
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013
643

PAPER

ATTI: Workload-Aware Query Adaptive OcTree Based Trajectory
Index

Xiangxu MENG†a), Nonmember, Xiaodong WANG†, Member, and Xinye LIN†, Nonmember

SUMMARY The GPS trajectory databases serve as bases for many in-
telligent applications that need to extract some trajectories for future pro-
cessing or mining. When doing such tasks, spatio-temporal range queries
based methods, which find all sub-trajectories within the given spatial ex-
tent and time interval, are commonly used. However, the history trajectory
indexes of such methods suffer from two problems. First, temporal and
spatial factors are not considered simutaneously, resulting in low perfor-
mance when processing spatio-temporal queries. Second, the efficiency of
indexes is sensitive to query size. The query performance changes dra-
matically as the query size changed. This paper proposes workload-aware
Adaptive OcTree based Trajectory clustering Index (ATTI) aiming at op-
timizing trajectory storage and index performance. The contributions are
three-folds. First, the distribution and time delay of the trajectory storage
are introduced into the cost model of spatio-temporal range query; Second,
the distribution of spatial division is dynamically adjusted based on GPS
update workload; Third, the query workload adaptive mechanism is pro-
posed based on virtual OcTree forest. A wide range of experiments are car-
ried out over Microsoft GeoLife project dataset, and the results show that
query delay of ATTI could be about 50% shorter than that of the nested
index.
key words: spatial-temporal database, trajectory, workload-aware, adap-
tive

1. Introduction

The popularity of GPS-enabled handsets makes collecting
user trajectory data much easier. Trajectories contain abun-
dant information, including users’ history positions and cur-
rent position. Furthermore, some other useful information
may be inferred, e.g, users’ health status, social relations
and so on. Based on those information, many services could
be developed, including route planning for tourists, best po-
sition finding for advertisement displays, etc. CarTel [1], a
project of Massachusetts institute of technology (MIT) has
collected trajectory data of about 20 taxis since 2007. Car-
Tel could provide city traffic status query service for citi-
zens, and support individuals to browse their historical tra-
jectories; GeoLife project [2] of Microsoft Asia Research
Institute has collected massive trajectory data of hundreds
of users since 2007. To use those data effectively, Geo-
life designed a series of techniques such as the trajectory
index [3], background map matching [4] and similarity tra-
jectory mining. With these data, Geolife developed intelli-
gent tour guide system, intelligent driving guide system and
a tourist spot search application.

Manuscript received April 25, 2012.
Manuscript revised November 22, 2012.
†The authors are with National University of Defense Technol-

ogy, China.
a) E-mail: yumengkk@qq.com

DOI: 10.1587/transinf.E96.D.643

As the basic resources of many location-based services
(LBS), trajectories need to be retrieved frequently by many
users in a variety of applications. Spatio-temporal range
queries are the most effective trajectory retrieval method,
i.e., “return all the trajectories between T1 and T2 within a
particular special spatial region”. The result sub-trajectories
set may be very large when the amount of trajectory data is
massive. Therefore, how to find sub-trajectories efficiently
and load them into memory for future processing with min-
imal delay and disk I/O is an urgent problem to be solved.
This paper focuses on designing and implementing adap-
tive trajectory storage and index mechanisms for processing
spatio-temporal range query.

2. Related Work and Motivation

2.1 Related Work

Trajectory indexes belong to spatio-temporal indexes which
are divided into current (future) position indexes and histor-
ical trajectory indexes. According to the underlying model,
spatial indexes are divided into free space indexes and net-
work indexes. This article focuses on the trajectory index
which belongs to the free space historical trajectory index.
Table 1 lists related works belonging to this class.

Free space historical indexes can be further divided into
two categories according to building methods, namely space
division indexes and R-tree family indexes (data driven in-
dex). The major disadvantages of R-tree family indexes are:

Table 1 Free space historical trajectory indexes.

3DRTree [5] (1998) (R-Tree family) The 3D extension of R-tree.
MV3RTree [6] (2001) (R-Tree family) Merged 3DR-tree and multi-

version R-tree.
SETI [7] (2003) (space division + R*-tree) Divide space into

grids, and every grid cell builds an R*-tree.
BBXTree [8] (2005) (Time division + B-tree) Divide time into in-

tervals and present trajectory’s position by
space-filling curve. Every interval builds a
B-tree.

CSE-tree [3] (2008) (Space grid + B-tree) Divide space into grids
and based on sub trajectory’s end time build
a B-tree for every cell.

PIST [9] (2008) (Space grid + B-tree) Divide space into
grids, and every cell build a time index.

QuadTree [10] (2010) (Quadtree + time index) Build an unbal-
anced quad tree based on overload, every
sub-region covered by a quad tree leaf node
builds a time index.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

644
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

(1) The node split cost is very high when data are inserted
frequently; (2) The query process performance is low when
interior regions overlap heavily. 3DR-tree and MV3R-tree,
which are extensions of 3D version R-tree, are affected more
heavily by overlapping caused by uneven data distribution.
Actually, trajectory data often update frequency and dis-
tribute unevenly. Therefore, almost all indexes belong to
space division based index after MV3DR-tree, as shown in
Table 1. Test results of literature [1] and [7] show that their
indexes have higher performance than 3DR family indexes
when processing spatial range queries.

2.2 Motivation of ATTI

Space division indexes are also facing some challenges:

• How to synchronize index temporal and spatial dimen-
sions;
• How a space division adapts to the dynamic change of

data;
• The query process cost is closely related with query

size, when the query size changes heavily, how to guar-
antee the performance of query processing;
• Some space partitions which intersect with a query re-

gion contain some disk pages whose data does not be-
long to the query result. How to reduce the additional
cost caused by processing such irrelative disk pages.

Existing space division indexes are mainly nested in-
dexes [10], which index the time dimension and spatial di-
mensions consequently. In other words, nested indexes do
not consider temporal and spatial factors simultaneously.
Therefore, trajectories adjacent both in time and space may
not been stored in adjacent disk pages. Meanwhile, the
3DR trees, which simultaneous index time and space dimen-
sions, are thought to have higher performance for process-
ing spatio-temporal range query theoretically, but that was
not the case as Sect. 2.1 shows.

