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Understanding the Impact of BPRAM on Incremental Checkpoint

Xu LI†a), Kai LU†, Xiaoping WANG†, Nonmembers, Bin DAI†, Student Member, and Xu ZHOU†, Nonmember

SUMMARY Existing large-scale systems suffer from various hard-
ware/software failures, motivating the research of fault-tolerance tech-
niques. Checkpoint-restart techniques are widely applied fault-tolerance
approaches, especially in scientific computing systems. However, the
overhead of checkpoint largely influences the overall system performance.
Recently, the emerging byte-addressable, persistent memory technolo-
gies, such as phase change memory (PCM), make it possible to im-
plement checkpointing in arbitrary data granularity. However, the im-
pact of data granularity on the checkpointing cost has not been fully ad-
dressed. In this paper, we investigate how data granularity influences
the performance of a checkpoint system. Further, we design and imple-
ment a high-performance checkpoint system named AG-ckpt. AG-ckpt is
a hybrid-granularity incremental checkpointing scheme through: (1) low-
cost modified-memory detection and (2) fine-grained memory duplication.
Moreover, we also formulize the performance-granularity relationship of
checkpointing systems through a mathematical model, and further obtain
the optimum solutions. We conduct the experiments through several typ-
ical benchmarks to verify the performance gain of our design. Compared
to conventional incremental checkpoint, our results show that AG-ckpt can
reduce checkpoint data amount up to 50% and provide a speedup of 1.2x-
1.3x on checkpoint efficiency.
key words: fault tolerance, incremental checkpoint, BPRAM, large scale
system

1. Introduction

System failure is one of the most challenging problems
in large-scale systems, especially in the high-performance
computing field. In order to improve system reliability, is-
sues of fault-tolerance are becoming tremendously impor-
tant. Nowadays, checkpoint-restart technique is a widely
used fault-tolerance approach [1].

Checkpoint system suffers the performance issue. As
it requires saving the entire application memory space,
the checkpoint approaches introduce considerable system
overhead. Researchers proposed incremental checkpoint-
ing techniques to partially mitigate this problem [2]–[4].
Incremental checkpointing techniques first record the en-
tire memory space as an initial memory image, and then
only record the modified memory between two consecu-
tive checkpoints. However, most state-of-the-art techniques
are coarse-grained and implemented in page-granularity or
block-granularity. Such mechanism reduces the cost of de-
tecting the modified area of memory. Nevertheless, coarse-
grained incremental checkpoint technique cannot recognize
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the unmodified bytes within a block. As a result, it may
potentially increase the cost of duplicating memory data.

The emerging byte-addressable, persistent memory
(BPRAM) technologies such as phase change memory
(PCM) make it possible to record data in byte granular-
ity. Hence, BPRAM supports the implementation of any-
grained incremental checkpoint. Using finer granularity can
properly detect the unmodified memory area within a tra-
ditional coarse-grained block, thus reducing the amount of
memory data for incremental checkpoint. Nevertheless, we
cannot implement any-grained incremental checkpoint by
naively reducing the block size of traditional checkpoint
systems. There are several challenges. First, when we re-
duce the data granularity, the cost of detecting modified
memory segment raises accordingly. Second, with block
size decreasing, the cost of addressing the modified data
blocks leads to additional time and memory overhead [5],
[6].

To address these issues, we design and implement
a new incremental checkpoint scheme named AG-ckpt (Any
Granularity checkpoint). AG-ckpt is a hybrid-granularity
incremental checkpointing scheme through: (1) low-cost
modified-memory detection and (2) fine-grained memory
duplication. By these mechanisms, AG-ckpt achieves both
low detection overhead and low data amount. Moreover, we
also formulize the performance-granularity relationship of
checkpointing systems through a mathematical model, and
further obtain the optimum solutions. The model is gen-
eral, and can be adopted to optimize granularity parameter
of other checkpoint systems.

Major contributions of this work are as follows.
1) We design and implement a checkpointing scheme

called AG-ckpt, which supports arbitrary granularity incre-
mental checkpoint. We propose hybrid-granularity incre-
mental checkpoint technique in AG-ckpt to obtain both low
detection overhead and low data amount.

2) We build a general mathematical model to analyze
the relationship between checkpoint overhead and data gran-
ularity. Further, we obtain the optimum solutions of the
model.

