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PAPER

A Texture-Based Local Soft Voting Method for Vanishing Point
Detection from a Single Road Image

Trung Hieu BUI†a), Nonmember, Eitaku NOBUYAMA††b), and Takeshi SAITOH††c), Members

SUMMARY Estimating a proper location of vanishing point from a sin-
gle road image without any prior known camera parameters is a challenging
problem due to limited information from the input image. Most edge-based
methods for vanishing point detection only work well for structured roads
with clear painted lines or distinct boundaries, while they usually fail in
unstructured roads lacking sharply defined, smoothly curving edges. In or-
der to overcome this limitation, texture-based methods for vanishing point
detection have been widely published. Authors of these methods often cal-
culate the texture orientation at every pixel of the road image by using
directional filter banks such as Gabor wavelet filter, and seek the vanishing
point by a voting scheme. A local adaptive soft voting method for obtain-
ing the vanishing point was proposed in a previous study. Although this
method is more effective and faster than prior texture-based methods, the
associated computational cost is still high due to a large number of scan-
ning pixels. On the other hand, this method leads to an estimation error in
some images, in which the radius of the proposed half-disk voting region
is not large enough. The goal of this paper is to reduce the computational
cost and improve the performance of the algorithm. Therefore, we propose
a novel local soft voting method, in which the number of scanning pixels
is much reduced, and a new vanishing point candidate region is introduced
to improve the estimation accuracy. The proposed method has been imple-
mented and tested on 1000 road images which contain large variations in
color, texture, lighting condition and surrounding environment. The experi-
mental results demonstrate that this new voting method is both efficient and
effective in detecting the vanishing point from a single road image and re-
quires much less computational cost when compared to the previous voting
method.
key words: vanishing point, texture-based, Gabor filter, soft voting

1. Introduction

Using computer vision techniques to detect drivable road ar-
eas plays a very important role in navigating autonomous
vehicle systems. Recently, numerous interesting lane and
road detection algorithms have been widely published for
urban and highway roads [1]–[3], structured roads [4]–[8]
and unstructured roads [9]–[12]. In all of these studies, es-
timating the vanishing point (VP) is a key requirement be-
cause the correctly obtained VP provides a strong clue to the
localization of the road region.

State-of-the-art vision-based VP detection methods can
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be mainly grouped into three categories: edge-based meth-
ods [1], [5], [6], prior-based methods [3], [8] and texture-
based methods [9]–[11]. Most edge-based methods often
include three steps: i) extract edge pixels by an edge de-
tector ii) detect straight lines by a linear transformation and
iii) obtain the VP by a voting algorithm. For instance, in
[5], edge pixels are extracted by the Canny detector [13],
and then straight lines are detected by the Hough transform,
finally the intersections of any pair of lines vote for VPs on
another Hough space. In general, these edge-based meth-
ods can be applied to real-time systems due to their compu-
tational efficiency. However, the disadvantage is that they
only work well for structured roads with clear painted lines
or distinct borders, while they usually fail in unstructured
roads lacking sharply defined, smoothly curving edges.

In order to overcome the limitation of these edge-based
methods, prior-based methods and texture-based methods
for VP detection have been proposed recently. For instance,
the prior-based method proposed in [8] is robust to varying
imaging conditions, road types and scenarios by integrat-
ing contextual three-dimensional information with low-level
cues. This contextual information includes horizon lines
estimated by the method in [14], three-dimensional scene
layout computed by the method in [15], three-dimensional
road geometry inferred by the method in [16], and so on.
From the viewpoint of computational cost, the method in
[8] is time-consuming cause of integrating several different
techniques. On the other hand, the global perspective struc-
ture matching method proposed by Wu et al. [3] requires a
large-scale image or video training database and also man-
ual works for labeling the VPs for the training stage. There-
fore, such prior-based methods are inapplicable to detect the
VP from a single road image. In contrast, texture-based
methods for VP detection [9]–[11] are very effective for both
structured and unstructured roads by utilizing the texture in-
formation from a single road image. All of these studies
consist of three steps: i) calculate the texture orientations
by applying a directional filter bank ii) determine the vot-
ers and VP candidates and iii) vote for obtaining the VP
by a voting algorithm. For instance, Rasmussen [9], [10],
as well as Kong et al. [11] uses the same Gabor wavelet
filters introduced in [17] to compute dominant texture ori-
entations before applying voting algorithms to obtain the
VP. A global voting method for detecting VPs was pro-
posed by Rasmussen [9], [10]. However, the computational
cost of this method is very high due to a large number of
scanning voters and VP candidates. Moreover, as pointed
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(a) Proper detected VPs.