To obtain a relatively high spatio-temporal range
query processing efficiency, indexes should index three
dimensions (longitude, latitude and time) simultaneously
and avoid high maintenance overhead. Fortunately, GPS
points received online could be treated as discrete three-
dimensional points, and the already existed trajectory data
could be split into sub-trajectories. These are all different
from 3D objects with fixed shapes and will effectively en-
hance the efficiency of query and storage. This paper is
motivated by this idea and the main contributions are listed
below:

• The cost model of trajectory spatio-temporal range
query is introduced. Base on such a model, a workload-
aware adaptive spatio-temporal OcTree index approach
is proposed (Sect. 3);
• A virtual OcTree forest through nodes sharing model is

proposed, which could deal with the query adaptively
with extremely low costs (Sect. 5);
• Disk page level indexes are built to reduce the overhead

of retrieving redundant pages, which are not query re-
sults but belongs to the 3-dimentional cube intersecting
with the query zone. Furthermore, sub-trajectories are
clustered based on trajectory ID and time in disk space
to speed up postprocessing (Sect. 5);
• Extensive experiments are carried out based on the Mi-

crosoft GeoLife project real data sets and GSTD syn-
thetic data sets. The results show that ATTI can re-
duce the processing delay by about 50% compared with
nested indexes of literature [1] (Sect. 6).

3. Cost Model of Spatio-Temporal Range Query

3.1 Formulation of Trajectory and Spatio-Temporal Range
Query

Consider a set containing n trajectories: TS = {T1,T2, . . . ,
Tn}, where Ti denotes the ith trajectory:

Ti = {pi0, pi1, pi2, . . . , pi j, . . .}, (1)

here, pi j = {xi j, yi j, ti j} represents a trajectory point in Ti.
A spatio-temporal query could be expressed as Q =

<sext, text>, where sext is the space extension, usually repre-
sented by minimum bounding rectangle (MBR) which is de-
fined using lower left and upper right points; text = <ts, te>
is the time duration determined by start and end time.

3.2 Time Cost for Processing Spatio-Temporal Range
Query

Given a spatio-temporal query, the volume of its corre-
sponding three-dimensional (time, space) cube is VQ =

sext × text. Here, the cube is formed by user-defined spa-
tial and temporal extensions of interest, e.g. “Beijing city,
from 1-1-2008 to 12-30-2012”.

We assume the trajectory points distribute evenly, and
the density of the trajectory points is denoted as D, which
indicate how many points exist in a unit cube. Each point
occupies K bytes disk space. The number of disk pages oc-
cupied by a query result is described as follows:

Npage =

⌈ |VQ × D| × K

PageSize

⌉
, (2)

where PageSize is the capacity of a disk page.
Let Trot, Tseek and Ttransfer denote the rotational de-

lay, seek delay and transfer delay of reading one disk
page respectively, according to the working mechanism of
disk [10]. Ttransfer are roughly same. To facilitate the fol-
lowing analysis, Trot are set to half of the rotational delay
of a circle, and Tseek is determined by the number of tracks
n between two pages. Let si be the page interval, which is
the number of pages between two consequent disk pages of
the result set. Here, we assume that the number of tracks is
proportional to the number of disk pages (in fact, n =

⌈
si

m

⌉
,

m is the number of pages stored in a track). Therefore, the
average time of reading a disk page, with si disk page need

MENG et al.: ATTI: WORKLOAD-AWARE QUERY ADAPTIVE OCTREE BASED TRAJECTORY INDEX
645

to be move over, is represented as Trot + si ×Tmove +Ttransfer,
where Tmove is the time of moving over one track. Finally,
the total time cost of a query can be expressed as:

TCQ = Tindex +

Npage∑
i=1

(Trot + si × Tmove + Ttransfer), (3)

where Tindex is the time to address the result blocks. There-
fore, the query performance could be optimized by reducing
Tindex, Npage and si. The average value of the page intervals
and transfer delay of a disk page is defined as follows:

A =

∑n
i=1(Trot + si × Tmove + Ttransfer)

n
. (4)

For a set of N GPS points, the cost is described as:

C = Tindex + A ×
⌈

N × K
PageSize

⌉
. (5)

Equation (5) shows that the query delay consists of two
parts. The first part Tindex is affected by many factors, in-
cluding whether to establish an index, using memory based
index or disk based index, computational complexity of the
query processing and the computing capability of proces-
sors, etc. In this paper, memory based index is used as in
[1], assuming that the capacity of the main memory is large
enough to store the whole index. Therefore, disk I/O op-
erations, which are difficult to quantify, are not involved in
indexing operations. Instead, we focus on the second part,
which is often far greater than the first type. Particularly, we
focus on reducing the time of disk I/O operations when load-
ing the query results, since the result set of query is often vey
large and need to be loaded by many disk I/O operations.

CI/O = A ×
⌈ |VQ × D| × K

PageSize

⌉
. (6)

As Eq. (6) shows, I/O overhead is mainly affected by
the distribution and quantity of disk pages. We propose the
workload-aware adaptive OcTree which index spatial and
temporal dimensions at the same time and also cluster adja-
cent trajectory data on near disk pages.

4. Workload-Aware Spatio-Temporal OcTree

Based on the query cost model, we use the dynamic spa-
tial and temporal division method to build spatio-temporal
OcTree cluster index.

4.1 Dynamically Spatio-Temporal Division

As shown in Fig. 1, an entire cube, whose volume is V , is
divided into eight equal octants, and each one can be divided
recursively as needed.

Note that spatial dimensions and temporal dimension
have different characteristics. The area size of spatial di-
mension usually does not change, while time dimension is

apt to extend (grow) infinitely. In our system, the admin-
istrator should define spatial extensions and time range ac-
cording to real-world needs. For example, we define Beijing
city as spatial extensions and five years as the time range
(from the begin time of Geolife project 1-1-2008 to the ex-
pected end time 12-30-2012) to form the initial cube of our
system. When the temporal dimension grows beyond the
end time, a new cube using old spatial extension and new
time range (e.g. from 1-1-2013 to 12-30-2017) will be cre-
ated. If a query crosses two cube, our system will divide
it into two sub-queries based on the time dimension, keep-
ing spatial dimensions unchanged. ATTI index is used to
process the two sub-queries separately, and the final query
result is obtained by combining two sub-query results to-
gether. This method is different from nested index, such
as BBXTree [8] which divides time dimension into inter-
vals and represents trajectories’ positions by spatial dimen-
sions index, because it always index time and space simu-
latenously.

