LETTER Special Section on Foundations of Computer Science

Generalized Chat Noir is PSPACE-Complete*

Chuzo IWAMOTO ${ }^{\dagger \text { a) }}$, Member, Yuta MUKAI ${ }^{\dagger}$, Yuichi SUMIDA ${ }^{\dagger \dagger \dagger}$, Nonmembers, and Kenichi MORITA ${ }^{\dagger}$, Member

SUMMARY We study the computational complexity of the following two-player game. The instance is a graph $G=(V, E)$, an initial vertex $s \in$ V, and a target set $T \subseteq V$. A "cat" is initially placed on s. Player 1 chooses a vertex in the graph and removes it and its incident edges from the graph. Player 2 moves the cat from the current vertex to one of the adjacent vertices. Players 1 and 2 alternate removing a vertex and moving the cat, respectively. The game continues until either the cat reaches a vertex of T or the cat cannot be moved. Player 1 wins if and only if the cat cannot be moved before it reaches a vertex of T. It is shown that deciding whether player 1 has a forced win on the game on G is PSPACE-complete.
key words: PSPACE-complete, computational complexity, two-player game, Chat Noir

1. Introduction

Chat Noir is a cat capture game on a particular graph having a regular board-like structure (see Fig. 1). The graph is composed of $n \times n$ vertices, and all vertices except boundary vertices have degree six. There are $4(n-1)$ boundary vertices in an $(n \times n)$-graph (You can play a (11×11)-Chat Noir at the web site [1]. The French word "Chat Noir" means "Black Cat").

Initially, the cat is on a non-boundary vertex, and several vertices are colored grey. Grey vertices are regarded as removed vertices, and the cat cannot be moved to them. Alternately, (i) player 1 chooses a vertex in the graph and removes it and its incident edges from the graph, and (ii) player 2 moves the cat from the current vertex to one of the adjacent vertices. Here, player 1 must not remove the vertex on which the cat is currently placed. The game continues until either the cat reaches a boundary vertex or the cat cannot be moved. Player 1 wins if and only if the cat cannot be moved before it reaches a boundary vertex.

In this paper, we study the computational complexity of the generalized version of Chat Noir.

[^0]

Fig. 1 An initial configuration on an (11×11)-vertex graph.

GENERALIZED CHAT NOIR

INSTANCE: An undirected graph $G=(V, E)$, an initial vertex $s \in V$, and a target set $T \subseteq V$.
QUESTION: Does player 1 have a forced win in the following game played on G ? A cat is initially placed on s. Player 1 chooses a vertex and removes it and its incident edges from the graph. Here, the vertex on which the cat is currently placed must not be chosen or removed. Player 2 moves the cat from the current vertex to one of the adjacent vertices. Players 1 and 2 alternate removing a vertex and moving the cat, respectively. The game continues until either the cat reaches a vertex of T or the cat cannot be moved. Player 1 wins if and only if the cat cannot be moved before it reaches a vertex of T.

From the definition, one can see that the player 1 wins if he leaves the cat on a connected component which does not contain any vertex of T. The problem is in PSPACE because a game can last at most $|V|-1$ removals of vertices. We will prove that the problem is PSPACE-complete.

A lot of two-player games have been shown to be PSPACE-complete. In Garey and Johnson's survey book [6], the following PSPACE-complete games are listed: Generalized HEX [3]; Generalized Geography and Kayles, Variable Partition Truth Assignment, Sift, Alternating Hitting Set [8]; and Sequential Truth Assignment [9].

As for games on the $(n \times n)$-extension of a square grid, Othello [7], Rush Hour [4], and Amazons [5] are known to be PSPACE-hard.