(b) Improper detected VPs.

Fig. 1 Examples of VP detection (pink crosses) by the LASV method.

out in [11], this global voting tends to favor VPs that are
high in the image, leading sometimes to large estimation er-
rors, especially when the true VP is in the lower part of the
road image. In order to overcome these problems, Kong
et al. [11] proposed an effective VP detection method, in
which a “confidence level” function and a local adaptive
soft voting (LASV) method were proposed. The confidence
function is used to determine the voters by checking the re-
liability of the obtained texture orientations. Before apply-
ing the LASV method, a half-disk voting region is created
for each VP candidate, and only voters within this half-disk
vote for the VP candidate. The LASV method for VP de-
tection performs well in general road images, especially in
unstructured road images (see the images of Fig. 1 (a)). In
addition, this method is more effective and faster than pre-
vious texture-based methods [9], [10]. However, the com-
putational cost of the LASV method is still high due to
a large number of scanning pixels. Besides, this method
yields an estimation error in some images (see the images
of Fig. 1 (b)), in which most voters in the lower part of the
image cannot vote for the true VP because the radius of the
proposed half-disk voting region is not large enough.

Learning both advantages and disadvantages of cur-
rent texture-based methods encourages us to propose a
new lower-computational-cost and higher-accuracy local
soft voting method to detect the VP from a single road im-
age. The basic concepts of the proposed method are: i) to
reduce the number of confidential voters and ii) to scan the
voters instead of the VP candidates (note that the number of
voters is much lower than the number of VP candidates).

In order to reduce the number of voters, the threshold
for the confidence levels is set to be higher than that in the
LASV method. In the voting process, a new VP candidate
region is defined for each voter, and a new local soft vot-
ing function is proposed. Each voter votes for all the pixels
in its VP candidate region, with the voting score calculated
by a local soft voting function proposed in this paper. The
proposed method has been implemented and tested on 1000
road images which contain large variations in color, texture,
lighting condition and surrounding environment. The exper-
imental results demonstrate that this new method is both effi-
cient and effective in detecting the VP and requires less com-
putational cost when compared to the LASV method [11].

The remainder of the present paper is organized as fol-

lows. Related research is reviewed in Sect. 2, and the Gabor
filters and the confidence level function introduced in [11]
are explained in Sect. 3. A VP candidate region for each
voter and a new local soft voting method are proposed in
Sect. 4, and the proposed method is summarized in Sect. 5.
In Sect. 6, experimental results are demonstrated to show the
effectiveness of the proposed method. Section 7 presents our
conclusions.

2. Related Research

As stated above, previous texture-based methods [9]–[11]
have attempted to detect the VP based on texture orientation
calculation. In all of these studies, Gabor filters are applied
in order to compute the texture orientation at each pixel of a
road image. A VP is then detected using a voting algorithm.

A global hard voting method is proposed in [9], [10]
as the voting algorithm. In this algorithm, all the pixels of
the image can be VP candidates, and the voting region of a
VP candidate is defined as the entire image below the VP
candidate. The left-hand figure in Fig. 2 shows an example
of the voting region, where V is a VP candidate and VR is
the voting region of V. (Note that the gray frame around
the image is a region in which the convolution with Gabor
filters cannot be calculated. In the present case, the width of
the region is eight pixels.) A pixel P in VR votes for V with

a fixed voting score if the angle γ = ∠(
−−→
PV,
−→
OP) is below a

certain threshold, where the vector
−→
OP denotes the texture

orientation at P and γ denotes the angle between the
−−→
PV

and
−→
OP directions. A VP is detected as the pixel having the

highest voting score. The disadvantages of this method are:
i) the computational cost is very high because a large voting
region is scanned for each VP candidate and ii) improper
VPs are detected in several cases because a voting score is
fixed irrespective of the distance between P and V.