The core of the division is how to dynamically adjust
divide depth according to the change of trajectory data to
get minimal query processing cost. We will start from the
simplest scene: 3D uniform Grid, where the minimal divi-
sion is named a division unit (grid cell), represented as a
three-dimensional cube: cell = {rx, ry, rt}. Here rx, ry and
rt denotes space extensions and time interval respectively.
Suppose the density of trajectory points in the cube is also
D. The time cost of reading those points from disk to mem-
ory is computed as Eq. (7) shows:

Ccell = A ×
⌈
rx × ry × rt × D × K

PageSize

⌉
. (7)

For an arbitrary query q = {qrx, qry, qrt}, where {qrx,
qry, qrt} are intervals in each dimension. The I/O overhead
is:

Cq = A ×
∑
cells

P(q ∩ cell) ×Ccell (8)

where P(q ∩ cell) is the probability of the random query re-
gion intersecting with a cell. This probability depends on
the spatial and temporal extents of both the query and the
cell. Clearly, a query region intersects a cell not only when
its center falls within the boundaries of the cell, but also in-
tersects the cell when its center falls just outside of the cell,
up to a distance qrx

2 and qry
2 of the spatial edges of the cell,

and up to qrt

2 outside the temporal edges [1]. Neglecting bor-
der affects that happen at the edges of the region (outside of
which queries would not be allowed), we denote the proba-
bility of a random query q intersecting a given cell as Eq. (9).

P(q ∩ cell) =
(qrx + rx)(qry + ry)(qrt + rt)

V
. (9)

Seen from Eqs. (7), (8) and (9), the query overhead is
mainly affected by the query size, the grid unit size and the
data density D. We discuss how to determine the optimal
grid cell size first. Suppose the query size is already given,

646
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Fig. 1 OcTree index and disk file structure.

and the optimal grid cell size is

cellopt ≈ argmincell(Cq). (10)

As Eq. (10) shows, the optimal division is closely re-
lated to trajectory data density D. However, trajectory work-
load is not evenly distributed, and is updated frequently. The
insertion of new trajectory points will affect data distribu-
tion dynamically. Obviously, the static division could not
always guarantee the minimal query cost. Therefore, the
optimal division should be changed adaptively according to
the trajectory data. We will introduce workload adaptive
spatio-temporal OcTree index in the next section.

4.2 Data Structure of Adaptive OcTree

Basic idea: as shown in Fig. 1, the data-intensive regions
are divided into more cells. On the contrary, the data-sparse
regions are divided into less cells.

An OcTree based space division example is shown in
Fig. 1. The leaf nodes point to the addresses of disk blocks
which store trajectory points belonging to the nodes’ spatio-
temporal cube. When adding a new point, each division unit
may be adjusted dynamically either by: (1) Splitting (divide
the unit into eight new sub-units); (2) Merging (Merges the
unit with seven other sibling nodes). The criterion for decid-
ing whether to perform the operation or not is that whether
the operation achieves lower query overhead than current
division.

Figure 2 shows the data structure of an OcTree leaf
node. Each OcTree node has a variable PointNumber which
indicates the number of GPS points belongs to the corre-
sponding subregion. When splitting a node, the numbers
of GPS points contained by its eight octants are computed
and stored in the ChildrenPointNumber array. Meanwhile,
the SbilingPointNumber array is used to save the numbers
of GPS points contained by its seven sibling octants.

Given a query, we can calculate the probability of
each cell intersecting with it according to Eq. (9), and fur-
ther compute the I/O overhead of processing this query as
Eq. (11). Let Pi be the number of points which fall on its
ith suboctant, which is stored in the ChildrenPointNumber

Fig. 2 The structure of OcTree node.

array. Please note that the variable PointNumber is the sum
of the eight elements of ChildrenPointNumber.

Cq = A × P(q ∩ cell)

⎡⎢⎢⎢⎢⎢⎢⎢⎢
K ×∑8

i=1 Pi

PageSize

⎤⎥⎥⎥⎥⎥⎥⎥⎥ (11)

When inserting a new trajectory point, we first com-
pute the overhead of processing the same query in the vir-
tual splitting division. Supposing the node is divided into
eight suboctants, the overhead after splitting is the sum of
eight virtual sub-nodes’ query process overheads as below:

P(q ∩ soncell) =

(
qrx +

rx

2

)
×
(
qry +

ry
2

)
×
(
qrt +

rt

2

)
V

VirtualCq =

8∑
i=1

A × P(q ∩ soncell)

⌈
K × Pi

PageSize

⌉
(12)

here soncell is used to denote the virtual sub-node corre-
sponded temporal-spatio space, whose volume is cell

8 of the
current cell. Only when VirtualCq < Cq will a cell be di-
vided (splitting operation) to minimize the query overhead.

Next, we compute the overhead of processing the same
query in the virtual merging division, and compare the
overheads before and after a merge operation to determine
whether the merge operation is valuable. Supposing the
eight nodes are merged into one sup-octants, the overhead
after merging can be computed as below:

P(q ∩ parentcell)

=
(qrx + 2rx) × (qry + 2ry) × (qrt + 2rt)

V

ParentCq = A × P(q ∩ parentcell)

⎡⎢⎢⎢⎢⎢⎢⎢⎢
K ×∑8

i=1 PSiblei

PageSize

⎤⎥⎥⎥⎥⎥⎥⎥⎥
(13)

here parentcell is used to indicate the merged node corre-
sponded space, whose volume is 8 × cell of the current cell.
Meanwhile, the sum of overheads of eight sibling nodes be-
fore merged is LevelCq.

MENG et al.: ATTI: WORKLOAD-AWARE QUERY ADAPTIVE OCTREE BASED TRAJECTORY INDEX
647

LevelCq =

8∑
i=1

A × P(q ∩ cell)

⌈
K × PSiblei

PageSize

⌉
, (14)

where PSiblei indicates the ith sibling nodes. Only If
ParentCq < LevelCq will a cell be merged with its sibling
nodes.

