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PAPER

A Reduced-Reference Video Quality Assessment Method Based on
the Activity-Difference of DCT Coefficients

Wyllian B. da SILVA†a), Student Member, Keiko V. O. FONSECA†b), Member,
and Alexandre de A. P. POHL†c), Nonmember

SUMMARY A simple and efficient reduced-reference video quality as-
sessment method based on the activity-difference of DCT coefficients is
proposed. The method provides better accuracy, monotonicity, and con-
sistent predictions than the PSNR full-reference metric and comparable re-
sults with the full-reference SSIM. It also shows an improved performance
to a similar VQ technique based on the calculation of the pixel luminance
differences performed in the spatial-domain.
key words: DCT, reduced-reference metric, video quality assessment

1. Introduction

In recent years there has been a growing development of
objective video quality assessment methods for multimedia
processing, such as acquisition, compression, transmission,
restoration, storage, segmentation, and presentation [1]–[3].
Especially, in digital systems quality assessment of stream-
ing services and digital TV broadcasting these issues are
currently discussed in the literature [4]–[6].

The evaluation of video impairments can be performed
using objective methods, which can be classified as sig-
nal fidelity measures and Perceptual Visual Quality Met-
rics (PVQMs) [2], [3]. The conventional objective methods,
such as the Mean Absolute Error (MAE), the Mean Square
Error (MSE), the Signal-to-Noise Ratio (SNR) and the Peak
Signal-to-Noise Ratio (PSNR) are understood as signal fi-
delity measures [7]. On the other hand, PVQMs can be or-
derd into two categories [8]: the signal-driven approach and
the vision-based modeling. The first involves the evaluation
of luminance/color distortion, statistical features, structural
similarity and visual artifacts, such as blockiness and blur-
ring. The second category includes psychophysical prop-
erties and physiological knowledge, such as the Contrast
Sensitivity Function (CSF), luminance adaptation, tempo-
ral, spatial and color decomposition, and several masking ef-
fects [2]. PVQMs can still be classified as double-ended and
single-ended metrics. The single-ended metric, also known
as No-Reference (NR), needs only the processed video [2],
[7], [9], [10]. The double-ended metric can be of two kinds:
Reduced-Reference (RR) and Full-Reference (FR). FR met-
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rics require full information of the video source on the mea-
surement site. On the other hand, the RR metrics require
access only to portions of the source information (video ref-
erence), forming a set of RR features that can facilitate the
evaluation process. While FR metrics require the presence
of the video source and NR metrics are still immature, RR
techniques can provide operators with a functional tool for
evaluation of the video quality delivered to customers.

Previous development of RR methods applied to im-
age and video can be found in the literature. For instance,
Tao et al. [11] reported a method based on the contourlet do-
main that decomposes images and then extracts features to
mimic the multichannel structure of the Human Visual Sys-
tem (HVS). Their method also incorporates the CSF, which
is applied to weigh coefficients and the Weber’s law of Just
Noticeable Difference (JND) to produce a noticeable vari-
ation in sensory experience. Ma et al. in [12] developed a
technique based on the statistical modeling of the Discrete
Cosine Transform (DCT) coefficient distributions, exploit-
ing the identical nature of the distributions between adjacent
subbands and the coefficients into a three-level tree using the
Generalized Gaussian Density (GGD) function. Concerning
the evaluation of video, Gunawan and Ghanbari [13], [14]
described a method where a discriminative analysis of the
harmonic strength computed from the edge-detected frame
is employed to create harmonics of gain and loss informa-
tion. Hewage and Martini [15] proposed a metric for 3D
video (encoded in H.264/AVC format), which uses PSNR
and is based on the edge detection. Their method uses
the depth map information difference between the sender
and receiver side obtained with the Sobel filtering. Finally,
Yamada et al. [16] reported a simple RR metric based on
PSNR, named as Video Quality (VQ), which consists in cal-
culating the absolute difference between the luminance and
the mean luminance values in a 16 × 16 pixel block.