In order to overcome these disadvantages, a half-disk
voting region and a soft voting method, referred to as lo-
cal adaptive soft voting (LASV), were introduced in [11].
In this previous paper, Gabor filters are also used to com-
pute the texture orientation at every pixel of the road image.
Moreover, in [11], a confidence level function is introduced
in order to discard the pixels for which the estimated texture
orientations are not reliable. If the confidence level exceeds
a certain threshold the pixel is kept as a voter; otherwise the
pixel is discarded. The remaining pixels are referred to as
the remaining voters, which are used to detect a VP. In this
method, a VP candidate V is searched for in the uppermost
90% of pixels of the entire image, and the voting region VR

of V is defined as a half-disk below V centered at V (see the
right-hand figure of Fig. 2). The radius R of this half-disk is
set to 0.35 × H, where H is the height of the image. Each
remaining voter P inside VR votes for V with a voting score
calculated by a voting function

Vote(P,V) =

⎧⎪⎪⎨⎪⎪⎩
1

1+[γ×d(P,V)]2 if γ ≤ 5
1+2d(P,V)

0 otherwise,
(1)
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Fig. 2 Global voting method and LASV method.

where d(P,V) denotes the distance between P and V divided
by the diagonal length of the input image. The pixel having
the highest voting score is selected as a VP. As mentioned
in Introduction, this method is more effective and faster than
previous global voting methods [9], [10]. However, the com-
putational cost of the LASV method is still high, and this
method yields an estimation error in some images, in which
the remaining voters far from the true VP cannot vote for the
true VP because R is not large enough. Our experimental
results demonstrate that, although using the half-disk voting
region with a larger value of R may improve the estimation
performance of the LASV method, it also increases the com-
putational cost of the algorithm. These experimental results
will be described in detail in Sect. 6.3.

3. Texture Orientation and Confidential Level

In this section, the texture orientation calculation method
and the confidence level function introduced in [11] are
briefly explained.

Gabor filters are used to calculate the texture orienta-
tion at each pixel of a road image. For a scale ω and an
orientation φ, the Gabor filter is defined as follows:

Ψω,φ(x, y) =
ω√
2πc

e−ω
2(4a2+b2)/(8c2)(eiaω − e−c2/2), (2)

where a = x cos φ + y sin φ, b = −x sin φ + y cos φ, and c
is a constant. As in [11], we will use the Gabor filters with
36 orientations, five scales, and c = 2.2, i.e., φ is chosen
to be from 0◦ to 175◦ with an angle interval of 5◦, and ω is
chosen to be from 1 to 5 with a scale interval of 1. Figure 3
shows the real filters and the imaginary filters of the Gabor
filters with 36 orientations and five scales, where each filter
consists of 17 × 17 pixels.

For the gray level value of a road image I(z) at z = (x, y)
the convolution of the image and a Gabor filter is defined by

Gω,φ(z) = I(z) ⊗ Ψω,φ(z), (3)

and the response image Rφ(z) for the orientation φ is calcu-
lated as the average of the square norm of Gω,φ at different
scales, as follows:

Rφ(z) = averageω

{(
Re(Gω,φ)

)2
+
(
Im(Gω,φ)

)2}
. (4)

Then the texture orientation angle θ(z) at z is defined in terms
of the maximum average response as follows:

Fig. 3 Gabor filters with 36 orientations and five scales.