To avoid the jitter phenomenon, i.e., split and merge
back and forth, a jitter parameter a is introduced into our
system. Only when VirtualCq × (1 + a) < Cq or ParentCq ×
(1 + a) < LevelCq will the splitting or merging operations
be performed. This could speed up the building process of
the index. Jitter parameter is a universal scheme that could
improve the index building speed, but it is closely related to
the workload of specific applications. The proper value of
jitter parameter should be decided by the system administra-
tor according application context.

When a trajectory point is inserted into the OcTree,
the insertion algorithm of the nodes are invoked recursively
from the root (top) node to the children nodes, until a leaf
node is reached. Then this point is saved to the leaf node’s
corresponding disk block. The insertion algorithm is shown
in algorithm 1. As aforementioned, the leaf node may be
adjusted dynamically by splitting and/or merging when-
ever the operation achieves lower query overhead than cur-
rent node. In algorithm 1, Line 5 is the splitting operation,
which creates eight new children nodes based on the leaf
node. Next, reinsert the points belong to this node into the
root node. Line 8 is the merging operation, the of algo-
rithm 1 shows that the merge operation will do, which in-
serts points belonging to itself and the eight siblings into the
parent node, and sets the parent node’s children to be null.

Both the splitting and merging operations will intro-
duce disk block rewrite operations/costs. Three steps are
involved. First, read all blocks belonging to the leaf nodes
which need changing to memory. Second, insert new GPS
points and reorganize the new nodes. Third, write all the
data of the new nodes into adjacent disk blocks. In fact, the
new GPS points are arrived with time elapsed, which makes

Algorithm 1 Insert-Method of nodes

Input: GPSPoint: Point, OcTree-Node: Node
Output: Whether insert success
Variables: Costs according Eqs. (11), (12), (13), (14):
Cost, VirtualCost, ParentCost, LevelCost

1: if (Node is leaf node) then
2: add Point into Node;
3: compute Cost, VirtualCost, ParentCost, LevelCost;
4: if (VirtualCost < Cost) then
5: call Split-Method;
6: end if
7: if (ParentCost < LevelCost) then
8: call Merge-Method;
9: end if

10: return true;
11: else
12: get SubNode to which Point belongs;
13: call Insert-Method of SubNode;
14: end if

that only a little new nodes in a time interval need split-
ted and merged frequently. Furthermore, the mechanism of
write buffer helps reduce the cost of rewrite greatly.

The above methods can adjust the structure of OcTree
according to the overhead change as new points arrive, in
a workload adaptive way. Currently, query sizes are as-
sumed as already known, however, it is impossible to predict
the sizes of all users’ queries. Some researchers use average
size or locality average size defined by system administra-
tors as real query size, and build only one index for all users’
queries. Those methods can not provide optimal query pro-
cessing performance for every query. We will discuss how
to implement query adaptive index for all users in the next
session.

5. Query Adaptive Virtual Forest

5.1 Impact of Query Size to Index

Workload-aware OcTree can dynamically adjust its struc-
ture according to the changing of workload. However, an-
other factor of cost formula, namely the query size, is still
indicated by a presetting value [1], [9]. For a query whose
size is significantly different from the presetting value, the
cost to process it will be high. In Ref. [1], a weighted aver-
age value, other than the average value given by the admin-
istrator, is used. This method assumes that query size has
local similarity, and the system maintains a weighted aver-
age value of dynamically arrived queries. When the varia-
tion of the average value exceeds some threshold, the index
will be rebuilt using the new query size average value. Ob-
viously, this assumption does not hold in a multi-user sce-
nario. For example, one user’s query may be: “Get all the
trajectories which go through an intersection within the last
hour”. While another user’s query may be: “Get all the tra-
jectories within the whole downtown this year”. As men-
tioned above, static or dynamic average values of the query
sizes are just approximation of all query sizes. This does
not mean that all queries can be effectively processed using
a uniform OcTree. As shown in Fig. 3, trees built accord-
ing to the minimum, average and maximum query size are
significantly different.

Figure 3 shows the status when the 10th point of right
trajectory is inserted into the OcTree, where numbers in cir-
cles indicate the number of points belong to this node, and
numbers besides circles are called “node indicator”. Here,

Fig. 3 The impact of different query sizes to OcTree.

648
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Table 2 The case using different OcTrees processing different queries.

- Min-query Ave-query Max-query
Min-tree Null 07, 30, 34, 35 00, 04, 07, 30, 34, 5
Ave-tree 3 0, 3 0, 3, 5
Max-tree Top Top Top

the page size is set to 5, and the initial cube is {(0, 8), (0, 8),
(0, 6)} which means spatial coordinates range from 0 to 8,
and time interval ranges from 0 to 6. Figure 3 shows the
three OcTrees built according to the minimum, average and
maximum query size respectively. Leaf nodes accessed by
each query are shown in Table 2.

As the first column of Table 2 shows: Using the Min-
tree executes the Min-query needs to access three interior
nodes, and directly returns “null”; Using Ave-tree executes
the Min-query needs to access two interior nodes and all five
data points belong to the second branch; Using the Max-tree
executes the Min-query needs to access the root node and all
leaf nodes. Using the min-tree executes Min-query is opti-
mal, only need to access three interior nodes. The third col-
umn shows that using the Min-tree executes the Max-query
needs to access 10 interior nodes, and 9 data are returned;
using Ave-tree executes the Max-query needs to access 4
interior nodes, and 10 data are returned; using Max-tree ex-
ecutes Max-query just needs to visit the top node, and all 10
data are returned. Ave-tree gets the same number of data as
Max-tree gets, but it visits four more interior nodes.

The above discussion shows that using the proper query
tree to process query can get the best performance (such as
the diagonal items in Table 2 show). Using a larger query
tree to process a smaller query will return too much re-
dundant data, and using smaller query tree to process large
query need access more interior nodes which also introduces
overhead. The ideal solution of this problem is to build a
query tree for each query size. This solution is equivalent to
re-establish an index for every query, almost need to traverse
the entire data set, and even more expensive than sequential
search. Through the above analysis, the best method to im-
plement query adaption should be the one that can keep the
query efficiency of multiple indexes, and reducing the stor-
age and maintenance cost of multiple indexes at the same
time.

