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SUMMARY The Coarse Grained Reconfigurable Architectures
(CGRAS) are proposed as new choices for enhancing the ability of parallel
processing. Data transfer throughput between Reconfigurable Cell Array
(RCA) and on-chip local memory is usually the main performance bottle-
neck of CGRAs. In order to release this stress, we propose a novel data
transfer strategy that is called Heuristic Data Prefetch and Reuse (HDPR),
for the first time in the case of explicit CGRAs. The HDPR strategy pro-
vides not only the flexible data access schedule but also the high data
throughput needed to realize fast pipelined implementations of various loop
kernels. To improve the data utilization efficiency, a dual-bank cache-like
data reuse structure is proposed. Furthermore, a heuristic data prefetch is
also introduced to decrease the data access latency. Experimental results
demonstrate that when compared with conventional explicit data transfer
strategies, our work achieves a significant speedup improvement of, on av-
erage, 1.73 times at the expense of only 5.86% increase in area.

key words: coarse-grained reconfigurable architectures, data prefetch,
data reuse

1. Introduction

Coarse-grained reconfigurable architectures (CGRAs), as
attractive alternatives, have become more and more popular
in both academic research and commercial applications in
the past few years [1]-[6]. The combination of the software
flexibility and high performance of hardware contributes to
the better balance of CGRAs among the key metrics, such
as performance, energy efficiency and chip area. Besides,
CGRAs also present the advantages of large distributed reg-
isters and a rich topology. With the numerous hardware
computing resources, the Reconfigurable Cell Array (RCA)
has to handle a large amount of high-speed parallel tasks,
which results in great demand for a massive data throughput
of CGRAs. Therefore, a data transfer strategy efficient both
in throughput and speed is particularly needed to satisfy the
requirement [7].

The existing data transfer mechanism between RCA
and local memory can be classified into types of explicit [8]—
[12] or implicit[13]-[15] approaches. Whether the RCAs
have the ability of fetching the computing data initiatively
is the main difference between these two. Those recon-
figurable cells (RCs)[8], [9] or simple programmable pro-
cessors [11],[12] that explicitly access the memory with
a certain flexibility are easy to program. However, their
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operations of load/store and the calculation of data ad-
dress consume a considerable number of RCs. Implicit
data transfer mechanism, by contrast, does not support ex-
plicit load/store instructions. Instead, data has to be pre-
arranged in a specific order [13] in the local memory, be-
fore it is broadcasted to the CGRA at a certain delay [14].
This method not only exhibits more challenges to program-
mers but also is more expensive due to the special data
arrangement.

Taking advantage of their easy programming and flex-
ible access, explicit CGRAs have been selected as our re-
search objects. However, dealing with the massive data
transfer between RCA and local memory is still a serious
problem. Explicit CGRAs of ADRES [9] typically hide the
latency of memory accesses by module mapping, but multi-
access requirements in a queue may result in stalls of the
system. Others that implement multi-bank local memory [8]
have to deal with data transfer between different banks re-
spectively. These operations increase the latency and num-
ber of memory accesses thus greatly impact the performance
of data transfer.

Inspired by the work of implicit CGRAs, e.g. a dou-
ble frame buffer that overlaps the data access with com-
putation in MorphoSys[13] and a block buffer reducing
memory access in REMUS-II[15], we consider to solve
these limitations by exploiting data prefetch and reuse strat-
egy. The technique of data prefetch proposed by IBM [16]
hides the long data transfer latency from the external mem-
ory through overlapping the data access procedure with the
computational operation. Data reuse efficiently reduces the
external memory access and thus not only accelerates the
data transfer speed but also reduces the energy overhead of
communication.

To the best of our knowledge, data prefetch and reuse
strategies have not yet been successfully applied to explicit
CGRAs. To keep the merit of data access flexibility, the
easy data arrangement with comfortable programming, and
to obtain a high efficiency of data transfer, we propose
a novel data prefetch and reuse mechanism, which is called
Heuristic Data Prefetch and Reuse (HDPR), in our explicit
CGRAs. The outstanding features of our work include: in
the environment of explicit CGRAs, 1) we overlapped com-
puting phase and data access phase through a data prefetch
mechanism; 2) decreased number of accesses to local mem-
ory by an effective data reuse mechanism; 3) improved par-
allel access ability of the RCA at a little hardware cost.