(a) #384

(b) #427

(c) #610

(d) #626

Fig. 4 Remaining voters for the LASV method and the proposed method
(original images, orientations computed by Gabor filters, remaining voters
determined by the confidence function of the LASV method, remaining
voters determined by the confidence function of the proposed method).

θ(z) = argmaxφRφ(z). (5)

In order to define a confidence level, let r1(z) > · · · >
r36(z) be the ordered values of the Gabor response for the
36 considered orientations (in particular, r1(z) = Rθ(z)(z)).
Then, a confidence level function is defined by

Conf(z) = 1 − average{r5(z), . . . , r15(z)}
r1(z)

. (6)

In [11], all the pixels that have confidence levels that are
smaller than

δ ×
(
max

z
Conf(z) −min

z
Conf(z)

)
, (7)

with δ = 0.3 are discarded. The remaining pixels become
voters that are referred to as the remaining voters in the vot-
ing process.

The experimental results of the present study demon-
strate that too many off-road pixels remain when using the
threshold δ = 0.3. Since a high number of remaining vot-
ers increases the computational cost in the voting process,
we use δ = 0.5 in order to reduce the number of remaining
voters. In the examples shown in Fig. 4, the red points in
the third column indicate the remaining voters for δ = 0.3
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Table 1 Number of remaining voters.

#384 #427 #610 #626
δ = 0.3 13,332 10,118 14,595 10,346
δ = 0.5 8,155 6,074 9,072 5,568

and those in the last columns indicate the remaining voters
for δ = 0.5. The numbers of the remaining voters are listed
in Table 1. The number of remaining voters for δ = 0.5
is reduced by approximately 38∼46% compared to that for
δ = 0.3. The experimental results reveal that by reducing the
number of remaining voters, the total computational time of
the algorithm can be reduced approximately 11.48%.

4. Proposed Local Soft Voting Method

In this section, a VP candidate region is introduced, as well
as a new local soft voting method is proposed in order to
improve the estimation performance and reduce the compu-
tational cost of the algorithm. The LASV method [11] is
performed as follows: i) scan the VP candidates as the up-
permost 90% of the pixels in the image ii) create a half-disk
voting region for each VP candidate iii) calculate the vot-
ing score received by each VP candidate from the remain-
ing voters in its half-disk voting region and iv) obtain the
VP as the VP candidate having the largest voting score. As
stated in Introduction, the computational cost of the LASV
method is high due to a large number of scanning pixels, and
this method yields an estimation error in some images.

In our method, the basic idea for reducing the computa-
tional cost is to scan the remaining voters instead of the VP
candidates. In order to construct the VP candidate region for
each remaining voter, two conditions are considered: i) the
VP candidates of a remaining voter are always above it in
the image and ii) the angle between the direction from a re-
maining voter to a VP candidate and the texture orientation
at that remaining voter is smaller than a certain threshold.
The remaining voter votes for the pixels in its VP candi-
date region. Figure 5 shows examples of the VP candidate
region: a circular sector in the left-hand figure and a trian-
gular region in the right-hand figure, where P is a remaining

voter,
−→
OP is its texture orientation, and ε is the angle tol-

erance. Initially, the circular sector is more intuitive than
the triangular region for use in the proposed method. Note
that in the LASV method every remaining voter votes for
the pixels whose distance from the voter is less than R with
γ ≤ 5

1+2d(P,V) , which means the VP candidate region of a
voter in the LASV method is included in the circular sector
depicted in the left side of Fig. 5.

However, from the viewpoint of computational cost,
scanning the inside of the triangular region is much sim-
pler. Thus, we use the triangular region. Note that once R
(:= |PQ|, the length of the line segment PQ) and ε are given,
the vertices I and J are determined automatically. As a vot-
ing process, a local soft voting method is adopted in which
the remaining voter votes for the VP candidate in its VP can-
didate region all the more as it is close to the VP candidate,

Fig. 5 VP candidate regions.