5.2 Virtual OcTree Forest

Basic idea: Each tree is built by space division. The result
is that a tree branch corresponding to a deep division must
contain the branches built by shallower division. Therefore,
more trees can share nodes between each other, which can
reduce the maintenance and storage costs.

The administrator should set the minimal query size,
the maximum query size (can be absolute value or per-
centages of entire cube) and the number of virtual trees
(ntree), according to application context at the system ini-
tial time. Using those three parameters, the system can
calculate a set of query sizes and save them in a vector.
The minimal query is Qmin = <rmin, tmin>, the maximum

Fig. 4 The structure of virtual forest.

query is Qmax = <rmax, tmax>, so the Δr = rmax−rmin

ntree−1 and
Δt = tmax−tmin

ntree−1 . The kth element in the query size vector is
Qk = <rmin + (k − 1) × Δr, tmin + (k − 1) × Δt>. System
will build a bunch of virtual OcTrees (these are not real Oc-
Trees as shown in Fig. 4, thus are named virtual index tree)
according to each query size in vector, and form a query
forest. In order to reduce maintenance and storage costs, all
trees share nodes between each other, building a “virtual”
OcTree forest.

The minimal or maximal query size does not corre-
spond to the OcTree whose branch is the deepest according
to formulas (11), (12), (13), (14). It is difficult to determine
which query size is corresponding to the tree which contains
all the other trees’ nodes. Therefore, in order to generate an
OcTree which can contain all the virtual nodes, we need to
modify the native splitting and merging operations in algo-
rithm 1 as follows:

• As long as there is a node of any virtual tree needs split-
ting, the node begins to divide;
• Only when all the virtual tree nodes, corresponding

to the same spatial-temporal cube as this node, need
merging, the nodes begin to merge.

Obviously, the OcTree built according to this strategy must
be the one whose branches are all the deepest. We call this
OcTree a real OcTree and cluster data on disk using this tree.
While the other query sizes generated virtual query tree are
secondary indexes, only used for query processing, called
virtual OcTree.

As shown in Fig. 4, the vector on the left of each node
is the “MultiTreeVector”, which is described in “Data Node
Structure” (Fig. 2). Figure 4 shows the virtual forest con-
taining all the three query OcTrees in Fig. 3. The “0” in
“MultiTreeVector” indicates that the node does not belong
to the virtual query tree corresponding to the element; “1”
indicates that the node in the corresponding virtual query
tree is “interior nodes”; “2” indicates that the node in the
corresponding virtual query tree is “leaf node”. For exam-
ple, the first vector elements are used to represent the ave-
tree in Fig. 3. The second element of top node’s vector is
“1” indicates that the node in the original tree is interior
nodes; vector value of the second layer nodes is “2” indi-
cating that it is a leaf node in the ave-tree; vector value of

MENG et al.: ATTI: WORKLOAD-AWARE QUERY ADAPTIVE OCTREE BASED TRAJECTORY INDEX
649

Algorithm 2 RealInsert-Method of real-tree nodes

Input: GPSPoint: Point, OcTree-Node: Node
Output: Whether insert success
Variables: Whether split: SplitIndicator
Whether merge: MergeIndicator
Index of Virtual tree: index
Costs of index-th virtual tree according Eqs. (11), (12), (13), (14):
Cost[index], Virtualcost[index], ParentCost[index], LevelCost[index]

1: SplitIndicator= false;
2: MergeIndicator= true;
3: if (Node is leaf node) then
4: add Point into Node;
5: for all index do
6: compute Cost[index], VirtualCost[index], ParentCost[index],

LevelCost[index];
7: if (VirtualCost[index] < Cost[index]) then
8: SplitIndicator= true;
9: end if

10: if (ParentCost[index] > LevelCost[index]) then
11: MergeIndicator= false;
12: end if
13: end for
14: if (SplitIndicator is true) then
15: call Split-Method to create 8 NewNode;
16: for all index do
17: set MultiTreeVector[index] of NewNode to 0;
18: end for
19: get all points of NODE to do reinsert-method;
20: end if
21: if (MergeIndicator is true) then
22: add all the points belong to Node and its 7 SiblingNode to her

ParentNode;
23: set ChildrenPointer of ParentNode to null;
24: for all index do
25: if (MultiTreeVector[index] � 0) then
26: set MultiTreeVector[index] of ParentNode to 2;
27: end if
28: set MultiTreeVector[index]= 0;
29: end for
30: end if
31: return true;
32: else
33: get SubNode to which Point belongs;
34: call RealInsert-Method of SubNode;
35: end if

the third layer is “0” indicates that this node does not be-
long to the ave-tree. What’s important is that the disk ad-
dresses of trajectory data agree with the order of the split-
ting string. So the data pointer of a virtual tree node only
points to the first physical page of all the data contained by
corresponding leaf nodes in the real tree. And every vir-
tual node records the number of disk pages occupied by all
the data cover by the spatial-temporal cube corresponding to
this node. Then every node can ensure that all data covered
by its corresponding cube are stored in adjacent disk pages.
Obviously, the insert, splitting and merging operations in the
workload-aware query tree should be modified.