The rest of this paper is organized as follows. Section 2

Copyright © 2013 The Institute of Electronics, Information and Communication Engineers



GE et al.: A DATA PREFETCH AND REUSE STRATEGY

introduces the related work. Section 3 gives a base architec-
ture. Section 4 explains the motivation of improvement for
data access mechanism. Section 5 proposes the detailed de-
sign of data prefetch and reuse strategy. Section 6 shows
the experimental results with discussions. Finally, Sect.7
concludes the paper and presents future work.

2. Related Work

Data prefetch is a state-of-art dominant technique to im-
prove the efficiency of data transfer in most of implicit
CGRAs. MorphoSys [13] overlapped computation with data
transfers by extending extra DMA instructions in TinyRisc.
However, the data pre-arrangement under the control of
TinyRisc increased the complexity of data management.
DREAM [14] retrieved highly parallelized data through
adopting a programmable Address Generators (AGs) to gen-
erate address with fixed stride after a certain delay due to
the required computation of applications. Whereas, the AGs
need to be confirmed at the initial step and couldn’t change
dynamically at run time. REMUS-II[15] designed multi-
mode of data prefetch mechanism especially for the mul-
timedia data, which has the character of 2D-access. This
data prefetch mechanism named RIM achieved high data
throughput and performance. However, without the strong
support of compiler, such an adaptable data access mecha-
nism of CGRAs greatly challenged programmers for the ex-
pensive manual data arrangement in a very specific order.
Since the complicated data preparation and arrangement
embarrass the easy and comfortable usage of the technique
of data prefetch, data reuse becomes an alternate choice.

Data reuse not only improves the efficiency of data
transmission, but it also reduces the energy consumption
of the communication through decreasing the memory ac-
cesses. G. Dimitroulakos [17] explored the data reuse on the
high bandwidth distributed foreground memory. It stored
the reused data values in the local RAMs inside the PEs thus
successfully avoided the expensive communication with the
outside SRAM. CRM[18] proposed a scratchpad mem-
ory with a configurable address space. In this way, CRM
reduced the data replication and the explicit management,
thus promoted the data reuse. However, the restriction in
the coprocessor’s interface prevented the author from using
a cache as the local memory, which also limited the im-
plementation of data prefetch strategy. REMUS-II adopted
a special designed frame buffer [19] with the similar func-
tion of shared scratchpad memory in CRM to reduce the
access of DRAM. Whereas, its lacking of flexibility and its
difficulty in programming contained the application.

It is obvious that combining the merits of the data
prefetch and reuse strategies should greatly improve the data
transfer efficiency. Thus, we attempted for the first time to
integrate these two technologies in explicit CGRAs.

3. Motivation

To overcome the resources constrains due to the limited
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capacity of RCAs, explicit CGRAs typically spread the
computation of a loop iteration over multiple configurations,
then apply software pipelining to manage operations dy-
namically by means of modulo scheduling [20].

As is known, when a loop has been modulo-scheduled,
the total Run Cycle in inner loop of CGRAs is given by
Eq. (1) [20], which consists of three phases: the prologue,
the loop kernel and the epilogue.

RunCycle = Cycle + (II+(IN—-1)) + Cycle

prologue epilogue

(D

min /I = max(Re sMII,Re cMII) 2)
IPC = IC/RunCycle 3

RunCycle is not the absolute time for application exe-
cution, but an important indicator of computational perfor-
mance within CGRAs. The smaller RunCycle represents the
higher efficiency of the task kernel. In Eq. (1), the parame-
ter IN, i.e., the iteration number of the algorithm, is defi-
nitely algorithm-dependent. Furthermore, both cycle num-
bers of prologue and epilogue stages have little influence on
RunCycle in a large loop. Thus, the remaining /1, i.e., Initial
Interval, is the key element to reduce the RunCycle.

The value of II depends on the data dependence re-
currences and the resource constraints as given by Eq. (2).
The ResMII (resource-minimal II) represents the compu-
tational resource mapping efficiency under the architecture
constraints, which is seriously influenced by the intercon-
nection topology, internal register files and modulo schedul-
ing algorithms. Thus the reduction of ResMII is irrelevant
to the data transfer strategy proposed in this paper. Nev-
ertheless, RecMII (recurrence-minimal I7) reflects the data
dependence in the iteration, the reduction of which can be
achieved by eliminating the access latency. Since the dis-
cussion about the impact of modulo scheduling algorithms
on /1 is beyond the scope of this paper. Here, we care about
the benefits of raising the efficiency of task kernels if we
decrease II by optimizing the access latency.