HEX is a game on an $(n \times n)$-hexagonal grid (see [2]). Even and Tarjan proved the PSPACE-completeness of the
generalized version of HEX [3]. Their generalized HEX is played on an arbitrary graph (and not a regular board-like hexagonal grid). The instance is a graph $G=(V, E)$ and two specified vertices $s, t \in V$. Players 1 and 2 alternate choosing a vertex from $V-\{s, t\}$, with those chosen by player 1 being colored blue and those chosen by player 2 being colored red. The game continues until all such vertices have been colored, and player 1 wins if and only if there is a path from s to t in G that passes through only blue vertices. (This description of the HEX rule is from [6]). The question is to decide whether player 1 has a forced win on the game on G.

In this paper, we also define the generalized Chat Noir as a game on an arbitrary graph. The differences between HEX and Chat Noir are as follows: (i) Player 2 in HEX can choose a vertex among arbitrary non-colored vertices. On the other hand, player 2 in Chat Noir can only move the cat from the current vertex to one of the adjacent noncolored vertices (here, removed vertices in Chat Noir are called colored vertices in this sentence). (ii) Vertices chosen by player 2 in HEX are colored by red, while vertices chosen by player 2 in Chat Noir are not colored.

2. Reduction from Quantified 3SAT to Chat Noir

2.1 Transformation from a Quantified Boolean Formula to a Graph

The following definition of QUANTIFIED 3SAT is mostly from [LO11] in [6]. This is a well-known PSPACEcomplete problem.

QUANTIFIED 3SAT

INSTANCE: Set $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of variables, quantified Boolean formula $F=\left(Q_{1} x_{1}\right)\left(Q_{2} x_{2}\right) \cdots\left(Q_{i} x_{i}\right) \cdots\left(Q_{n} x_{n}\right) E$, where $E=c_{1} \wedge c_{2} \wedge \cdots \wedge c_{j} \wedge \cdots \wedge c_{m}$ is a Boolean expression in conjunctive normal form with three literals per clause c_{j}, and each Q_{i} is either \forall or \exists.
QUESTION: Is F true?
Without loss of generality, we can assume that Q_{1} is \forall and the quantifiers are alternately \forall and \exists. For example, let

$$
\begin{array}{ll}
c_{1}=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right), & c_{2}=\left(x_{1} \vee x_{2} \vee x_{4}\right), \\
c_{3}=\left(\overline{x_{1}} \vee x_{3} \vee x_{4}\right), & c_{4}=\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right)
\end{array}
$$

It is easy to verify that $F_{1}=\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(c_{1} \wedge c_{2} \wedge c_{3}\right)$ is true. However, $F_{2}=\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4}\right)$ is false, since there are no assignment values for x_{2} and x_{4} that simultaneously satisfy c_{1}, c_{2}, c_{3}, and c_{4} when $x_{1}=1$ and $x_{3}=0$.

We present a transformation from an arbitrary quantified Boolean formula F in conjunctive normal form with three literals per clause to a graph $G=(V, E)$, an initial vertex $s \in V$, and a target set $T \subseteq V$, such that F is true if and only if player 1 has a forced win on the game on G.

Let n and m be the numbers of variables and clauses of F, respectively. Without loss of generality, we assume that n is an even number. The graph G has $9 n / 2+3 m+$ 3 vertices given as follows (see Fig. 2):

Fig. 2 The graph G_{2} transformed from $F_{2}=\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(c_{1} \wedge c_{2} \wedge\right.$ $\left.c_{3} \wedge c_{4}\right)$, where $c_{1}=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right), c_{2}=\left(x_{1} \vee x_{2} \vee x_{4}\right), c_{3}=\left(\overline{x_{1}} \vee x_{3} \vee x_{4}\right)$, and $c_{4}=\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right)$.

$$
\begin{aligned}
V=\{ & s, t_{0}, t_{0}^{\prime}, \\
& t_{1}, t_{1}^{\prime}, t_{2}, t_{2}^{\prime}, \ldots, t_{n}, t_{n}^{\prime}, \\
& u_{1}, u_{1}^{\prime}, u_{2}, u_{3}, u_{3}^{\prime}, u_{4}, \ldots, u_{n-1}, u_{n-1}^{\prime}, u_{n}, \\
& v_{2}, v_{2}^{\prime}, v_{4}, v_{4}^{\prime}, \ldots, v_{n}, v_{n}^{\prime}, \\
& \left.a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, \ldots, a_{m}, b_{m}, c_{m}\right\}
\end{aligned}
$$

Here, s is the initial vertex, and $T=\left\{t_{0}, t_{0}^{\prime}, t_{1}, t_{1}^{\prime}, \ldots, t_{n}, t_{n}^{\prime}\right\}$ is the target set of G.