3) We evaluate the performance of AG-ckpt on sev-
eral benchmarks, the results show that AG-ckpt can reduce
checkpoint data amount up to 50% and provide a speedup
of 1.2x-1.3x, when compared to conventional page-level in-
cremental checkpoint under the same hardware and software
configurations.

The rest of the paper is organized as follows: Sect. 2
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describes related work of checkpoint-restart techniques and
BPRAM technology. Section 3 describes the design details
of AG-ckpt. Section 4 presents the mathematical model
of checkpoint overhead and analyzes the optimum solu-
tion. Section 5 presents the results of our experiments and
discusses their implications. In Sect. 6, we conclude and
present our directions in the future.

2. Background

2.1 Checkpoint-Restart Techniques

Checkpoint-restart is an important technique to help large-
scale computing systems recover from failures. There
are mainly two ways to enhance the checkpointing perfor-
mance. One way is to reduce the overhead of checkpoint,
and the other is to reduce the checkpoint frequency.

Researchers propose increment checkpoint techniques
to reduce checkpoint overhead [2]–[9]. At present, there
are two main techniques for incremental checkpoint. One
is page-protection-based; the other is hash-based. Page-
protection-based technique requires hardware and operating
system supports to identify dirty pages [4], [6], [10], [11].
The main drawback of page-protection-based approaches
is that they fix the granularity to be a page, which re-
duces the flexibility of checkpoint implementation. An al-
ternative way to implement incremental checkpoint is hash-
based approach [3], [6]. However, the collision problem of
hash functions makes hash-based approach unsafe [12]. In
a word, existing techniques cannot fit the requirement of ar-
bitrary data granularity.

Many researches discuss how to select optimum check-
point interval to reduce the checkpoint overhead [9], [10],
[13]–[19]. Based on random process theory, they give the
optimal checkpointing frequency model following a specific
failure distribution. Their validation results show a signif-
icant performance improvement over periodic checkpoint-
restart technique. Nevertheless, little attention is paid on the
granularity of data. In this work, we address how to select
data granularity to minimize checkpoint overhead.

2.2 BPRAM Technology

The new byte-addressable, persistent memory technologies
offer fast, fine-grained access to persistent storage. We
take PCM as an example to show characteristics of emerg-
ing BPRAM technique. First, PCM is byte-addressable as
DRAM. Second, it is a persistent storage like disk and flash,
and up to four orders of magnitude faster than flash [20]–
[23]. According to recent research, the read latency of PCM
can be as fast as 10 ns [24] and the write latency can be as
fast as 100 ns [22]. As demonstrated by Condit et al. [25],
PCM DIMM has high capacity and operates in the same
way like DRAM DIMM. Therefore, PCM is promising to
replace both memory chips and optical disks [26]–[28]. To
summarize, the byte-addressable and non-volatile BPRAM
properly supports the implementation of any-grained incre-

mental checkpoint.

3. Design and Implementation of AG-ckpt

In this section, we present the design and implementation
of AG-ckpt. We first discuss the major characteristics of
AG-ckpt. Then, we give the main flowchart of the system in
the following sub-sections.

3.1 Design Details

1) Hybrid granularity
AG-ckpt adopts different data granularity on detecting data
modification and saving the memory space. First, coarse-
grained detecting mechanism detects dirty data blocks in
memory space. Second, fine-grained duplicating mecha-
nism saves the exact modified bytes of the dirty blocks.

We use page-protection mechanism to implement
coarse-grained detecting and track dirty blocks through
bookkeeping approach. After a checkpoint, all the writable
blocks are marked as read-only. During execution, a page
fault exception occurs when a block is to be written. Then,
the handler saves the address of the block in a list. At the
end of the checkpoint interval, we locate dirty blocks by the
list.