IPC (Instructions per Cycle) in Eq. (3) represents the
resource utilization of RCA in loop kernels, which is de-
cided by the IC (Instruction Counts) and RunCycle directly.

CGRAs favor those application kernels typically with
intensive and regular types of data. The data arrangement of
these applications has regular pattern stride and consistent
address range. Consequently, these applications provide the
possibility of efficient data transfer mechanism in explicit
CGRAs. In our cases, we exploit data prefetch and reuse
strategies to reduce access latency and number for these
applications.

We demonstrate the impact of access latency for 11
using an example of a filter benchmark that implements
complex multiplications. Figure 1 illustrates the mapping
results of data flow of algorithm with conventional modulo
scheduling. It is observed from the traditional scheduled
results that each context switch needs to wait till the accom-
plishment of load operation. As indicated in Fig. 1, one of
the two cycles of LDR operation is cost by memory access
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latency. Therefore, the succeeding operations of Mult and
STR in cycle number 2 and 5 respectively are both blocked
by the multiple LDR operations in different pipelines. In this
case, the multi-data requirements of RCA enormously ag-
gravate the read latency. Under the same modulo scheduling
approach, the fixed number of contexts for algorithms makes
ResMII become a constant. According to the definition of 17
in Eq. (2), the exploration of various methods to decrease
the influence of data access latency benefits RecMII, which
decreases II correspondingly.

Data prefetch strategy which applied in the loop of
complex_multiply, as in Fig.2(b), reduces the access la-
tency or ideally makes it even to zero. The prefetch op-
eration starts once the previous data is valid, as indicated
by dashed lines. Such an early LDR operation successfully
conceals the one cycle spent on the memory access latency.
As aresult, not only the LDR operation seems to be one cy-
cle shorter than usual, but also the RCA could immediately

STR

Data Flow Graph t=6

Fig.1  The conventional modulo scheduling flow. In the figure, the nota-
tions LDR, STR represent load and store operation respectively. Mult, Add
and Sub indicate the corresponding arithmetical operations. The ar, br, cr
and ai, bi, ci are real and imaginary parts of complex respectively.
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Fig.2 Demonstrations of different data transfer strategies.
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grab the data for the subsequent computation.

Data reuse strategy in Fig.2(c) deals with intensive
data in iteration loop. For example, if the operation data
of LDR, LDR, LDR; can be loaded in one operation, then
we can cache the data and submit it immediately for the next
request at the same address range. In such a manner, data
reuse strategy not only removes the memory access latency
but also dramatically declines the data access times.

Consequently, comprehensive consideration of the
strategy of data prefetch and reuse diminishes both data ac-
cess latency and number, thus generates more timing prof-
its than the traditional method as obviously demonstrated in
Fig.2 (a).

4. Base Architecture

In this section, we introduce base architecture which is used
to compare the proposed data transfer mechanism with con-
ventional methods.

The data transfer strategy in base architecture is sim-
ilar to ADRES [9] and RSPA [10]. The operation between
RCA and local memory can be abstracted as all the RCs ac-
cessing the local memory initiatively with blocking loads re-
gardless of the various memory architectures. For example,
the ADRES adopted a power-efficient, signal-ported, inter-
leaved scratch-pad memory organization [21]. Whereas, the
RSPA used multi-bank local memory architecture, in which
each bank may be accessed only by the processing elements
in the corresponding row. In both cases, the RCs are able
to load/store to the local memory. Meanwhile, other RC op-
erations will not be launched until these blocking memory
access completed.

The modular design of base architecture reproduces the
conventional data access strategy, and can be modified to ex-
tend the prefetch and reuse functions. We have implemented
the parametric template CGRA as an attached IP connected
to system bus in Fig. 3. It is easy to build such a SoC (Sys-
tem on Chip) using a standard processor and a standard re-
configurable array with this kind of coupling style. The pro-
posed prototype system consists of a 32-bit RISC processor
with eight pipeline stages, an external memory, an INTC
(interrupt controller) and a CGRA. The communication bus
is 32bit AMBA AHB, which couples the RISC processor,

N —

CRF ‘

)

aciae

External
memory

AHB 32 Bits

:
5

N

32Bits RISC

Fig.3  The top level architecture of base CGRA.
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CGRA and other peripheral as INTC.

