341 Japan.
∗This research was supported in part by Scientific Research

Grant, Ministry of Japan.
a) E-mail: chuzo@hiroshima-u.ac.jp

DOI: 10.1587/transinf.E96.D.502

Fig. 1 An initial configuration on an (11 × 11)-vertex graph.

GENERALIZED CHAT NOIR
INSTANCE: An undirected graph G = (V, E), an initial ver-
tex s ∈ V , and a target set T ⊆ V .
QUESTION: Does player 1 have a forced win in the fol-
lowing game played on G? A cat is initially placed on s.
Player 1 chooses a vertex and removes it and its incident
edges from the graph. Here, the vertex on which the cat is
currently placed must not be chosen or removed. Player 2
moves the cat from the current vertex to one of the adjacent
vertices. Players 1 and 2 alternate removing a vertex and
moving the cat, respectively. The game continues until ei-
ther the cat reaches a vertex of T or the cat cannot be moved.
Player 1 wins if and only if the cat cannot be moved before
it reaches a vertex of T .

From the definition, one can see that the player 1 wins
if he leaves the cat on a connected component which does
not contain any vertex of T . The problem is in PSPACE
because a game can last at most |V | − 1 removals of vertices.
We will prove that the problem is PSPACE-complete.

A lot of two-player games have been shown to
be PSPACE-complete. In Garey and Johnson’s survey
book [6], the following PSPACE-complete games are listed:
Generalized HEX [3]; Generalized Geography and Kayles,
Variable Partition Truth Assignment, Sift, Alternating Hit-
ting Set [8]; and Sequential Truth Assignment [9].

As for games on the (n × n)-extension of a square grid,
Othello [7], Rush Hour [4], and Amazons [5] are known to
be PSPACE-hard.

HEX is a game on an (n × n)-hexagonal grid (see [2]).
Even and Tarjan proved the PSPACE-completeness of the

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



LETTER
503

generalized version of HEX [3]. Their generalized HEX is
played on an arbitrary graph (and not a regular board-like
hexagonal grid). The instance is a graph G = (V, E) and two
specified vertices s, t ∈ V . Players 1 and 2 alternate choos-
ing a vertex from V − {s, t}, with those chosen by player 1
being colored blue and those chosen by player 2 being col-
ored red. The game continues until all such vertices have
been colored, and player 1 wins if and only if there is a path
from s to t in G that passes through only blue vertices. (This
description of the HEX rule is from [6]). The question is to
decide whether player 1 has a forced win on the game on G.

In this paper, we also define the generalized Chat Noir
as a game on an arbitrary graph. The differences between
HEX and Chat Noir are as follows: (i) Player 2 in HEX
can choose a vertex among arbitrary non-colored vertices.
On the other hand, player 2 in Chat Noir can only move
the cat from the current vertex to one of the adjacent non-
colored vertices (here, removed vertices in Chat Noir are
called colored vertices in this sentence). (ii) Vertices chosen
by player 2 in HEX are colored by red, while vertices chosen
by player 2 in Chat Noir are not colored.

2. Reduction from Quantified 3SAT to Chat Noir

2.1 Transformation from a Quantified Boolean Formula to
a Graph

The following definition of QUANTIFIED 3SAT is mostly
from [LO11] in [6]. This is a well-known PSPACE-
complete problem.

QUANTIFIED 3SAT
INSTANCE: Set U = {x1, x2, . . . , xn} of variables, quantified
Boolean formula F = (Q1x1)(Q2x2) · · · (Qixi) · · · (Qnxn)E,
where E = c1∧c2∧· · ·∧c j∧· · ·∧cm is a Boolean expression
in conjunctive normal form with three literals per clause c j,
and each Qi is either ∀ or ∃.
QUESTION: Is F true?

Without loss of generality, we can assume that Q1 is ∀
and the quantifiers are alternately ∀ and ∃. For example, let

c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x2 ∨ x4),
c3 = (x1 ∨ x3 ∨ x4), c4 = (x2 ∨ x3 ∨ x4).

It is easy to verify that F1 = ∀x1∃x2∀x3∃x4(c1 ∧ c2 ∧ c3)
is true. However, F2 = ∀x1∃x2∀x3∃x4(c1 ∧ c2 ∧ c3 ∧ c4) is
false, since there are no assignment values for x2 and x4 that
simultaneously satisfy c1, c2, c3, and c4 when x1 = 1 and
x3 = 0.

We present a transformation from an arbitrary quan-
tified Boolean formula F in conjunctive normal form with
three literals per clause to a graph G = (V, E), an initial ver-
tex s ∈ V , and a target set T ⊆ V , such that F is true if and
only if player 1 has a forced win on the game on G.