The read operation is much faster than write operation
for PCM, so we could improve the checkpoint efficiency by
reducing write operations. Therefore, we use read-compare-
write approach to detect and save modified bytes of dirty
blocks. When taking a new checkpoint, AG-ckpt reads the
old data of dirty blocks from previous checkpoint image
first, and then compares the old data and current data in byte
granularity. Finally, AG-ckpt only writes changed bytes into
the checkpoint image. The read-compare-write approach
reduces the checkpoint data amount and avoids redundant
write operations, which can improve the efficiency of check-
point a lot.
2) In-place updating
In AG-ckpt, we adopt in-place updating technique to man-
age the fine-grained data addressing. In-place updating
saves the new checkpoint data by modifying the changed
bytes on previous checkpoint image. For example, in Fig. 1,
block A and block B are dirty blocks; the gray parts are

Fig. 1 In-place updating.
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dirty data and need to be saved into the checkpoint image.
In-place updating performs in two steps: (1) to calculate the
address of dirty data in checkpoint image; (2) to write dirty
data directly at the corresponding address. The advantages
of in-place updating are twofold. First, by in-place updating,
AG-ckpt achieves zero addressing cost of the fine-grained
data blocks. Second, in-place updating makes the recovery
of the checkpoint faster than traditional checkpoint. Tra-
ditional incremental checkpoint requires loading all check-
point files to recover the latest state of the memory space. In
contrast, AG-ckpt directly maintains the latest checkpoint
image by in-place updating.

In-place updating introduces a problem for AG-ckpt. If
there is something wrong in the checkpoint image or in the
checkpoint stage, the application cannot recover. To avoid
this, we could take more backup checkpoints (full check-
point) after several continuous incremental checkpoints, as
Naksinehaboon et al. [17] do.

3.2 Algorithm

As an incremental checkpoint mechanism, AG-ckpt follows
the same framework of checkpoint implementation, shown
as follows.
1) Checkpointing
The first checkpoint of AG-ckpt is a full checkpoint, which
saves the entire data section and the stack of the target appli-
cation. The full checkpoint is then followed by a sequence
of incremental checkpoints.

AG-ckpt is implemented as a runtime library. It imple-
ments interfaces for applications to trigger checkpoint, also
it supports periodically checkpointing by timer interrupts.
The checkpoint process is shown in Fig. 2. The detail of
each step is described as follows:
1. When receiving the checkpoint signal, AG-ckpt stops
the application.
2. AG-ckpt copies all in-core parts of open files to disk,
and then saves the file descriptors into checkpoint image.
3. AG-ckpt saves the entire stack without detecting dirty
data.
4. When taking incremental checkpoint, AG-ckpt detects
the dirty blocks of application heap first; and then detects
and saves modified bytes within dirty blocks into the check-
point image.
5. Checkpoint operation completes and AG-ckpt contin-
ues the application.

2) Restart
When restarting from a failure, AG-ckpt builds a new pro-
cess for the application first, and then rebuilds the executing
environment from the checkpoint image and restarts the ap-
plication. The restarting process is shown in Fig. 3 and the
detail of each step is described as follows:
1. AG-ckpt loads the code section of the application, and
builds a new process.
2. AG-ckpt stops the application process and loads the
checkpoint image.

Fig. 2 Checkpoint process. Fig. 3 Restarting process.

3. AG-ckpt copies the data of heap to the corresponding
address of new application memory space.
4. AG-ckpt copies the data of stack to the new application
stack section and prepares to start the application.
5. Restarting process completes, and the application con-
tinues to run.

4. Overhead Model of Incremental Checkpoint

To minimize the checkpoint overhead, we build a mathe-
matical model between checkpoint overhead and block size.
Based on the model, we obtain the optimum block size for
checkpoint, which could guide the design of AG-ckpt and
our experiments. The denotations in our model are listed in
Table 1.

4.1 Overhead Model

• Overhead of conventional incremental checkpoint

In the conventional incremental checkpoint, we first de-
tect the modified blocks, and then save the entire modified
blocks into a checkpoint file.

Theorem 1. The total overhead of one incremental
checkpoint T (g) is

T (g) = D ∗Cd1 ∗ p̄(Bg) ∗ (Cs/Cd1 + 1/g) (1)

Proof : The total overhead of one checkpoint T (g)
is composed the saving cost Ts(g) and the detecting cost
Td1 (g). To calculate the both cost, we need to know the
amount of modified blocks.

Firstly, we show how to calculate modified blocks. Let
random variable Yi

g denote whether block Bi
g is modified or

not. Then, we have
⎧⎪⎨⎪⎩

p(Yi
g = 0) = p(Bi

g) = p(Bg)

p(Yi
g = 1) = 1 − p(Bi

g) = p̄(Bg)
(2)

The expectation of Yi
g is

E(Yi
g) = p̄(Bi

g) (3)
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Table 1 Denotations of incremental checkpoint overhead model.