The considered RCA includes parameterized RC and
Distributed Register File (DRF). The parameters of cell
number, data width, register depth and interconnection
topologies are changeable at various design requirements.
Thus, the base architecture is able to reproduce other type of
architectures in the experimental part. The System Connect
Interface (SCI) connects the CGRA as an attached coproces-
sor to system bus. Limited by the size, the Context Register
File (CRF) only stores several contexts. When the memory
size is not enough for all the contexts, extra time has to be
paid for loading other contexts from the external configura-
tion memory. The Context Flow Controller (CFC) is respon-
sible for context switch. It receives the configuration switch
enable signal from RCA and then updates the contexts cor-
respondingly. The Data Flow Controller (DFC) is in charge
of data transfer between Global Data Memory (GDM) and
RCA. Finally, the GDM is used for storing both input data
that transported from the external memory to RCA and out-
put data generated by the RCA to feed the external memory.

Taking advantage of this base architecture, we are ca-
pable to compare the proposed strategy with the existing
data transfer strategies.

5. Prefetch and Reuse Strategy
5.1 Design Implementation

In this section, the RC (Reconfigurable Cell) module and the
DPR (Data Prefetch and Reuse) module for verifying this
HDPR method are described. In Fig.4 (a), each RC with
load/store operation is connected to the DFC (Data Flow
Controller) through a DPR. In order to avoid the conflic-
tion between multiple non-sequential data requests to DFC,
we pipeline these data accesses when they are arranged in
a more efficient sequential manner. In our case, all data re-
quirements from the RC have been ordered as a queue to
DFC according to priority. The DFC accesses GDM (Global

Reconfigurable Cell |  ------ Reconfigurable Cell
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(a) the interconnection of DPR

Fig. 4
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Data Memory) and responses read valid signal to the corre-
sponding DPR.

As the fundamental processing element of the CGRA,
a RC is constructed with data multiplexer, ALU (fixed-point
operations) and access logic. In addition to complete these
basic arithmetic and logical operations, each RC loads or
stores data at different data sizes. The communication hand-
shake control signal, the basic data, as well as the address
signals can be seen in Fig. 4 (a). The rc_size signal controls
the data type of return value. The output signal rc_valid
indicates the start of each read operation. And the corre-
sponding input signal rc_ready indicates the completion of
read operation. The handshake signals of valid/ready form
a closed-loop feedback communication mechanism, which
ensures the correctness and robustness of data transmission.

The detail design of DPR is shown in Fig.4 (b). The
offset between the addresses at the current and the previous
time instances defines the stride. DPR prepares the data at
the distance of a stride unit ahead of the current address.
In addition, the stride will not be valid until RC has fin-
ished two effective read operations. It means that we need
to do normal read operations twice before getting the valid
stride value. The data and control signals between DFC and
RC are both managed by an internal FSM (Finite State Ma-
chine). Considering the data throughput and access latency
of multi-port memory in GDM, the buffer width of both cur-
rent data and prefetch data is 4 times of RC data width. In
order to simplify the implementation of hardware design,
we set the default parameter of buffer depth to one, which is
the minimum value. So the total buffer size of DPR (include
both current data and prefetch data) is 8 times of RC data.
And the data alignment of both current data and prefetch
data is similar to traditional cache line. Rather than the tra-
ditional cache that grabs the data in cache line, our DPR
heuristic forecasts the possible data in the manner that over-
laps the computing and data access efficiently.

The DPR module has four states, i.e., IDLE, MISS,
PREFETCH and WAIT as in Fig. 5 (a). The DPR maintains

RC read TRC read
size data
address soleot
current J
data
p;de;nleosuss reuse_hit
—
address data —
address to i prefetch_hit data (f;rom
DFC DF

(b) design detail of DPR

Architecture of data prefetch and reuse module.
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Fig.5 Working mechanisms of DPR.

the IDLE state after the reset process. The MISS state of
a DPR will not be triggered until a read operation is valid.
In MISS state, the DPR responses to the reuse data under
the same address range, but the valid stride is still unknown.
After having finished another read access, when the stride
is ready, the DPR enters PREFETCH state. Here, the DPR
starts the prefetch access by itself, then switches to WAIT
state. In WAIT state, there are three possible scenarios for
the DPR, 1) when data is being reused, it stays in WAIT
state; 2) when the current address hits the prefetch address,
it enters PREFETCH state and starts another prefetch oper-
ation; 3) when prefetch address fails to match the real data
address, it has to return IDLE state.