In this work we propose a Reduced-Reference Video
Quality Assessment (RRVQA) method that can be applied
both in digital TV systems and in video streaming services,
where the video quality prediction is calculated based on the
frequency domain activity-difference between the reference
and the received video. The idea behind the improved tech-
nique is to explore the variation of coefficients between the
sender and receiver side, which occur due to errors or data
distortions in the high frequency components. The method
has the advantage of easy of implementation, because it in-
volves the video post-processing through the DCT trans-
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form, which can eventually be incorporated in the decoding
step. Besides, it requires a reduced number of bits, which
is an important feature of RR techniques. For instance, in
[17], [18] 8 bits per pixel are required and in [19] and [20]
5 bits and 1 bit per pixel, respectively, are needed. On the
other hand, our approach requires about 19 bits per mac-
roblock to represent the information from the video source.

We demonstrate that the method enables a more accu-
rate prediction of the video quality when compared with re-
sults reported in [16], whose approach is based on the spatial
domain analysis and where the adjacent 8 × 8 pixel blocks
present a high degree of correlation. By using the DCT
transform, it uncorrelates the information in the 8×8 blocks
and its neighbors. For testing the method, videos from the
LIVE database [21] are used, which include videos distorted
by MPEG-2 and H.264 compression, error-prone wireless
networks, and IP networks.

The paper is organized as follows. Section 2 describes
the reduced-reference quality assessment method based on
the frequency domain. In Sect. 3 details of the experiments,
the used database and the quality calibration are presented.
Section 4 shows the performance comparison between the
proposed RRVQA algorithm and PSNR, Structural SIMilar-
ity index (SSIM) and the VQ [16], followed by the discus-
sion of the results and the conclusion in Sect. 5.

2. The Reduced-Reference Assessment Method for
Video Quality

It’s well known that high frequency components are respon-
sible for details in a frame, for which the HVS is not sensi-
tive [22]. Lossy compression processes (e.g., MPEG-2 or
H.264) suppress these components and produce artifacts,
such as blurring and blocking. Figures 1 (a) and 1 (b) show,
respectively, the original and degraded frame of the video
named Tractor, where degradation was inflicted by the loss
of frames in simulated IP transmission. The zoom box in
Fig. 1 (b) shows, as an example, the generated artifact due to
packet loss. Given that the high frequency components are
more susceptible to changes, the proposed method explores
the variation of the DCT coefficients (particularly, the AC
coefficients) between the original and distorted frames at the
sender and receiver sides.

This is most evident when one observes the behav-
ior of the 256 first DCT coefficient values for the origi-
nal and degraded frames of different videos in Fig. 2. The
higher peaks correspond to the DC coefficients and have
a higher energy (low frequency). On the other hand, the
much smaller peaks correspond to the AC coefficients. Fig-
ure 2 (a) shows the behavior of DC and AC coefficient val-
ues for the original Tractor video and Fig. 2 (b) to 2 (e) the
corresponding values for degraded videos due to error-prone
wireless networks, H.264 compression, simulated transmis-
sion of H.264 compressed bitstreams over error-prone IP
networks, and MPEG-2 compression, respectively. One sees
that the DC and AC values are severely changed when dis-
tortions occurs depending on the video degradation. This is

(a)

(b)

Fig. 1 Frame of the Tractor video from the LIVE database. (a) Orig-
inal frame. (b) Frame obtained by the simulated transmission of H.264
compressed bitstreams through error-prone IP networks, where PSNR =
24.4113 dB, VQ = 37.3565 dB, and RRVQA = 18.0989 dB.

particularly the case for videos degraded by the H.264 com-
pression and by the transmission over error-prone Wireless
networks, when changes in both DC and AC coefficients are
more evident (see Figs. 2 (b) and 2 (c)).