Let n and m be the numbers of variables and clauses
of F, respectively. Without loss of generality, we assume
that n is an even number. The graph G has 9n/2 + 3m +
3 vertices given as follows (see Fig. 2):

Fig. 2 The graph G2 transformed from F2 = ∀x1∃x2∀x3∃x4(c1 ∧ c2 ∧
c3 ∧ c4), where c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x2 ∨ x4), c3 = (x1 ∨ x3 ∨ x4),
and c4 = (x2 ∨ x3 ∨ x4).

V = { s, t0, t
′
0,

t1, t
′
1, t2, t

′
2, . . . , tn, t

′
n,

u1, u
′
1, u2, u3, u

′
3, u4, . . . , un−1, u

′
n−1, un,

v2, v
′
2, v4, v

′
4, . . . , vn, v

′
n,

a1, b1, c1, a2, b2, c2, . . . , am, bm, cm. }
Here, s is the initial vertex, and T = {t0, t′0, t1, t′1, . . . , tn, t′n} is
the target set of G.

For each i ∈ {1, 2, . . . , n}, vertices ti and t′i are labeled
with xi and xi, respectively (see Fig. 2). Later, one can see
that vertex ti (resp. t′i ) is removed by player 1 if xi = 1 (resp.
xi = 1).

The connections among s, u1, u′1, u2, u3, u′3, u4, . . . , un

are as follows. For every l ∈ {1, 2, . . . , n/2}, vertex u2l−2

is connected to u2l−1 and u′2l−1 by two edges, and vertices
u2l−1 and u′2l−1 are connected to u2l by two edges, where the
initial vertex s is regarded as u0.

For every l ∈ {1, 2, . . . , n/2}, vertices t2l−1 and t′2l−1 are
connected to u2l−1 and u′2l−1, respectively. Also, vertices t2l

and t′2l are connected to v2l and v′2l by 2 × 2 edges. Further-
more, v2l and v′2l are connected to u2l by two edges. Vertex s
is connected to t0.

For every j ∈ {1, 2, . . . ,m}, vertex c j is connected to a j

and b j. Vertices a j and b j are connected to four vertices in T
such that two of the four are connected to a j, and the remain-



504
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Fig. 3 Clause c4 = (x2 ∨ x3 ∨ x4) is false when (x1, x2, x3, x4) =
(1, 1, 0, 1).

ing two are connected to b j. (Connection between T and
{a j, b j} is given in the next paragraph.) Vertices c j, a j, b j,
and those four vertices in T compose a seven-vertex binary
tree, which corresponds to a clause (see Fig. 3).

Connection between T and {a1, b1, a2, b2, . . . , am, bm}
is constructed as follows. For example, suppose that c1 =

(x1 ∨ x2 ∨ x3) (see Figs. 2 and 4). Then, a1 is connected to t′1
(labeled with x1), and b1 is connected to t2 and t3 (labeled
with x2 and x3, respectively). Furthermore, a1 is also con-
nected to vertex t′0 in some technical reason. In the same
manner, for every clause c j, we add two edges between
vertex c j and {a j, b j}, and add four edges between {a j, b j}
and T .

Finally, vertex un (see u4 of Fig. 2) is connected to
c1, c2, . . . , cm by m edges. This completes the construction
of the graph G = (V, E), vertex s ∈ V , and set T ⊆ V .

2.2 Char Noir on the Constructed Graph

In the following, we will show that F is true if and only if
player 1 has a forced win on the game on G.

Initially, the cat is placed on the initial vertex s, and
the first move is player 1. (Recall that players 1 and 2 are a
vertex remover and a cat mover, respectively.)

The first move of player 1 is to remove the vertex t0 ∈
T . (If player 1 does not remove t0, then player 2 moves the
cat to t0 ∈ T , and player 2 wins immediately.) The first
move of player 1 is forced.

The first move of player 2 is to move the cat to one of
the two vertices u1 and u′1. If player 2 moves the cat to u1

(resp. u′1), then the player 1’s next move is to remove ver-
tex t1 ∈ T (resp. t′1 ∈ T ) by the same reason as the previous
paragraph. The second move of player 1 is also forced. (Re-
moving ti (resp. t′i ) corresponds to the assignment xi = 1
(resp. xi = 1). See x2 of Fig. 4 later.)

For the second move of player 2, there seem to be two
choices: (i) He moves the cat back to s, or (ii) he moves
the cat to u2. If player 2 moves the cat to s from u1 (resp.
from u′1), then player 1 wins by removing u′1 and u2 (resp. u1

and u2) in that order. Hence, player 2 is forced to choose (ii)
as his second move.

When the cat is on the vertex u2, player 1 is forced to
remove one of vertices t2 and t′2. This is because if player 1
remove a vertex, say, v2 (which is not t2 or t′2), then player 2
moves the cat to v′2, and player 2 wins in his next move (since
v′2 is connected to t2, t′2 ∈ T ).