The expectation of modified blocks since last check-
point is

n =
n∑

i=1

Yi
g = D/g ∗ E(Yi

g) (4)

Then the saving overhead of one checkpoint Ts(g) is

Ts(g) = n ∗ g ∗Cs = D ∗ p̄(Bg) ∗Cs (5)

From Eqs. (3) and (4), we derive the overhead of de-
tecting modified blocks is

Td1 (g) = Cd1 ∗
n∑

i

Yi
g = D/g ∗ p̄(Bg) ∗Cd1 (6)

Finally, from Eqs. (5) and (6), we can get the total over-
head of taking one checkpoint:

T (g) = Ts(g) + Td1 (g)

= D ∗ p̄(Bg) ∗Cs + D/g ∗ p̄(Bg) ∗Cd1

= D ∗Cd1 ∗ p̄(Bg) ∗ (Cs/Cd1 + 1/g) �

• Overhead of hybrid incremental checkpoint

When taking a hybrid incremental checkpoint, we first
detect the modified blocks, and then detect and save the
modified bytes of dirty blocks into checkpoint file.

Theorem 2. The total overhead of one hybrid incre-
mental checkpoint T (g) is

T (g) = D ∗Cd1 ∗ p̄(Bg) ∗ (Cd2/Cd1 + 1/g)

+ D ∗ pm ∗Cs (7)

Proof : The overhead of a hybrid checkpoint is com-
posed of the blocks detecting cost Td1 (g), the bytes detecting
cost Td2 (g) and the saving cost Ts(g). The blocks detecting
cost Td1 (g) is shown in Eq. (6), and then we derive Td2 (g)
and Ts(g) in the follow.

From Eqs. (3) and (4), we derive the overhead of de-
tecting modified bytes is

Td2 (g) = g ∗ n ∗Cd2 = D ∗ p̄(Bg) ∗Cd2 (8)

Since we only save modified bytes into checkpoint file,
we obtain the overhead of saving modified data is

Ts(g) = D ∗ pm ∗Cs (9)

Finally, from Eqs. (6), (8) and (9), we get the total over-
head of taking one checkpoint:

T (g) = Td1 (g)+Td2 (g)+Ts(g)

= D/g ∗ p̄(Bg) ∗Cd1 +D ∗ p̄(Bg) ∗Cd2 +D ∗ pm ∗Cs

= D ∗Cd1 ∗ p̄(Bg) ∗ (Cd2/Cd1 + 1/g)+D ∗ pm ∗Cs �

In Sect. 3, we demonstrate that our AG-ckpt needs to
save both stack and heap space to restore the execution of
applications. For simplicity, we do not address the stack data
in Theorem 1 and Theorem 2. This does not influence the
correctness of our model, because the stack space is much
smaller than the heap space for applications.
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Fig. 4 The memory modified ratio of different applications. Bt, lu, lu-hp and ua are from NPB bench-
mark; md1 is a molecule dynamics application. The dot is the experment result and the line is generated
from model. We can observe that the model and the experiment result fit very well.

4.2 Application Behavior Model

By tracing application behaviors, we obtain the following
observation. If block Bk

m is unmodified, the probability that
Bk+1

m keeps unmodified is a constant. We express this phe-
nomenon by the following equation:

p(Bk+1
m | Bk

m) = P (10)

By the definition of conditional probability, we obtain

p(Bk+1
m | Bk

m) = p(Bk+1
m Bk

m)/p(Bk
m) (11)

From Eqs. (10) and (11), we get

P = p(Bk+1
m Bk

m)/p(Bk
m) (12)

Basing on our observation, we describe the memory
accessing behavior of applications as the following theorem.