Base on the behavior of DC and AC coefficients
the proposed assessment technique employs the two-
dimensional DCT transform [23], which uses the DC and
AC coefficients of a τ × τ macroblock, formed by multiple
8 × 8 blocks.

The coefficients in each macroblock are represented by
the variable coe fp (coefficients in each τ × τ macroblock,
including the τ×τ64 DC coefficients and also the τ × τ − τ×τ64
AC coefficients) while the DC coefficients absolute average
(the mean of the DC coefficients) is represented by the DC
variable. Thus, the absolute activity-difference for the mac-
roblock j, with τ × τ resolution, given by (Act f j), is calcu-
lated as

Act f j =
1
τ × τ

τ×τ∑
p=1

∣∣∣coe fp − DC
∣∣∣ , (1)

where DC is the average of τ×τ64 DC coefficients, the denom-
inator is equal to 64 due to the DCT transform that operates
on 8 × 8 blocks. The DC value is calculated as

DC =
64
τ × τ

τ×τ
64∑

k=1

|DCk | . (2)
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Fig. 2 Signal frequency representation of the first 256 DCT coefficients of the Tractor frame. (a)
Original frame in the frequency-domain using the DCT transform. (b) Error-prone wireless networks.
(c) H.264 compression. (d) IP loss frame by simulated transmission of H.264 compressed bitstreams
through error-prone IP networks in the frequency domain using the DCT transform. (e) MPEG-2 com-
pression.

It is the parameter Act f j from a frame of the original
video that is transmitted by the RR method over the digital
TV channel or over the Internet by means of the Transport
Stream (TS). Between 8 and 10 bits are required to represent
each (Act f j) coefficient (or 1 feature per τ × τ coefficients
in a macroblock), while 11-bit floating point (i.e., 8 bits for
mantissa and 3 bits for exponent) are required to represent
the maximum value of DC.

The number of bits required to represent each parame-
ter can be further reduced if lossless compression methods
are used. At the receiver side the equivalent parameter of the
degraded frame is calculated also using Eq. (1). This way,
Eq. (3) computes the square of the difference between the
activity-difference frequency (Act f S j) on the sender side
and that on the receiver side (Act f R j). This difference is
named the Square Error (S E f j) per macroblock j in the
frequency-domain, give as

S E f j =
(
Act f S j − Act f R j

)2
. (3)

As a matter of comparison, the square errors calculated
in the frequency domain (S E f ) and those in the space do-
main (S Es), whose method is described in [16], are given
in Fig. 3 for the same frame of Fig. 1 (b). One sees that
the S E f values are higher for the frequency domain case,
evidencing the higher sensitivity of the AC components to
changes. This behavior extends to all frames of the tested
videos in this work.

The proposed RRVQA method further requires the
computation of the MSE on frequency domain, which rep-
resents the average of (S E f j) for all macroblocks in a frame

Fig. 3 Behavior of the square error in the frequency-domain (SEf) and
the space-domain (SEs) for degradation through simulated transmission
over error-prone IP networks.

i, given as

MS E fi =
1
M

M∑
j=1

S E f j, (4)

where M is the number of macroblocks per frame.
Finally, the calculation of the RRVQA index is calcu-

lated as

RRVQA =
1
N

N∑
i=1

10 × log10
[max (csi, cri)]

2

MS E fi
, (5)



SILVA et al.: A REDUCED-REFERENCE VIDEO QUALITY ASSESSMENT METHOD BASED ON THE ACTIVITY-DIFFERENCE OF DCT COEFFICIENTS
711

where N is the number of frames in the video; csi and cri

are the DCT coefficients from the sender and receiver side,
respectively. Only the Act f j calculated by (1) and the maxi-
mum value of csi are transmitted to the receiver side.