Fig. 6 Modified VP candidate region.

and the angle between the orientation of its texture and the
direction from it to the VP candidate is close to zero. This
indicates that the voting scores of Q should be smaller than
that of L and larger than that of I or J (see the right-hand fig-
ure of Fig. 5). The proposed voting score function is defined
as follows:

Vote(P,V) =
exp(−α/β)

1 + d(P,V)2
, (8)

where V is a pixel (a VP candidate) in the VP candidate re-
gion of P, α is the distance from V to the pixel on PQ with
the same y coordinate of V, and β is a constant parameter.
Note that the voting score decreases as the distance d(P,V)
or α increases, and the voting scores of pixels near I and J
are approximately equal to zero. Hence, the pixels near I
and J of the triangular region are useless for the soft voting
process. Based on these observations, the VP candidate re-
gion is modified from the triangular region to a shape that is
a combination of a triangle and a parallelogram, as shown in
Fig. 6. The fundamental strategy to construct this modified
VP candidate region is to reduce the computational time.
This modified VP candidate region can be drawn if PK and
PQ are determined. In our method, we use |PK| = 0.50 × H
and |PQ| = 0.65 × H, which yields the best performance in
all our experiments. The constant parameter β is selected to
satisfy that the voting score of the pixel very near Q is ap-
proximately equal to the voting score of Q, and the voting
score of the pixel very near K is approximately equal to the
voting score of K (see Fig. 6). For instance, the voting score
of Q (with α = 0) should be approximately equal to the vot-
ing score of S (with α = 1) in Fig. 6 (note that Q and S have
the same y coordinate).

Figure 7 shows an example of the voting score of Q
(with α = 0) and S (with α = 1) in the case that the texture
orientation at P is 45◦. In the figure, the black dashed line
indicates the voting score of Q, and the red line indicates the
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Fig. 7 An example of voting score for Q (α = 0) and S (α = 1).

voting score of S. We see that, when β increases, the voting
score of S becomes approximately equal to that of Q. Our
experimental results reveal that when the texture orientation
at P varies from 0◦ to 175◦, by using β = 180, we obtain the
best performance of VP detection.

Next, we summarize the proposed local soft voting
method.

Step 1 Let M be a two-dimensional matrix of the same size
as the road image, and set all the elements of M to zero.
Let R1 := 0.50 × H and R2 := 0.65 × H.

Step 2 For each remaining voter P(x0, y0), calculate the co-
ordinates of the points K(x1, y1) and Q(x2, y2) as fol-
lows:

x1 := x0 − sin(θ) × R1, (9)

y1 := y0 + cos(θ) × R1, (10)

x2 := x0 − sin(θ) × R2, (11)

y2 := y0 + cos(θ) × R2, (12)

where θ is the texture orientation angle at P, and repeat
procedures (a) and (b) below:

(a) (Calculation of voting scores in the triangle PI1J1)
For x := x1 to x0, calculate

y10 := y0 + (x − x0)/ tan(θ), (13)

y11 := y0 + (x − x0)/ tan(θ + ε), (14)

y12 := y0 + (x − x0)/ tan(θ − ε), (15)

where B1(x, y10), A1(x, y11), and C1(x, y12) (see
Fig. 6), and calculate the voting score repeatedly
for y := y11 to y12

M(x, y) = M(x, y) +
exp(−|y − y10|/β)

1 + d(P,V)2
, (16)

d(P,V)2 = ((x − x0)2 + (y − y0)2)/Diag2,

(17)

where V(x, y), β = 180, and Diag denotes the di-
agonal length of the input image.

(b) (Calculation of voting scores in the parallelogram
I1J1J2I2) For x := x2 to x1 − 1, calculate

y20 := y0 + (x − x0)/ tan(θ), (18)

y21 := y20 − |KI1|, (19)

y22 := y20 + |KJ1|, (20)

where B2(x, y20), A2(x, y21), and C2(x, y22) (see
Fig. 6), and calculate the voting score repeatedly
for y = y21 to y22

M(x, y) := M(x, y)+
exp(−|y − y20|/β)

1 + d(P,V)2
. (21)

Step 3 Find the element of M that has the largest value, and
let its index be the coordinate of the VP.