Theorem 3. Under block size g, the unmodified pro-
portion of one block in a checkpoint interval is

p(Bg) = p(B1)/g− log2(P) (g = 2n, n ≥ 0) (13)

Proof : We suppose that block Bk
m and Bk+1

m are two
consecutive blocks, and the two blocks compose a bigger
block Bi

2m. By the Total Probability Theorem, we have

p(Bk+1
m Bk

m) = 1 − p(B̄k+1
m Bk

m) − p(Bk+1
m B̄k

m) − p(B̄k+1
m B̄k

m)

Then we can obtain that

p(Bk+1
m Bk

m) = p(Bi
2m)

Then we have

p(Bg) = p(Bi
2m) = p(Bk+1

m Bk
m) (g = 2 ∗ m)

For m = 1, we obtain:

p(B2) = p(Bk+1
1 Bk

1) (14)

From Eqs. (12) and (14), we derive

P = p(B2)/p(B1) and p(B2) = p(B1) ∗ P

Then we can obtain

p(B4) = p(B2) ∗ P = p(B1) ∗ P2

p(B8) = p(B4) ∗ P = p(B1) ∗ P3

· · ·
Analogically, we obtain:

p(Bg) = p(B1) ∗ Plog2(g) = p(B1) ∗ glog2(P) �

We conduct several experiments to verify the correct-
ness of Theorem 3 as shown in Fig. 4. The results show that
the error between the model-based estimate and the tested
data is within 3%.

4.3 Analysis of Overhead Model

Though Theorem 1 and Theorem 2 represent different cases,
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Fig. 5 Cases of the model’s extremum point for a < 1.

Fig. 6 Cases of the model’s extremum points for a ≥ 1.

we can express them uniformly in one model

T (g) = D ∗Cd1 ∗ p̄(Bg) ∗ (C1 + 1/g) +C2 (15)

(C1 and C2 are constant)

For conventional block-granularity checkpoint, C1 =

Cs/Cd1 , C2 = 0; for hybrid-granularity checkpoint, C1 =

Cd2/Cd1 , C2 = D ∗ pm ∗Cs.
Then, we analyze the optimum solution of this unified

cost function. From Eqs. (13) and (15), we get the total over-
head of one incremental checkpoint

T (g) = D ∗Cd1 ∗
(
1 − p(B1)/g− log2(P)

)
(C1 + 1/g) +C2

(16)

For simplicity, let r denote p(B1), and a denote
− log2(P), we get

T (g) = D ∗Cd1 ∗ (1 − r/ga)(C1 + 1/g) +C2 (17)

Unfortunately, there is no unified analytic solution to
minimize Eq. (17). Then, we discuss its monotonicity in dif-
ferent cases.

We use x to replace g in Eq. (17) and obtain:

T (x) = D ∗Cd1 ∗ (1 − r/xa)(C1 + 1/x) +C2 (x > 0)

Then

T (x)/(D ∗Cr)

= (1 − r/xa)(C1 + 1/x) +C2/(D ∗Cr) (x > 0) (18)

Since D ∗ Cd1 > 0, the transformation from Eqs. (17)

to (18) does not change the monotonicity of T (x). For sim-
plicity, let T1(x) denote T (x)/(D ∗Cd1 ).

To find the minimum point, we get the derivative of
T1(x):

T ′1(x) =
1

xa+2
∗ (r + r ∗ a + r ∗ a ∗C1 ∗ x − xa) (19)

Let B(x) = r+r∗a +r∗a ∗C1∗x−xa. Since 1/xa+2 > 0
(x > 0), the behaviors of T ′1(x) is determined by B(x).

Let B1(x) = r + r ∗ a + r ∗ a ∗ C1 ∗ x and B2(x) = xa,
we obtain B(x) = B1(x) − B2(x). We find that T1(x) may
possess 0, 1, or 2 extrema for different values of a.

For a < 1, there are two cases. In Fig. 5 (a), T1(x) pos-
sesses 2 extremum points; and in Fig. 5 (b), T1(x) possesses
no extremum point and increases on the interval of x ≥ 1.

For a = 1, there are also two cases. As Fig. 6 (a) and
Fig. 6 (b) show, for r ∗ a ∗ C1 < 1, B1(x) and B2(x) have
one intersect point and T1(x) possesses a point of maximum.
For r ∗ a ∗ C1 ≥ 1, B1(x) and B2(x) do not intersect and
T1(x) increases on the interval of x ≥ 1. For a > 1, as
Fig. 6 (c) shows, B1(x) and B2(x) have one intersect point
and T1(x) possesses a point of maximum. To summarize,
the monotonicity of T1(x) includes three cases:
Case A:

T1(x) possesses no extremum point. B(x) > 0 and T1(x)
increases on the interval of x ≥ 1.
Case B:

T1(x) possesses one maximum point xmax. On the inter-
val of [1; xmax), B(x) > 0 and T1(x) increases; on the interval
of (xmax; D], B(x) < 0 and T1(x) decreases.
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Case C:
T1(x) possesses one maximum point xmax. and one

minimum point xmin. On the interval of [1; xmax), T1(x) in-
creases; on the interval (xmax; xmin), T1(x) decreases; on the
interval (xmin; D), T1(x) increases.