For each $i \in\{1,2, \ldots, n\}$, vertices t_{i} and t_{i}^{\prime} are labeled with x_{i} and $\overline{x_{i}}$, respectively (see Fig. 2). Later, one can see that vertex t_{i} (resp. t_{i}^{\prime}) is removed by player 1 if $x_{i}=1$ (resp. $\left.\overline{x_{i}}=1\right)$.

The connections among $s, u_{1}, u_{1}^{\prime}, u_{2}, u_{3}, u_{3}^{\prime}, u_{4}, \ldots, u_{n}$ are as follows. For every $l \in\{1,2, \ldots, n / 2\}$, vertex $u_{2 l-2}$ is connected to $u_{2 l-1}$ and $u_{2 l-1}^{\prime}$ by two edges, and vertices $u_{2 l-1}$ and $u_{2 l-1}^{\prime}$ are connected to $u_{2 l}$ by two edges, where the initial vertex s is regarded as u_{0}.

For every $l \in\{1,2, \ldots, n / 2\}$, vertices $t_{2 l-1}$ and $t_{2 l-1}^{\prime}$ are connected to $u_{2 l-1}$ and $u_{2 l-1}^{\prime}$, respectively. Also, vertices $t_{2 l}$ and $t_{2 l}^{\prime}$ are connected to $v_{2 l}$ and $v_{2 l}^{\prime}$ by 2×2 edges. Furthermore, $v_{2 l}$ and $v_{2 l}^{\prime}$ are connected to $u_{2 l}$ by two edges. Vertex s is connected to t_{0}.

For every $j \in\{1,2, \ldots, m\}$, vertex c_{j} is connected to a_{j} and b_{j}. Vertices a_{j} and b_{j} are connected to four vertices in T such that two of the four are connected to a_{j}, and the remain-

Fig. 3 Clause $c_{4}=\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right)$ is false when $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ (1, 1, 0, 1).
ing two are connected to b_{j}. (Connection between T and $\left\{a_{j}, b_{j}\right\}$ is given in the next paragraph.) Vertices c_{j}, a_{j}, b_{j}, and those four vertices in T compose a seven-vertex binary tree, which corresponds to a clause (see Fig. 3).

Connection between T and $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{m}, b_{m}\right\}$ is constructed as follows. For example, suppose that $c_{1}=$ $\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$ (see Figs. 2 and 4). Then, a_{1} is connected to t_{1}^{\prime} (labeled with $\overline{x_{1}}$), and b_{1} is connected to t_{2} and t_{3} (labeled with x_{2} and x_{3}, respectively). Furthermore, a_{1} is also connected to vertex t_{0}^{\prime} in some technical reason. In the same manner, for every clause c_{j}, we add two edges between vertex c_{j} and $\left\{a_{j}, b_{j}\right\}$, and add four edges between $\left\{a_{j}, b_{j}\right\}$ and T.

Finally, vertex u_{n} (see u_{4} of Fig. 2) is connected to $c_{1}, c_{2}, \ldots, c_{m}$ by m edges. This completes the construction of the graph $G=(V, E)$, vertex $s \in V$, and set $T \subseteq V$.

2.2 Char Noir on the Constructed Graph

In the following, we will show that F is true if and only if player 1 has a forced win on the game on G.