5. Algorithm Summary

To obtain the VP, the proposed method is performed as fol-
lows:

Step 1 Calculate the texture orientation at every pixel of the
road image using Gabor filters with five scales and 36
orientations (Sect. 3).

Step 2 Keep the pixels having confidence levels that exceed
the threshold (7), with δ = 0.5 as remaining voters
(Sect. 3).

Step 3 Perform the proposed local soft voting method to
obtain a VP (Sect. 4).

6. Experimental Results

6.1 Image Dataset

The proposed method is compared to the LASV method us-
ing numerical examples. Most of these images have been
used by Kong et al. in [11]; the remainder were downloaded
from the Internet by using Google Image. Among them,
about 600 images are unstructured roads, and about 400 im-
ages are structured roads. These road images contain large
variations in color, texture, lighting condition and surround-
ing environment without any prior known camera parame-
ters, some of them are shown in Fig. 8. Since these images
are of very different size, all images are normalized to the
same size (height: 180 pixels, width: 240 pixels) by using
the bicubic image interpolation method [18]. To assess the
algorithm’s performance versus human perception of the VP
location, we invited 7 persons to manually mark the VP lo-
cation in each image in this collection after they are trained
to know the vanishing point concept.

Since the marked VPs in each image are very close, we
defined the center of these marked locations as the ground
truth VP location. In order to measure the accuracy of
VP estimation algorithm, we use the normalized Euclidean
distance, where the Euclidean distance between the esti-
mated VP and the ground truth is normalized by the diag-
onal length of the road image as follows:

NormDist =

√
(xe − xg)2 + (ye − yg)2

Diag
, (22)

where (xe, ye) is the estimated VP position, and (xg, yg) is
the marked ground truth position. Since the input image is
normalized to 180 × 240 pixels, the normalized Euclidean
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Fig. 8 Different road types with varying colors, textures, and illumination conditions.

Table 2 Performance of different VP estimation algorithms for 1000 tested images.

Methods
Average Soft+Modified Soft+Triangle Hard+Modified Hard+Triangle LASV0 LASV1
NormDist 0.0729 0.0737 0.0739 0.0735 0.0948 0.0709
Total time (s) 5.213 5.245 4.388 4.400 33.820 24.815
Prep. time (s) 0.012 0.012 0.012 0.012 0.117 0.117
Voter determination time (s) 3.966 3.966 3.966 3.966 3.966 3.966
Voting time (s) 1.235 1.267 0.410 0.422 29.737 20.732

distance of 0.1 in (22) means that the location of the esti-
mated VP is about 30 pixels away from that of the marked
ground truth.

6.2 Comparing Experimental Results

In order to assert the effectiveness of the proposed lo-
cal soft voting method and the new VP candidate region,
we compare the performances of six VP detection algo-
rithms. Table 2 shows the experimental results for 1000
tested images. In this table, the first four methods (with
δ = 0.5) refer to the method described in Sect. 4. In par-
ticular, the “Soft+Modified” denotes the proposed method,
and the “Soft+Triangle” denotes the method using a tri-
angular VP candidate region. The “Hard+Modified” de-
notes the method using a hard voting strategy, and the
“Hard+Triangle” denotes the method using a triangular VP
candidate region and a hard voting strategy. (Note that
the hard voting strategy is performed by replacing (8) with
Vote(P,V) = 1.) The “LASV0” denotes the LASV method
with the radius R of the half-disk voting region being set to
0.35 × H and δ = 0.3 as proposed in [11]. The “LASV1”
denotes the LASV method with R being set to 0.65 × H and
δ = 0.6 (note that this “LASV1” method yields the best esti-
mation performance for the LASV method in all our exper-
iments). The “NormDist” denotes the average normalized
Euclidean distance (note that a smaller value means the es-
timated VP location is closer to the location of the ground
truth), and the “Total time” denotes the average computa-
tional time for each method. The “Prep. time” denotes the
average preprocessing time, the “Voter determination time”
denotes the average time for calculating the Gabor convolu-
tion and confidence level estimation, and the “Voting time”
denotes the average time for the voting process for each