3. Description of the Experiments

In order to test the metric performance against results of
subjective evaluation (human scores) statistical methods
are employed, such as the Spearman Rank Order Correla-
tion Coefficient (SROCC) and the Pearson Linear Corre-
lation Coefficient (PLCC). VQEG recommendations [24]–
[29] suggest the discard of references samples during the
assessment, as well as the application of mapping and val-
idation experiments. It also recommends the application of
Difference Mean Opinion Scores (DMOS) for FR and RR
metrics and Mean Opinion Scores (MOS) for NR metric.
Thus, in the experiments, only videos from the database
without references were employed. The mapping of values
obtained with the objective metric to the DMOS scale is per-
formed using the cubic polynomial function, as explained in
Sect. 3.2. The resulting prediction characterizes the corre-
lation between two measures, one based on the objective
metric ( RRVQA) and the other based on a subjective metric
(DMOS).

The performance of other metrics in comparison with
the proposed RRVQA is also investigated and the corre-
sponding prediction was calculated for the VQ metric re-
ported in [16] and the full reference metrics PSNR and
SSIM. The comparison with other metrics requires, how-
ever, that the value range of the full-reference PSNR and VQ
lies between 0 and 100 dB. This assumption is required be-
cause two identical frames give MSE = 0 and PSNR equal
infinite. In order to avoid this inconsistency in the calcu-
lations, the 100 dB range is defined as an arbitrary upper
bound [30], [31]. This maximum value implies that no dif-
ferences between the reference and processed frames exist.

3.1 Video Database

The LIVE video quality database is used in the experiments.
This database includes 150 videos from 10 reference video
contents, as shown in Fig. 4. This database includes dis-
torted videos by MPEG-2 and H.264 compression, error-
prone wireless networks, and IP networks [21].

The first seven video sequences (from left to right and
from top to bottom) have a frame rate of 25 frames per sec-
ond (fps), while the remaining three (Mobile and Calendar,
Park Run, and Shields) have a frame rate of 50 fps. All video
files do not contain headers and have planar YUV 4:2:0 for-
mats, whose resolution is 768×432 pixels. The LIVE video
database only contains DMOS subjective samples.

3.2 Quality Calibration

The mapping of the objective score scale into the subjec-
tive score scale of DMOS can be performed using either

Fig. 4 Videos from the LIVE database.

Fig. 5 Scale mapping RRVQA into DMOS with cubic polynomial func-
tion for all videos from LIVE database.

a non-linear logistic function [24] or non-linear polynomial
functions, according to the Video Quality Experts Group
(VQEG) recommendation [26]. This mapping must provide
a simple empirical prediction and not cause an overfitting of
data points. In this work, the mapping was performed be-
tween DMOS and RRVQA (x) using a cubic polynomial
function [25]–[28] defined as

DMOS p = ax3 + bx2 + cx + d. (6)

For example, in Fig. 5, the coefficients were found to be
a = 0.0022; b = −0.1214; c = −0.4285; and d = 108.2439,
where mapping was performed using the RRVQA (x) met-
ric.

The mapping showed that the cubic polynomial func-
tion is better suited as it does not cause overfitting of data
points at the low extreme, as would happen if the monotonic
logistic function were employed [32]. This way, PLCC and
SROCC were computed after performing the non-linear re-
gression using the cubic polynomial function.
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(a) (b)

(c) (d)

Fig. 6 Correlation between objective metric scale and subjective (DMOS) metric scale with cubic
polynomial function for all data of the LIVE video database. (a) PSNR vs. DMOS; (b) SSIM vs.
DMOS; (c) VQ [16] vs. DMOS; (d) proposed RRVQA vs. DMOS.

4. Results and Discussion

The experiments were conducted using τ = 16 in Eq. (1) for
the proposed method. Figure 6 shows the correlation behav-
ior between the DMOS and PSNR, SSIM, VQ, and RRVQA
using the video database from LIVE. The PLCC between
DMOS and RRVQA is equal to 0.7039, while that of PSNR,
SSIM and VQ are 0.5533, 0.7016 and 0.64, respectively.