As shown in algorithm 2 and 3, When a new point is
added, the insert algorithms of both the real tree nodes and
the virtual tree nodes are invoked. The cost values used in
virtual insert algorithm is acquired from the real tree nodes,
so the insert algorithm of the real tree nodes must be in-

Algorithm 3 VirtualInsert-Method of virtal-tree nodes

Input: GPSPoint: Point, OcTree-Node: Node
Output: Whether insert success
Variables: Index of Virtual tree: index
Costs of index-th virtual tree according Eqs. (11), (12), (13), (14):
Cost[index], Virtualcost[index], ParentCost[index], LevelCost[index]

1: if (Node.MultiTreeVector[index]==2) then
2: if (VirtualCost[index] < Cost[index]) then
3: set Node.MultiTreeVector[index]=1;
4: set all SubNode.MultiTreeVector[index]=2;
5: end if
6: if (ParentCost[index] > LevelCost[index]) then
7: set Node.MultiTreeVector[index]=0;
8: set all SiblingNode.MultiTreeVector[index]=0;
9: set ParentNode.MultiTreeVector[index]=2;

10: end if
11: return true;
12: end if
13: if (Node.MultiTreeVector[index]==1) then
14: get SUBNODE to which POINT belongs;
15: call VirtualInsert-Method of SUBNODE with index;
16: end if

voked before the insert algorithm of the virtual trees. When
a virtual tree satisfies the splitting condition, the correspond-
ing node in the real tree must have been split and its 8 new
sub-nodes must have been created already. Therefore, the
virtual splitting and merging operations only change the vir-
tual vector, but will not create or clear any real node (The
depth of real branches must be deeper than or equal to the
virtual tree).

5.3 Data Organization According Trajectory ID

The GPS points belonging to a leaf node are sorted by tra-
jectory ID and time, and stored into disk. In the disk space
pointed by a leaf node, all points of a trajectory will be
sorted according time in same blocks to be a sub-trajectory.
As shown in Fig. 2, every leaf node has a map structure to
store the trajectory ID and disk blocks of a sub-trajectory.
This data structure can speed up trajectory display and post-
processing through connecting all sub-trajectories belong a
same ID. Furthermore, ID based filter of spatio-temporal
range query result could be supported.

5.4 Disk Page Level Index

When generating the real tree, trajectory data covered by
a spatial-temporal division unit may be stored on multiple
disk pages. However, the disk pages corresponding to a di-
vision unit which intersects with the query region should be
loaded into memory for further processing. As Fig. 5 shows,
if a query region (pink) intersecting with a division unit
(gray), the gray disk pages in the data file should be loaded
into memory. In fact, not all the spatial-temporal cubes cor-
responding to the disk pages intersect with the query region,
so reading all three to memory is redundant. It is reasonable
to record every page’s spatial and temporal cube in the index
as it can avoid the cost of loading unrelated pages.

650
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Fig. 5 Disk page level index sketch.

Spatial-temporal cube description: The method adds
BlockMBR array (see Fig. 2) into the data structure of a leaf
node to preserve the spatial and temporal scales of every
disk page. This block level MBRs can be compared with
query MBR to decide whether this block contains points of
the query result.

5.5 Adaptive Query Algorithm

First, we should determine the most suitable virtual query
tree before processing a query using an OcTree forest. Then
call the virtual query algorithm (algorithm 4) of the root
node in the optimal virtual OcTree to get all the disk pages
whose spatio-temporal cube intersects with the query re-
gion.

The optimal virtual OcTree selection: search query
vector to get the most similar element with query region, and
its corresponding virtual index tree is the optimal one. This
paper uses Euclidean distance, which is the square root of
spatial and temporal dimensional intervals, to find the most
similar one. The subscript (parameter “index”) of the most
similar one in vector is used as the input of virtual query.
The similar virtual tree calls the virtual query algorithm of
its top node. The virtual query algorithm of each node in a
virtual tree is shown in algorithm 4.

6. Performance Analyses

6.1 Experiment Environment

Extensive experiments have been carried out to evaluate the
performance of the proposed adaptive OcTree indexes. The
experimental setting, including the hardware and software
configurations, the metrics, etc, are described as follows:

1. Hardware configuration: A four-core 2.27 GHz Intel i3
CPU with 2 G RAM and a 320 G 5400 RPM hard disk
whose page size is 4 KB (4096 Byte).

2. Software configuration: Ubuntu 11.04 (Linux 2.6.16).
All indexes are implemented using JAVA 1.6 without
optimization by multi-threads technology (CPU usage

Algorithm 4 Query-processing Method of virtual node

Input: Virtual-Node: Node, Spatio-temporal region: Cube
Output: Disk pages: Vector
Variables: Index of Proper Virtual tree: S

1: if (Node.MultiTreeVector[S]==2) then
2: for all (DiskPage belongs to Node) do
3: if Region of DiskPage intersect with Cube then
4: add DiskPage to Vector;
5: end if
6: end for
7: return Vector;
8: else
9: if (Node.MultiTreeVector[S]==1) then

10: for all i=1:8 do
11: if Region of ChildrenNode[i] intersect with Cube then
12: call QueryProcessing-Method of ChildrenNode[i];
13: end if
14: end for
15: end if
16: end if

ratio is always around 25%). The available memory of
JVM is 1 G. Data structures used while implementing
indexes, including vector, array, map and set, are all
from package java.util.

3. Indexes to be compared: Nested index implemented
in Cartel project [1], which built a quadtree accord-
ing to spatial division, and built a temporal index for
data within every space cell. Performance evaluation
of literature [1] shows that nested index is superior
to two-dimensional grid, basic two-dimensional R-tree
indexes and clustering (ClustSplit) index [12]. Nested
index in Cartel project is also superior to other exist-
ing nested indexes, including the SETI index. Mean-
while, the performance of SETI is higher than 3DR-
tree index [7]. Therefore, a comparison of our work
with nested index in Cartel project is enough.

4. Performance metrics:

• Time and memory overhead of index creation;
• Time delay of processing spatio-temporal range

query;
• Disk I/O times during query processing.

5. Effect of buffer: To avoid the impact of cache to test
results, we use /proc/sys/vm/drop caches to clear the
buffer and cache after each query.

6. Dataset: The synthetic datasets are built using
GSTD [11], and the real dataset is obtained from Geo-
life project which collected GPS trajectory data of 165
users from 2008 to 2009, including 23 million GPS
points, amounts to 1.02 GB. In the Geolife project, the
spatial region mainly covers Beijing and its surround-
ing areas, but some users’ activities are around the
whole area of Europe and the Americas. We normal-
ize the spatial and temporal interval to a cube whose
sides are all one unit.

– Synthetic datasets: The initial distribution and
moving mode of users are all random, snapshot

MENG et al.: ATTI: WORKLOAD-AWARE QUERY ADAPTIVE OCTREE BASED TRAJECTORY INDEX
651

Table 3 Index size (KB) and index time (ms, Values in brackets) of synthetic datasets.