Initially, the cat is placed on the initial vertex s, and the first move is player 1. (Recall that players 1 and 2 are a vertex remover and a cat mover, respectively.)

The first move of player 1 is to remove the vertex $t_{0} \in$ T. (If player 1 does not remove t_{0}, then player 2 moves the cat to $t_{0} \in T$, and player 2 wins immediately.) The first move of player 1 is forced.

The first move of player 2 is to move the cat to one of the two vertices u_{1} and u_{1}^{\prime}. If player 2 moves the cat to u_{1} (resp. u_{1}^{\prime}), then the player l's next move is to remove vertex $t_{1} \in T$ (resp. $t_{1}^{\prime} \in T$) by the same reason as the previous paragraph. The second move of player 1 is also forced. (Removing t_{i} (resp. t_{i}^{\prime}) corresponds to the assignment $x_{i}=1$ (resp. $\overline{x_{i}}=1$). See x_{2} of Fig. 4 later.)

For the second move of player 2, there seem to be two choices: (i) He moves the cat back to s, or (ii) he moves the cat to u_{2}. If player 2 moves the cat to s from u_{1} (resp. from u_{1}^{\prime}), then player 1 wins by removing u_{1}^{\prime} and u_{2} (resp. u_{1} and u_{2}) in that order. Hence, player 2 is forced to choose (ii) as his second move.

When the cat is on the vertex u_{2}, player 1 is forced to remove one of vertices t_{2} and t_{2}^{\prime}. This is because if player 1 remove a vertex, say, v_{2} (which is not t_{2} or t_{2}^{\prime}), then player 2 moves the cat to v_{2}^{\prime}, and player 2 wins in his next move (since v_{2}^{\prime} is connected to $t_{2}, t_{2}^{\prime} \in T$).

For the third move of player 2, there seem to be six

Fig. 4 Clause $c_{1}=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$ is true when $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,1,0,1)$. Vertex t_{2} has been removed, which implies $x_{2}=1$.
choices: $u_{1}, u_{1}^{\prime}, v_{2}, v_{2}^{\prime}, u_{3}$, or u_{3}^{\prime}. For a reason similar to the second move of player 2 , the cat is forced to be moved to one of u_{3} and u_{3}^{\prime}.

By continuing this observation, one can see that player 2 will move the cat to u_{n} (see u_{4} in Fig. 2), and player 1 removes one of t_{n} and t_{n}^{\prime}. Again, in the same reason as the previous paragraph, player 2 is forced to move the cat to one of the m vertices $c_{1}, c_{2}, \ldots, c_{m}$.

In the following, for simplicity of exposition, we suppose that player 2 has moved the cat on the path $s, u_{1}, u_{2}, u_{3}^{\prime}, u_{4}$, and player 1 has removed vertices $t_{1}, t_{2}, t_{3}^{\prime}, t_{4}$ (where t_{1} and t_{3}^{\prime} were forcedly removed), which correspond to assignment $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,1,0,1)$.

Suppose that player 2 moves the cat from u_{4} to c_{4} (see Fig. 3). In this case, player 2 reaches one of the four vertices $t_{0}^{\prime}, t_{2}^{\prime}, t_{3}$, and t_{4}^{\prime} in four steps, and he wins. (The trivial verification is left to the reader.)

Consider a different case from the previous paragraph. Suppose that player 2 moves the cat from u_{4} to c_{1} (see Fig.4). In this case, one of the four vertices $t_{0}^{\prime}, t_{1}^{\prime}, t_{2}$, and t_{3} has been removed (see t_{2} in the figure). In general, if at least one of the four leaves is removed in the seven-vertex binary tree, then player 2 cannot move the cat from the root to any of the remaining leaves (i.e., $t_{0}^{\prime}, t_{1}^{\prime}$, and t_{3}). Namely, (i) player 1 removes a_{1}, (ii) player 2 moves the cat to b_{1} or u_{4}, and then (iii) player 1 removes t_{3}.