The SROCC for RRVQA is 0.6756, while that of
PSNR, SSIM, and VQ metrics are 0.5222, 0.6962 and
0.6289, respectively. The visual inspection of Fig. 6 (d), as
compared to the others 6 (a), 6 (b) and 6 (c), confirm the nu-
merical results expressed above.

For each video set of the database the PLCC
and SROCC coefficients, R-Square, RMSE, 95% confi-
dence limits, statistical significance (ζ), percentage of F-

distribution (Fp), outlier ratio (OR), and MAE were com-
puted. Data shown in bold type in Tables 1, 2, 3, 5 and 6
point out to the best score in each content category.

Table 1 compares PSNR and SSIM full-reference met-
rics with scores obtained by the reduced-reference metrics
(VQ [16] and the proposed RRVQA method). Table 2 com-
pares the R-Square between RRVQA and PSNR, SSIM, and
VQ and Table 3 presents the RMSE and confidence limits
with 95% (C95%). Table 2 also shows the Nf parameter,
which represents the number of samples employed in the
evaluation. SSIM presents RMSE with 95% confidence in-
terval below 7.24 for IP content, while our RRVQA presents
RMSE with 95% confidence interval below 7.24 for H.264,
IP, and Wireless contents, as recommended in [33]. The
comparison using the F-distribution (ζ) and the percentage
of F-distribution (Fp) is shown in Table 4. These measures
are interesting because quantify the performance between
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Table 1 Comparison of accuracy (PLCC) and monotonicity (SROCC) between the RRVQA method and PSNR, SSIM and VQ metrics for samples without
reference.

Content
Full-Reference Reduced-Reference

PSNR SSIM VQ [16] proposed RRVQA

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

All 0.5533 0.5222 0.7016 0.6962 0.6400 0.6289 0.7039 0.6756
H.264 0.6080 0.5498 0.6889 0.6841 0.7134 0.6861 0.7862 0.7614
IP 0.6123 0.5754 0.7051 0.6960 0.6904 0.5813 0.7045 0.6863
MPEG-2 0.5502 0.5069 0.6893 0.6800 0.5016 0.4763 0.6270 0.6352
Wireless 0.6453 0.6046 0.6844 0.6795 0.7310 0.7462 0.8082 0.7878

Table 2 Comparison of R-Square between full-reference and reduced-reference metrics for samples without reference.

Content N f PSNR SSIM VQ [16] proposed RRVQA

All 150 0.3062 0.4922 0.4096 0.4955
H.264 40 0.3465 0.5343 0.5089 0.6181
IP 30 0.2603 0.5029 0.4767 0.4963
MPEG-2 40 0.1808 0.4547 0.2516 0.3932
Wireless 40 0.4396 0.4440 0.5343 0.6532

Table 3 Comparison of RMSE with confidence interval of 95% between full-reference and reduced-reference metrics.

Content PSNR SSIM VQ [16] proposed RRVQA

All 9.2681±1.0810 7.9285±0.9247 8.5497±0.9972 7.9031±0.9218
H.264 9.2499±2.2906 7.8083±1.9337 8.0187±1.9858 7.0710±1.7511
IP 8.6472±2.5916 7.0889±2.1246 7.2736±2.1799 7.1356±2.1386
MPEG-2 9.0965±2.2527 7.4217±1.8379 8.6942±2.1530 7.8290±1.9388
Wireless 8.1425±2.0164 8.1104±2.0085 7.4223±1.8381 6.4058±1.5863

Table 4 Comparison of performance between the RRVQA and PSNR, SSIM, and VQ metrics, respectively, with F-distribution (ζ) and percentage of
F-distribution Fp for samples without reference.