Fig. 9 Comparison of VP estimation performance.

method.
Firstly, we compare the estimation performances of the

proposed method (Soft+Modified) and the other three meth-
ods (Soft+Triangle, Hard+Modified, Hard+Triangle). From
Table 2, it can be seen that the proposed method yields the
best estimation result among the four methods. Secondly,
we compare the estimation performances of the proposed
method, the LASV0 method, and the LASV1 method. The
experimental results in Table 2 reveal that the estimation
performance of the proposed method is considerably bet-
ter than that of the LASV0 method, and almost the same as
the LASV1 method (the difference between the NormDist
values of the proposed method and the LASV1 method is
0.0020 which represents a value less than one pixel). In or-
der to investigate the details of these experimental results,
we evaluate the VP estimation performance while chang-
ing the threshold for Euclidean distances. Figure 9 shows
a comparison of VP estimation performance between the
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(a) Original images and ground truth locations of VPs (pink crosses).

(b) Voting maps by the LASV0 method.

(c) Detected VPs by the LASV0 method (pink crosses).

(d) Voting maps by the LASV1 method.

(e) Detected VPs by the LASV1 method (pink crosses).

(f) Voting maps by the proposed method.

(g) Detected VPs by the proposed method (pink crosses).

Fig. 10 Examples of VP detection by the LASV method and the proposed method.

three methods. In the figure, the horizontal axis represents
the Euclidean distances in pixels, while the vertical axis rep-
resents the number of images whose VP estimation error is
less than the corresponding Euclidean distance. From this
figure, it can be seen that the estimation performance of the
proposed method is better than that of the LASV0 method,
and almost the same as the LASV1 method.

Next, the computational times of the three methods are
discussed. From Table 2, it can be seen that the average
computational time of the proposed method is considerably
less than that of the LASV0 method and the LASV1 method.
In particular, the “Total time” and the “Voting time” of the
proposed method are approximately five times and 17 times
less than those of the LASV1 method, respectively. The
“Total time” and the “Voting time” of the proposed method
are approximately 6.5 times and 24 times less than those of
the LASV0 method, respectively. These results show that
the proposed voting strategy requires much less computa-

tional cost than the LASV method. Note that the “Prep.
time” of the proposed method is slightly less than that of the
LASV method due to the difference in the number of pre-
processing steps in which a median filter is applied in both
methods and in addition a vertical edge elimination method
is applied in the LASV method (our experimental results
turn out that the proposed method without using the ver-
tical edge elimination method is better and faster than the
proposed method with using the vertical edge elimination
method, in which the “NormDist” and the “Total time” are
0.0732 and 5.311(s), respectively. Hence, the vertical edge
elimination method is not used in the proposed method).
These numerical examples are performed using Matlab, run-
ning on a Core 2 Duo (3.5-GB RAM) machine, and the Mat-
lab m-files for the LASV method were provided by the au-
thor of [11].

Figure 10 visually gives a comparison of VP detection
on some sample images. In the figure, the VPs detected by
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Fig. 11 Average distribution of distances from the remaining voters to
the VP for 1000 road images.

the LASV0 method, the LASV1 method and the proposed
method are shown in (c), (e) and (g), respectively. Their first
four columns show image examples in which all the three
methods detect the VPs which almost coincide with the cor-
responding ground truth. Their last four columns show im-
age examples in which both estimation performances of the
LASV1 method and the proposed method are better than
that of the LASV0 method.