5.2 Data Transfer Strategy

Our proposed data transfer strategy is conceptually simi-
lar to cache. Cache is broadly used in the contemporary
GPP (General Purpose Processor), however, its complex de-
sign procedure and the large spatial size make it unsuitable
for CGRAs, which contains a great quantity of distributing
RCs. Considering the features of intensiveness and regular-
ity of data in applications, we figure out a more applicable
prefetch and reuse structure for explicit CGRAs.

In our design, the data address for prefetch is calculated
by a heuristic procedure, which dynamically changes in the
run time and independent of the other RCs. Furthermore, we
propose a small dual-bank cache-like data reuse structure,
which greatly reduce the size of the traditional cache.

The key technologies to realize the heuristic data
prefetch mechanism include the precise predication of the
data address distance, i.e., the stride, and the management
of data request handshake protocol by DPR. There are two
methods to generate a valid stride. Either the DPR spends
RC reading operation (rc_proc) in IDLE and MISS states re-
spectively, or the RC hits the prefetch data in WAIT state as
shown in Fig. 5 (b).

With the valid stride, DPR initiatively fetches the data
(dpr_proc) and saves it in prefetch data register. Next, DPR
broadcasts a self-triggered data transfer handshake protocol
to inform the RC to preserve the data request signal while

DPR is waiting for the end of data prefetch. Once data has
been successfully prefetched, the DPR will response the ac-
cess immediately. Finally, another new request is sent by
DPR with a new predicting address. In such a manner, the
RCA computing phase can be overlapped with the heuristic
data prefetch phase.

This prefetch method especially favors the big stride
of data access in media processing, e.g. the current data in
position 0x10 and the next data in position 0x40 result in
a stride of 0x30, which is much larger than the length of
a cache line as 0x8. In addition, the prefetch method is
suitable for stream applications, because it efficiently meets
the distribution characteristics of stream data, thus reduces
the miss rate of dual-bank caches (current data and prefetch
data). Furthermore, the data prefetch stride is dynamically
changeable at run time without confirming at the initial step.

The data reuse strategy, another method proposed by
this paper, is similar to the look-like cache or scratchpad
memory. For example, the DPR architecture illustration in
Fig. 4 (b) that adopts both the current and prefetch data for
data reuse works in the manner similar to a dual-bank cache.
In our proposed method, although RCs read data with differ-
ent sizes, a DPR always provides the enough bank width to
guarantee the smooth data transfer. As mentioned above,
the buffer size of each DPR is 8 times as big as that of RC
data. In the ideal case, the DPR can provide up to 8 different
reuse data for a RC requirement. In this way, if the next data
is still in the current address range, e.g. the previous address
offset 0x1 and the current address offset 0x3 both appear in
the cache line range, the DPR responses the previous read
data immediately.

In order to maximum the performance of a DPR, we in-
tegrate the prefetch and reuse methods synchronously. Con-
sidering in the prefetch mode, multi-context increases time
slots of every two load operations, thus, the access latency
is hidden nicely in the computation phase. Furthermore, the
wide data width of a DPR supports more data intensive com-
putation. By these means, the DPR adopts both data transfer
strategies or either one of them to handle various application
kernels. Thus, we even gain the compositive revenue of both
methods.
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With the proposed novel data prefetch and reuse strat-
egy, our design successfully overlaps the computation and
data access phases. The outstanding performance of the de-
sign is demonstrated by the following experiments.

6. Experiments

6.1 Experimental Setup

To evaluate our proposed HDPR strategy, we developed
a CGRA prototype at cycle-accurate register transfer level
(RTL) as illustrated in Fig. 3. The RCA consists of 16 RCs
with an eight neighbor connection embedded in a 4x4 array.
In the RCA, every four RCs in a column share one Dis-
tributed Register File (DRF) and thus totally 4 DRFs are
needed. Under the corresponding parameters, the proposed
CGRA is capable to emulate the other architectures, such
as an ADRES with 4 x 4 tiles or a MorphoSys with 4 x 4
quadrants.

Six algorithms from DSPStone [22] and a kernel op-
eration of image processing are used as the benchmark
set mapped manually to the CGRA. fir is an 8 point
finite impulse response. convolution, complex_multiply,
n_real_updates and n_complxe_updates constitute the filter
benchmark. sobel refers to a fundamental operator in image
processing. dot_product performs a dot product of the
form Z = A[1 X 2] = B[2 X 1]. They are all typical multime-
dia and telecommunication kernels with abundant inherent
parallelism.