Query Min-query Ave-query Max-query
Type ATTI Nested ATTI Nested ATTI Nested

GSTD-1 2.3(51.3) 3.57(46.87) 2.3(50.1) 3.6(46.9) 2.3(50.0) 3.9(46.8)
GSTD-2 12.8(255) 35.6 (226) 12.8(256) 38.3(234) 12.8(256) 39.0(235)
GSTD-3 20.6(472) 68.1(469) 20.6(471) 70.8(477) 20.6(471) 71.5(478)

Table 4 Index size (KB) and index time (ms, Values in brackets) of Geolife datasets.

Query Min-query Ave-query Max-query
Type ATTI Nested ATTI Nested ATTI Nested

G-25% 12.63(282) 14.07(445) 12.63(284) 13.27(445) 12.62(282) 12.91(452)
G-50% 23.64(589) 26.98(915) 23.63(580) 27.04(909) 23.63(580) 26.72(526)
G-75% 35.02(883) 40.72(799) 35.02(884) 41.17(800) 35.03(887) 41.05(807)

G-100% 46.4(1180) 54.5(1078) 46.4(1181) 54.0(1091) 46.4(1194) 54.6(1083)

number is 10000, and the number of users in
GSTD is set to 100, 500 and 1000 respectively.
Three datasets are built: GSTD-1; GSTD-2;
GSTD-3. The numbers of GPS points in each
dataset are 88.0245 million, 440.0807 million and
880.1098 million respectively.

– GeoLife dataset: Four datasets are built by sep-
arately cut 25%, 50%, 75% and 100% of the
first 20 millions GPS points from the original
dataset. They are named GeoLife-25%, GeoLife-
50%, GeoLife-75% and GeoLife-100% respec-
tively. The numbers of trajectory points are 5 mil-
lion, 10 million, 15 million and 20 million, respec-
tively.

– Query dataset: Randomly generate three spatio-
temporal query datasets whose spatial region area
are separately 0.01, 0.05 and 0.25 (The whole area
is 1), and length/width is smaller than 4 and bigger
than 1/4. Their time interval is separately 0.1, 0.23
and 0.5 which are square root of the spatial area.
So the volume of each query is 0.1%, 1% and
12.5% of the entire spatio-temporal cube. Each
dataset contains one hundred queries, which are
named query-1, query-5 and query-25. The fourth
dataset is query-random dataset which contains
one hundred queries too, but the spatio-temporal
range of each query is changing randomly from
0.00001% to 12.5%. We use the average process-
ing delays of 100 queries in one dataset as a stan-
dard for different indexes to compare with.

6.2 Performance Analysis of Workload-Aware Adaptive
OcTree Forest

The workload datasets used in this section is GeoLife-25%
and query datasets is “query-random”.

1. Impacts of the number of virtual trees and page level
index to performance of ATTI. As Fig. 6 shown, query
processing delay using virtual OcTree forest (Forest:
circle marker) decrease about 5%–10% than the delay
of using native spatio-temporal OcTree (Join: square

Fig. 6 The number of virtual trees vs. query delay.

Fig. 7 Impact of disk page level index.

marker) which is built based on query size 10%. But
there is only 5% reduce of query delay as the number
of OcTree changes from 2 to 20. This result shows that
the number of virtual trees has a little effect on query
performance. The reason is that ATTI is memory based
index. In this experiment, the native OcTree only has
820 leaf nodes and the real tree in forest has 2360 leaf
nodes, which means using query vector replace an av-
erage value can bring depth division of spatio-temporal
cube. From analysis in Sect. 5.1 we know that the best
benefit of the proper query trees is accessed interior
nodes reduced. Here, this benefit is not obvious be-
cause nodes of ATTI are always in memory. It will be
obvious when storing the index into disk as dataset in-

652
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

(a) (b) (c)

(d) (e) (f)

Fig. 8 Disk I/O and delay with synthetic datasets.

(a) (b) (c)

(d) (e) (f)

Fig. 9 Disk I/O and delay with Geolife datasets.

creases continuously. In addition, as shown in Fig. 5,
the disk page level index (Block: star marker) can re-
duce about 20% of the query processing delay.

2. Impact of disk page size to performance of ATTI. As
shown in Fig. 7, the number of division units (green
curve with circle marker) declines from 3960 to 764
as page size increases from 1 kB to 16 kB. This varia-
tion doesn’t bring dramatic changes to query process-
ing performance (blue curve with star marker). The
changes of query processing delay are within only
20%. Thus, we set page size to 4K in the comparison

experiment as section 6.4 shows, which will not change
the results of the comparisons.

6.3 Comparison Experiments

1. Time and space overhead for creating different indexes.
As Tables 3 and 4 show, the time costs of creating (in-
clude reading GPS points from disk) ATTI and nested
index described in literature [1] are almost the same,
while ATTI index only consumes two-thirds memory

MENG et al.: ATTI: WORKLOAD-AWARE QUERY ADAPTIVE OCTREE BASED TRAJECTORY INDEX
653

space of nested index. ATTI can index 20 thousands of
GPS points in one second, which means a PC can pro-
cess 20 thousands of people’s location update when the
update frequency is once per second. The index of 20
millions points (the whole Geolife dataset) only uses
50 MB memory space, which means it can always be
stored in the memory. Actually, there will be million
of users in a real product environment, and the mem-
ory will be insufficient to store all points. There are
also many methods to solve this problem, such as dis-
tributed shared memory and dynamic backup and load-
ing mechanism, which are all commonly used methods
in large enterprises. The discussion is beyond the scope
of this article because this paper only focuses on data
structure and query processing method of ATTI.