Content
PSNR vs. proposed RRVQA SSIM vs. proposed RRVQA VQ [16] vs. proposed RRVQA

ζ Fp(%) ζ Fp(%) ζ Fp(%)

All 1.3754 37.53 1.0064 0.64 1.1703 17.03
H.264 1.7113 71.13 1.2194 21.94 1.2860 28.60
IP 1.4686 46.86 0.9870 -1.30 1.0391 3.91
MPEG-2 1.3500 35.00 0.8987 -10.13 1.2333 23.32
Wireless 1.6157 61.57 1.6030 60.30 1.3425 34.25

Table 5 Outlier ratio (OR) and Mean Absolute Error (MAE) between full-reference and reduced-reference metrics for samples without reference.

Content
Full-Reference Reduced-Reference

PSNR SSIM VQ [16] proposed RRVQA

OR MAE OR MAE OR MAE OR MAE

All 0.0200 7.6151 0.0067 6.2109 0.0200 6.8941 0.0133 6.3838
H.264 0 7.3675 0 5.4814 0 6.3790 0 5.6254
IP 0.0333 6.5469 0.0333 5.3318 0 5.4664 0 5.3550
MPEG-2 0 7.2573 0 6.1510 0 6.8751 0 6.4896
Wireless 0 6.6011 0.0250 6.2113 0 5.7252 0 4.9422

Table 6 Comparison of performance between DMOS and DMOSp(RRVQA) using different macroblock sizes.

Content
Macroblock 8 × 8 Macroblock 16 × 16 Macroblock 32 × 32

PLCC SROCC PLCC SROCC PLCC SROCC

All 0.7191 0.6937 0.7039 0.6756 0.6801 0.6410
H.264 0.7338 0.7229 0.7862 0.7614 0.7196 0.6617
IP 0.6977 0.6716 0.7045 0.6863 0.6805 0.6578
MPEG-2 0.6264 0.6131 0.6270 0.6352 0.5300 0.4896
Wireless 0.7929 0.7674 0.8082 0.7878 0.8167 0.8135
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two metrics. Results show that the performance of RRVQA
is superior than VQ and PSNR, with (Fp) values varying
from 17% to 37% (for all video contents). When a particular
video content is taken into account, one sees that (Fp) val-
ues vary from 35% to 71% in favor of the proposed RRVQA
metric in comparison with PSNR.

The comparison between the VQ metric and RRVQA
shows, however, mixed performance. For instance, when
using the video content the RRVQA metric performs better
than VQ regardless of the artifact type affecting the video.
Only for IP content in the video database, the RRVQA per-
formance is equivalent to VQ. In addition, the proposed
method presents better performance for H.264 and wireless
contents when compared to SSIM. However, concerning
all video contents RRVQA shows equivalent performance
to SSIM.

Table 5 shows the data for the outlier ratio and the
MAE concerning the four techniques. RRVQA presents per-
formance equivalent to SSIM for OR and MAE measures.
Again, the results of Table 5 make it clear that the RRVQA
is suitable for video quality monitoring and assessment.

The influence of the macroblock size on the metric re-
sults was also investigated. Table 6 shows the comparison
of performance assessed by our method using different mac-
roblock sizes and subjective scores (DMOS). Macroblock
sizes of 8×8, 16×16 and 32×32 were used in (1). The data
in Table 6 shows that PLCC values obtained with are higher
in the analysis of H.264, IP and MPEG-2 contents (0.7862,
0.7045 and 0.6270, respectively). However, higher PLCC
scores are obtained using the macroblock size 8 × 8 for the
case of “All” (0.7191) and the macroblock size 32 × 32 for
the case of Wireless contents (0.8167). SROCC scores fol-
low the same trend. PLCC scores can reach a difference of
up to 7% as observed from the values in Table 6 depend-
ing on the employed size. The advantage of using a higher
macroblock size lies on the fact that the method requires
less bits per frame, i. e., it reduces drastically the number
of frequency-domain activity-difference obtained through
Eq. (1) for each macroblock (for instance, only one Actf
value per 1024 coefficients is required in the case of 32×32.
Instead, four times more Actf values are needed to represent
the 16 × 16 case). However, due to the better performance
of the metric when applied to H.264, IP and MPEG-2 con-
tents, the macroblock size 16 × 16 has been chosen for the
calculations through out this work.