6.2 Comparison and Analysis

In the experiments, we demonstrate that our optimal
method outperforms the traditional data transfer mecha-
nisms adopted by both ADRES [9] and RSPA [10]. For ease
of simulation and verification, the mapping result of instruc-
tions is executed using an internal ROM as the CRF. Mean-
while, data has been initialized by the RISC in the GDM.
The experimental results are summarized in Table 1.
The column of RunCycle directly denotes the number of
clocks needed by each algorithms under the traditional and
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the optimal solutions. With the HDPR strategy, the cycle
number of run time dramatically decreases. The column of
Speedup lists the improvement of performance. The pro-
posed data transfer method achieves averagely 1.73 times
speedup over the conventional methods on various bench-
mark algorithms. Less Initial Iteration represents a better
pipeline efficiency, so we deduce the column /I from the
Eq.(1). In Table 1, the value of II shows the average iter-
ation restart cycle has been decreased from 13.89 to 7.82
by our method. Furthermore, our raised /PC values have
proved the HDPR strategy exhibits a powerful computa-
tional efficiency.

In Fig. 6 we demonstrate implementing the proposed
HDPR strategy generates more performance profits than
using the data prefetch or the data reuse method indepen-
dently, as is mentioned in the section of motivation. How-
ever, exceptions happen to the convolution, dot_product
and n_real_updates algorithms, where the HDPR solution
gets the same performance speedup gain as the data reuse
method. Each set of configuration contexts of these algo-
rithms contains the load operation so that the access pro-
cess can not overlap with the calculation. Consequently, the
prefetch method becomes inapplicable to these cases, which
illustrates a limitation of the current HDPR strategy.

From the experimental results, we conclude that our
date prefetch and reuse strategy results in much less
RunCycle and lower II than the traditional methods. It also
improves the average IPC of RCA, ranging from 1.43 to
2.56.

Considering the possible influence on clock period and
designed area, we compile the design into gate-level circuit.
Therefore, we use the Design Compiler to estimate the area
of CGRAs. We adopt the tsmc 65nm 1P8M low power
worst case library and the constraint of 200 MHz frequency.
As demonstrated in Fig.7, the DPR occupies about 5.86%
of the area of CGRA prototype, while 80% of the area is oc-
cupied by GDM and CRF. In addition, the synthesis results
show that the DPR is not the critical timing path in the de-
sign. So the proposed data transfer strategy does not cause
performance degradation in terms of the critical path delay.

Table 1  Experimental results.
Algorithm RunCycle Speedup” I IPC
Conventional” | HDPR Conventional” | HDPR | Conventional” | HDPR

fir(8taps)(N=64) 1031 476 2.17 16.27 7.46 1.74 3.76
Convolution(N=16) 103 70 1.47 6.6 4.4 1.09 1.6

n_complex updates(N=16) | 328 188 1.74 21.33 12.2 1.28 221
Sobel(N=64) 1029 474 2.17 16.25 7.44 1.87 4.05
dot_product(N=16) 199 130 1.53 12.93 8.33 0.96 1.48
complex_multiply(N=16) 165 116 1.42 10.73 7.47 1.65 2.34
n_real_updates(N=16) 119 75 1.59 13.11 743 1.42 251
Geometric Mean none none 1.73 13.89 7.82 1.43 2.56

*: The conventional data transfer of RC access local memory is similar with ADRES and RSPA.

**: The speedup is calculated as Convectional/ HDPR.
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Fig.6  Performance speedup of different data transfer strategies.
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Fig.7  Area of the prototype of CGRA.
*: The GDM include 38.4 K Bytes, each ram is 32 bits 600 depth, and the
CRF is 12.288 K Bytes, each ram is 64 bits 96 depth.

7. Conclusion and Future Work

This paper proposed a novel strategy of data prefetch and
reuse for CGRAs. To improve the data utilization efficiency,
a dual-bank cache-like data reuse structure is proposed. Be-
sides, a heuristic data prefetch is also introduced to further
decrease the data access latency. Due to the HDPR strategy,
our design effectively decreases the latency of data access
and improves the performance of computation intensive ap-
plications. Experiments demonstrates it achieves remark-
able low /I and tremendously high IPC, which contribute
to a significant speedup in execution time at the expense of
only 5.86% increase in area.

Future work will focus on the improvement of external
memory throughput and the optimization of data manage-
ment. Moreover, we will track the key issues of the cost of
exchanging data in external memory.
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