2. Query processing performance comparison with syn-
thetic datasets In Fig. 8, brown bars (“Nested” legend)
indicate nested index, yellow bars (“Join” legend) indi-
cate OcTree index (jointly index spatial and temporal
dimensions), light blue bars (“Forest” legend) indicate
OcTree index with adaptive virtual forest mechanisms
and dark blue bars (“Block” legend) indicate ATTI in-
dex (OcTree index with active virtual forest and disk
level mechanisms).
When the data size is small (GSTD-1), the delay of
processing a query with a wide range based on the na-
tive OcTree (upper left sub-figure) is higher than the
nested index. This may be due to the too large gap be-
tween query size (10%) used when establish OcTree
and real query size (50%). The query performance im-
proved significantly after using the virtual forest, which
proves the efficiency of the virtual forest. The times of
disk I/O (yellow column) and query latency using na-
tive OcTree are both less than nested index when the
data size is large (GSTD-2, GSTD-3). Virtual Forest
can reduce 30 percents delay compared with the native
OcTree. When the data is evenly distributed, the page-
level index does not bring significantly performance
improvement. On the contrary, the delay slightly in-
creases because the increase of computational cost.

3. Query processing performance comparison with real
datasets. Compare Fig. 8 and Fig. 9, we can find that
the performance improvement with real dataset, which
is brought by simultaneously index spatial and tempo-
ral dimensions, is higher than that with uniform distri-
bution of the synthetic datasets. In dealing with smaller
range queries, the delay of ATTI is only five percent
of the nested index. This result is rational in the sense
where the duration of time is large (two years in Geolife
project) for the first level index in the nested index only
considers the spatial dimensions and ignores the time
dimension. Therefore, it is reasonable that the nested
index has lower performance than join index when pro-
cessing queries with smaller time intervals. Compar-
ing of dark blue bars and brown bars of Figs. 8 and 9,
we can conclude that the workload-aware mechanism
has played a good role while using real datasets. The

query processing time declines from 30% (query-1),
50% (query-5) and 80% (query-25) of nested index to
5%, 10% and 35% when using real dataset.

7. Conclusion

R-tree based indexes have a variety of applications because
of their ability to deal with points and polygons. However,
R-tree is not suitable to index highly dynamical and un-
evenly distributed data. Therefore, R tree and its variants
have lower performance than space-division indexes when
index trajectory data changes frequently and distributes un-
evenly. Currently, almost all space-division indexes belong
to nested indexes, which do not simultaneously index spatial
and temporal dimensions. Meanwhile, the space-division
indexes face the problems of workload and frequent varia-
tion of query sizes.

This paper extends two-dimensional space-division in-
dexes to a three-dimensional version which implements si-
multaneous index of spatial and temporal dimensions, dy-
namically adjusts space division according to query process-
ing cost model to realize workload adaptation, implements
query size adaptation based on virtual forest that shares
nodes between different trees. Experimental results show
that workload-aware query adaptive spatial and temporal
synchronous index can effectively improve the performance
of spatio-temporal range query processing. However, when
the trajectory dataset is large, a query processing process
of a wider spatio-temporal range may take tens of seconds,
which is beyond the tolerance of online users. In the future,
we will design distributed storage and parallel processing
platform for massive trajectory data to reduce query pro-
cessing time.

References

[1] P.C. Mauroux, E. Wu, and S. Madden, “TrajStore: An adaptive stor-
age system for very large trajectory data sets,” Proc. International
Conference on Data Engineering (ICDE), Long Beach, CA, pp.109–
120, 2010.

[2] Y. Zheng, X. Xie, and W.Y. Ma, “GeoLife: A collaborative social
networking service among user, location and trajectory,” IEEE Data
(base) Engineering Bulletin - DEBU, vol.33, no.2, pp.32–39, 2010.

[3] L.H. Wang, Y. Zheng, X. Xie, and W.Y. Ma, “A flexible spatio-
temporal indexing scheme for large-scale GPS track retrieval,” Proc.
Mobile Data Management, pp.1–8, 2008.

[4] Y. Lou, X. Xie, C.Y. Zhang, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate GPS trajectories,” Proc. 17th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, New York, NY, USA, 2009.

[5] M. Vazirgiannis, Y. Theodoridis, and T. Sellis, “Spatio-temporal
composition and indexing for large multimedia applications,” Multi-
media Systems - MMS, vol.6, no.4, pp.284–298, 1998.

[6] Y.F. Tao and D. Papadias, “MV3R-Tree: A spatio-temporal access
method for timestamp and interval queries,” Proc. Very Large Data
Bases, pp.431–440, 2001.

[7] V.P. Chakka, A. Everspaugh, and J.M. Patel, “Indexing large tra-
jectory data sets with SETI,” Proc. Conference on Innovative Data
Systems Research - CIDR, 2003.

[8] D. Lin and C.S. Jensen, “Efficient indexing of the historical, present,

654
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

and future positions of moving objects,” Proc. MDM, Ayia Napa,
Cyprus, 2005.

[9] V. Botea, D. Mallett, M.A. Nascimento, and J. Sander, “PIST:
An efficient and practical indexing technique for historical spatio-
temporal point data,” GEOINFORMATICA, vol.12, no.2, pp.143–
168, 2008.

[10] H. Garcia-Molina, J.D. Ullman, and J. Widom, Database System
Implementation, Second ed., Prentice Hall, 2009.

[11] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento, “On the gen-
eration of spatiotemporal datasets,” Proc. 6th Int’l Symposium on
Large Spatial Databases (SSD), Hong Kong, China, July, 1999.

[12] S. Rasetic, J. Sander, J. Elding, and M.A. Nascimento, “A trajectory
splitting model for efficient spatio-temporal indexing,” Proc. 31st
VLDB Conference, Trondheim, Norway, 2005.

Xiangxu Meng is Ph.D. candidate with
National Laboratory for Parallel and Distributed
Processing, National University of Defense
Technology, China. He has obtained the M.D.
and B.S. in 2007 and 2004, respectively, all in
computer science. His research interests include
Location privacy and security; Location based
service system; Spatial-temporal data query and
mining.

Xiaodong Wang is Professor with National
Laboratory for Parallel and Distributed Process-
ing, National University of Defense Technology,
China. He has obtained the Ph.D., M.D. and
B.S. in 2002, 1998 and 1996, respectively, all in
computer science. His research interests include
mobile computing, social network, wireless ad
hoc network and wireless sensor networks.

Xinye Lin is Ph.D. candidate with National
Laboratory for Parallel and Distributed Process-
ing, National University of Defense Technology,
China. He has obtained the M.D. and B.S. in
2011 and 2008, respectively, all in computer sci-
ence. His research interests include data mining
and recommendation system.