For the third move of player 2, there seem to be six

Fig. 4 Clause c1 = (x1∨x2∨x3) is true when (x1, x2, x3, x4) = (1, 1, 0, 1).
Vertex t2 has been removed, which implies x2 = 1.

choices: u1, u′1, v2, v′2, u3, or u′3. For a reason similar to the
second move of player 2, the cat is forced to be moved to
one of u3 and u′3.

By continuing this observation, one can see that
player 2 will move the cat to un (see u4 in Fig. 2), and
player 1 removes one of tn and t′n. Again, in the same reason
as the previous paragraph, player 2 is forced to move the cat
to one of the m vertices c1, c2, . . . , cm.

In the following, for simplicity of exposition, we
suppose that player 2 has moved the cat on the path
s, u1, u2, u′3, u4, and player 1 has removed vertices t1, t2, t′3, t4
(where t1 and t′3 were forcedly removed), which correspond
to assignment (x1, x2, x3, x4) = (1, 1, 0, 1).

Suppose that player 2 moves the cat from u4 to c4 (see
Fig. 3). In this case, player 2 reaches one of the four ver-
tices t′0, t

′
2, t3, and t′4 in four steps, and he wins. (The trivial

verification is left to the reader.)
Consider a different case from the previous paragraph.

Suppose that player 2 moves the cat from u4 to c1 (see
Fig. 4). In this case, one of the four vertices t′0, t

′
1, t2, and t3

has been removed (see t2 in the figure). In general, if at
least one of the four leaves is removed in the seven-vertex
binary tree, then player 2 cannot move the cat from the root
to any of the remaining leaves (i.e., t′0, t

′
1, and t3). Namely,

(i) player 1 removes a1, (ii) player 2 moves the cat to b1

or u4, and then (iii) player 1 removes t3.
Assume that player 1 has a winning strategy. Recall

that, in the first 2n + 1 moves, player 1 removed n + 1 ver-
tices from T , and player 2 moved the cat from s to un.
Note that, when the cat was on vertex u2l, player 1 had two
choices (removal of t2l or t′2l) for each l ∈ {1, 2, . . . , n/2}.
This corresponds that variable x2l is quantified by ∃ for each
l ∈ {1, 2, . . . , n/2}.

At the (2n+2)nd move, player 2 moves the cat from un

to one of the m vertices c1, c2, . . . , cm. The assumption that
player 1 has a winning strategy implies that at least one of
the four leaves of the seven-vertex binary tree rooted at c j

has been removed for all j ∈ {1, 2, . . . ,m} (see Fig. 4). If ti
(resp. t′i ) is a removed vertex of a seven-vertex binary tree
rooted at c j, then clause c j is satisfied by literal xi (resp. xi).
Hence, if player 1 has a winning strategy, then F is true.

Assume that player 1 has no winning strategy. This
implies that, at the (2n + 2)nd move, there is a seven-vertex
binary tree such that none of its four leaves have been re-
moved (see Fig. 3). Let c j be the clause which corresponds
to such a binary tree. The clause c j is satisfied by none of



LETTER
505

its three literals (see x2, x3, x4 of Fig. 3). Hence, if player 1
has no winning strategy, then F is false.

3. Conclusion

In this paper, we proved that the generalized Chat Noir
played on an arbitrary graph is PSPACE-complete. The
complexity of Chat Noir played on the (n × n)-extension of
a regular hexagonal grid is an interesting open problem.

References

[1] http://www.gamedesign.jp/flash/chatnoir/chatnoir.html
[2] http://en.wikipedia.org/wiki/Hex (board game)
[3] S. Even and R.E. Tarjan, “A combinatorial problem which is complete

in polynomial space,” J. Assoc. Comput. Mach., vol.24, no.4, pp.710–
719, 1976.

[4] G.W. Flake and E.B. Baum, “Rush hour is PSPACE-complete, or why
you should generously tip parking lot attendants,” Theor. Comput.
Sci., vol.270, no.1/2, pp.895–911, 2002.

[5] T. Furtak, M. Kiyomi, T. Uno, and M. Buro, “Generalized Amazons
is PSPACE-complete,” Proc. 19th International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, pp.132–137, 2005.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman, New York, NY,
USA, 1979.

[7] S. Iwata and T. Kasai, “The Othello game on an n × n board is
PSPACE-complete,” Theor. Comput. Sci., vol.123, no.2, pp.329–340,
1994.

[8] T.J. Schaefer, “On the complexity of some two-person perfect-
information games,” J. Comput. Syst. Sci., vol.16, pp.185–225, 1978.

[9] L.J. Stockmeyer and A.T. Meyer, “Word problems requiring expo-
nential time,” Proc. 5th Ann. ACM Symp. on Theory of Computing,
pp.1–10, 1973.