Then, we discuss the minimum of T1(x) on the interval
of [1; D].

In the Case A and Case B, T1(x) possesses the least
value at x = 1 or x = D.

In the Case C, if both two extremum points are in the
interval of x < 1, T1(x) possesses the least value at x = 1; or
T1(x) may possess the least value at xmin, x = 1, or x = D.

4.4 Validation of the Model

Based on our platform, we measure the parameters of Cd1 ,
Cs, Cd2 , a, and pm. The block detecting cost Cd1 is about
6 µs. We obtain that Cs is about Cd1/6 and Cd2 is about
Cd1/60. By tracing the memory footprints of several ap-
plications, we obtain that a is about 0.2, r is about 0.45 and
pm is about 0.55.

Using these parameters in Eq. (15), the checkpointing
overhead becomes a function of block size. The extremum
point of the function is the optimum block size. Then, we
could get the optimum solutions for traditional incremental
checkpoint and AG-ckpt. We obtain that the optimum block
size for conventional and hybrid incremental checkpoint is
3890 bytes and 47504 bytes, respectively. As the block size
should be 2n, we try the nearest block sizes to find the best
solution. Finally we get the following results: 1) for conven-
tional incremental checkpoint, 4096 is the best block size
and the overhead is about 0.1525 ∗ D ∗ Cd1 ; 2) for hybrid-
incremental checkpoint, 16384 is the best block size and the
overhead is about 0.1255 ∗ D ∗Cd1 . The hybrid-granularity-
based method achieves the performance gain of 22%.

5. Performance Evaluation

In this section, we conduct several experiments by the typi-
cal benchmarks to verify the performance gain of AG-ckpt.

Fig. 7 Unmodified ratio of dirty pages for bt.B, ua.B and lu.B. The checkpoint interval ranges from
2 seconds to 15 seconds.

5.1 Experiment Setup

Our experiment platform hardware configuration is an In-
tel Dual-Core 6700 Processor, 4 GB DDR2-667 memory
and a 250 GB hard disk. In our experiment, we prototype
AG-ckpt with the characteristics of PCM which is the most
closest to commercial deployment [29]. As PCM is not
available on the market, we use DRAM to save the check-
point file. Because the read operation of PCM could be as
fast as DRAM, we do not address the read latency. To ac-
count for slower writes of PCM relative to DRAM, we intro-
duce a delay after each write as Menmosyne [30] does. Our
AG-ckpt implementation prototype is based on the check-
point library libckpt [4] and all programs are compiled by
gcc 4.3.2.

We select a set of scientific applications from NAS
Suite of Benchmarks (NPB3.1-SER) [31] for our experi-
ments. These benchmarks are widely used to test the check-
point system performance [2], [6]. In the whole experiment,
checkpoints are triggered by a timer interrupt at regular
intervals.

5.2 Modified Ratio within a Block

Figure 7 shows unmodified ratio under page granularity
between two consecutive incremental checkpoints of three
programs. The x-axis shows unmodified ratio within a page;
the y-axis shows the corresponding percentage in all dirty
pages. Take Fig. 7 (a) for example, for LU, the pages have
more than 10% unmodified accounts for about 90% of total
dirty pages. We can observe from the results that:

1) For page-granularity incremental checkpoint, there
are a lot of unmodified data in dirty pages. In other words,
there are a lot of redundant data stored into checkpoint file
under page-granularity incremental checkpoint mechanism.

2) Most pages are modified under larger checkpoint in-
tervals, but the unmodified ratio of dirty pages increases.
This implies that fine-grained increment checkpoint could
be much efficient under large checkpoint interval.

We calculate that the unmodified data accounts
for about 15%–40% in all dirty pages. Therefore,
AG-ckpt could reduce the saving overhead of checkpoint
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Fig. 8 Page-granularity incremental checkpoint data amount and hybrid-granularity incremental
checkpoint data amount of bt.B, lu.B, lu-hp.B and sp.B. The checkpoint interval ranges from 2 sec-
onds to 20 seconds.

considerably.