Assume that player 1 has a winning strategy. Recall that, in the first $2 n+1$ moves, player 1 removed $n+1$ vertices from T, and player 2 moved the cat from s to u_{n}. Note that, when the cat was on vertex $u_{2 l}$, player 1 had two choices (removal of $t_{2 l}$ or $t_{2 l}^{\prime}$) for each $l \in\{1,2, \ldots, n / 2\}$. This corresponds that variable $x_{2 l}$ is quantified by \exists for each $l \in\{1,2, \ldots, n / 2\}$.

At the $(2 n+2)$ nd move, player 2 moves the cat from u_{n} to one of the m vertices $c_{1}, c_{2}, \ldots, c_{m}$. The assumption that player 1 has a winning strategy implies that at least one of the four leaves of the seven-vertex binary tree rooted at c_{j} has been removed for all $j \in\{1,2, \ldots, m\}$ (see Fig. 4). If t_{i} (resp. t_{i}^{\prime}) is a removed vertex of a seven-vertex binary tree rooted at c_{j}, then clause c_{j} is satisfied by literal $x_{i}\left(\operatorname{resp} . \bar{x}_{i}\right)$. Hence, if player 1 has a winning strategy, then F is true.

Assume that player 1 has no winning strategy. This implies that, at the $(2 n+2)$ nd move, there is a seven-vertex binary tree such that none of its four leaves have been removed (see Fig. 3). Let c_{j} be the clause which corresponds to such a binary tree. The clause c_{j} is satisfied by none of
its three literals (see $\overline{x_{2}}, x_{3}, \overline{x_{4}}$ of Fig. 3). Hence, if player 1 has no winning strategy, then F is false.

3. Conclusion

In this paper, we proved that the generalized Chat Noir played on an arbitrary graph is PSPACE-complete. The complexity of Chat Noir played on the $(n \times n)$-extension of a regular hexagonal grid is an interesting open problem.

References

[1] http://www.gamedesign.jp/flash/chatnoir/chatnoir.html
[2] http://en.wikipedia.org/wiki/Hex_(board_game)
[3] S. Even and R.E. Tarjan, "A combinatorial problem which is complete in polynomial space," J. Assoc. Comput. Mach., vol.24, no.4, pp.710719, 1976.
[4] G.W. Flake and E.B. Baum, "Rush hour is PSPACE-complete, or why you should generously tip parking lot attendants," Theor. Comput. Sci., vol.270, no.1/2, pp.895-911, 2002.
[5] T. Furtak, M. Kiyomi, T. Uno, and M. Buro, "Generalized Amazons is PSPACE-complete," Proc. 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, pp.132-137, 2005.
[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, New York, NY, USA, 1979.
[7] S. Iwata and T. Kasai, "The Othello game on an $n \times n$ board is PSPACE-complete," Theor. Comput. Sci., vol.123, no.2, pp.329-340, 1994.
[8] T.J. Schaefer, "On the complexity of some two-person perfectinformation games," J. Comput. Syst. Sci., vol.16, pp.185-225, 1978.
[9] L.J. Stockmeyer and A.T. Meyer, "Word problems requiring exponential time," Proc. 5th Ann. ACM Symp. on Theory of Computing, pp.1-10, 1973.

[^0]: Manuscript received March 15, 2012.
 Manuscript revised June 8, 2012.
 ${ }^{\dagger}$ The authors are with the Graduate School of Engineering, Hiroshima University, Higashihiroshima-shi, 739-8527 Japan.
 ${ }^{\dagger}$ The author is with Fujitsu Corporation, Kawasaki-shi, 2118588 Japan.
 ${ }^{\dagger \dagger}$ The author is with West Japan Railway Company, Osaka-shi, 530-8341 Japan.
 *This research was supported in part by Scientific Research Grant, Ministry of Japan.
 a) E-mail: chuzo@hiroshima-u.ac.jp

 DOI: 10.1587/transinf.E96.D. 502