6.3 Effect of Radius on Performance

In this section and the next section, we discuss about the
two important parameters R and δ. In this section, we fo-
cus on the effect of radius R on the estimation performance.
The LASV1 method (with R = 0.65 × H and δ = 0.6)
yields a better estimation accuracy than the LASV0 method
(with R = 0.35 × H and δ = 0.3). In order to investi-
gate these results from the viewpoint of radius R, an addi-
tional experiment for the LASV method is carried out with
R = 0.35 × H and δ = 0.6 (R is smaller than that of the
LASV1 method while δ is the same), and this is denoted by
“LASV2”. As a result, the average NormDist of the LASV2
method is 0.0999, which is worse than that of the LASV1
method. This result indicates that a small radius of a small
voting region yields a worse estimation performance than a
larger one. This can be confirmed by the average distribu-
tion graph shown in Fig. 11. In the figure, the horizontal
axis represents the distances from the ground truth VPs in
pixels, while the vertical axis represents the normalized dis-
tributions of remaining voters. The normalized distribution
value for d ≤ x < d + 10 (d = 0, 10, 20, . . . , 240; x: Eu-
clidean distance from the ground truth VP) is defined as the
number of the remaining voters satisfying d ≤ x < d + 10
divided by the total number of the remaining voters. The
graph in Fig. 11 shows the average normalized distributions
of 1000 images. It can be seen from the graph that the num-
ber of remaining voters near the VP is small, which indicates
that a small radius of a voting region cannot cover the many
voters which possibly vote for the VP. This leads to the fact
that the performance of the LASV0 method is worse than
that of the LASV1 method. Also in our proposed method,
the graph implies that a short |PQ| (i.e., a small VP can-

Fig. 12 The effect of δ on the VP estimation performance and the com-
putational cost for the proposed method.

didate region) is not suitable for most images because many
remaining voters which possibly vote for the VP cannot vote
for it when |PQ| is short. Note that in general the pixels near
the VP correspond to the road area far from the camera in
the real world, and hence these pixels tend to be blurred.
This explains that the number of remaining voters near the
VP is small, because most of the blurred pixels cannot be re-
maining voters since their confidence levels of orientations
are generally low.

6.4 Effect of δ on Performance

In this section, we discuss about δ. In order to evaluate how
the threshold δ affects the estimation performance and the
computational cost, we vary δ of the proposed method from
0.30 to 0.80 with an interval of 0.05, and the result is shown
in Fig. 12. From the figure, it can be seen that the compu-
tational cost almost monotonously decreases with respect to
the value of δ. On the other hand, a large value of δ and a
small value of δ decrease the estimation performance. When
δ is varied from 0.50 to 0.70, the proposed method yields al-
most the same estimation performance (with less than one
pixel difference). From the viewpoint of estimation perfor-
mance, we use δ = 0.50 which yields the best result in our
method.

7. Conclusions

Estimating a proper location of VP from a single road image
without any prior known camera parameters is a challenging
problem due to limited information from the input image.
The LASV method [11] for VP detection is very effective for
both structured and unstructured roads, and faster than pre-
vious texture-based method. However, the computational
cost is still high due to a large number of scanning pixels.
In addition, an estimation error is obtained in some images,
in which the radius of the proposed half-disk voting region
is not large enough. In this paper, a new local soft voting
method has been proposed to overcome the limitations of
the LASV method. In order to reduce the computational
cost: i) the number of remaining voters is reduced by intro-
ducing a new threshold and ii) the number of scanning pixels
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is reduced by scanning the remaining voters instead of the
VP candidates. On the other hand, to improve the estimation
performance, a new VP candidate region and a new soft vot-
ing function are introduced. In order to assert the effective-
ness of the proposed algorithm, the proposed method and the
LASV method have been implemented and tested on 1000
road images which contain large variations in color, texture,
lighting condition and surrounding environment. The ex-
perimental results reveal that: i) the proposed method out-
performs better than the LASV method which uses a small
voting region, especially in some images in which most re-
maining voters are far from the VP and ii) the computational
cost of the proposed method is considerably less than that
of the LASV method, the computational time for the Gabor
convolution and confidence level estimation which accounts
for most of the computational time in our proposed method
is the same for the LASV method, whereas, the computa-
tional time of the proposed method for the voting process is
much less than that of the LASV method.
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