5.3 Performance Evaluation

To study the performance of AG-ckpt, we compare both the
checkpoint data and checkpoint time with conventional in-
crement checkpoint. We adopt the optimum block sizes ob-
tained in Sect. 4.4 as the chekpoint block size in the corre-
sponding checkpointing scheme.

In our experiment, we trigger checkpoint operations
with the interval ranging from 2 seconds to 20 seconds. Six
applications from NPB benchmark with class B are tested,
and we show the results in Fig. 8–11. In Fig. 8–9, we show
the average checkpoint data amount of both two schemes.
In Fig. 10, we show the average checkpoint time of two
schemes. In Fig. 11, we show the checkpoint time speedup
of AG-ckpt to conventional increment checkpoint. Note
that we exclude the first checkpoint data when calculate
the result, as it is a fix cost for all incremental checkpoint
schemes.

BT, LU, LU-HP and SP are designed to solve nonlinear
PDEs. The results are presented in Fig. 8. We can observe
that the four figures are very similar. When the interval is
small, the checkpoint data amounts are small; when the in-
terval becomes larger, the checkpoint data amount increases
and almost keeps unchanged at last. Because the four ap-

plications are used to process dense matrices or vectors and
most part of memory space is modified during executing,
which results in AG-ckpt reduces checkpoint data amount
from 20%–30% for the four applications.

Figure 9 (a) shows the result of UA. We can observe
that the effect of AG-ckpt is not good under small check-
point interval. This is because the UA modifies most part
of memory space during initialization process. It is obvious
that AG-ckpt could reduce the checkpoint data amount more
than 50% when under larger checkpoint interval.

EP is designed to generate independent Gaussian ran-
dom variates and Fig. 9 (b) shows the result. Because EP is
a computing intensive application, the memory data amount
is small. Therefore, the checkpoint data amount of EP is
very small compared to other applications. AG-ckpt could
provide a mean reduction in data amount about 30%.

In Fig. 10, we show the average checkpoint time of
different applications under two checkpoint schemes. In our
experiment, we add a delay of 1000 ns after every write op-
eration to emulate the PCM write latency. We show the
checkpoint efficiency speedup of AG-ckpt in Fig. 11, and
we can conclude that AG-ckpt could get a speedup rang-
ing from 1.2x-1.3x for applications. Therefore, the ex-
periments verify the correctness of our checkpointing cost
model (Our model analysis in Sect. 4.4 shows that AG-ckpt
could achieve the performance gain of 22%).
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Fig. 9 Page-granularity incremental checkpoint data amount and hybrid-granularity incremental
checkpoint data amount of ua.B and ep.B. The checkpoint interval ranges from 2 seconds to 20 seconds.

Fig. 10 Average checkpoint time of hybrid-granularity incremental
checkpoint and page-granularity incremental checkpoint.

Fig. 11 Average speedup of hybrid-granularity incremental checkpoint
to page-granularity incremental checkpoint.

On the whole, we can observe that the checkpoint
data amount almost keeps steady for two schemes when the
checkpoint interval is large enough. It is due to scientific
programs carry out large number of iterations in loops and
most memory part is modified regularly after the initializa-
tion. Therefore, the checkpoint data amount is almost un-
changed under larger intervals.

6. Conclusion and Future Work

Based on BPRAM, we design and implement a new incre-

mental checkpoint scheme called AG-ckpt. AG-ckpt sup-
ports any granularity incremental checkpoint to obtain both
low detection overhead and low data amount. Also, we pro-
pose a new approach to optimize the data granularity of in-
cremental checkpoint technique and obtain the optimum so-
lution. Compared to conventional incremental checkpoint,
our results show that AG-ckpt can reduce checkpoint data
amount up to 50% and provide a speedup of 1.2x-1.3x.

The future work leads into two directions. First, we are
going to run production programs on real hardware to ana-
lyze and improve the performance of AG-ckpt. Second, we
are going to adopt hardware acceleration technology to en-
hance AG-ckpt. For example, we can design and implement
an instruction to read and compare data from DRAM and
BPRAM simultaneously to make AG-ckpt more efficient.
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