The comparison between results of this and other
works in the literature [11]–[16] is difficult due to the use
of different databases and mapping functions. We use the
cubic mapping function, but most works used the logistic
mapping function [24], which is a VQEG recommendation
that has been overtaken. Therefore, although wishful, it is
not possible to compare our results and the ones found else-
where.

Results obtained with RRVQA can be justified due to
the activity-difference of DCT coefficients between sender
side and receiver side, as expressed in Eqs. (1) through (5).
Figure 7 shows the difference of performance between MSE

(a)

(b)

Fig. 7 Comparison between MSE and MSEf on space and frequency do-
main, respectively. (a) MSE in the spatial domain with PLCC = 0.5589 and
SROCC = 0.5420. (b) Proposed MSEf in the frequency domain with PLCC
= 06488 and SROCC = 6467.

calculated in the spatial domain and MSEf calculated in
the frequency domain, both employed in the denominator
of Eq. (5). The sole visual inspection of Figs. 7 (a) and
7 (b) indicates that the approach based on the frequency do-
main produces better results. PLCC and SROCC for MSE
is 0.5589 and 0.5420, respectively, while that for MSEf is
0.6488 and 0.6467.

Our method, although simple, is efficient because it
requires low-complexity implementation and it can be in-
corporated into encoding and decoding processes. In this
paper no compression is applied to the Act f j data that con-
tains the features required by the algorithm. The features are
extracted on the receiver side, where the Transport Stream
(TS) is demultiplexed and decoded, with 1 feature per 256
DCT coefficients of each 16 × 16 macroblock. The de-
coded video may include errors caused by distortions from
the channel, attenuation, and compression process or packet
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Fig. 8 Framework for video quality-estimation model for digital TV sys-
tems based on RRVQA.

loss. Degradations such as blocking and blurring effects
may appear causing an unpleasant visual perception to view-
ers.

Figure 8 shows a framework for video quality assess-
ment in a digital TV system in which the proposed RRVQA
algorithm is inserted. It can be applied on the decoded
video, creating a quality score that can be sent back to the
broadcast system via ancillary channel with TV interactivity
(TVi) for further analysis and eventual corrections.

The sender side performs the video compression and
encoding process, for instance, using the MPEG-4 Part 10
(H.264) standard. After this step, the feature extraction is
multiplexed into the MPEG-2 Transport Stream, modulated
and broadcasted over air. The data stream containing the
video extracted features data can still be reduced by loss-
less compression process or other technique to decrease the
data size that is transmitted over the broadcast TV channel.
This way, the technique can be used in monitoring the video

transmission over erasure channels, such as IP networks, or
video quality in a digital TV broadcast system.

5. Conclusion

This paper proposes a simple and efficient reduced-
reference method for the video quality estimation based on
the activity-difference of DCT coefficients. In the spatial
domain each set of adjacent 8 × 8 pixel blocks is corre-
lated, whereas by using the DCT transform it uncorrelates
the information between 8 × 8 blocks and its neighbors. Al-
though the HVS is not sensitive to high frequency, these
components are susceptible to errors in a noisy channel and
can be detected by the quality assessment method. There-
fore, by using the activity-difference of DC and AC co-
efficients the RRVQA delivers a more accurate prediction
of the video quality when compared with the PSNR and
VQ techniques, as the numerical results of Tables 1 to 6
demonstrate. From the data it is observed that the proposed
method presents smaller predictions errors and higher accu-
racy, monotonicity and consistency for either the analysis of
particular degradations in video sequences (such as artifacts
generated by H.264 compression or originated in wireless
networks) or when the analysis of all video degradations is
considered. Therefore, the proposed method is suitable for
the quality monitoring in video transmission over wireless
or IP networks and in digital TV systems.
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Appendix: Statistical Evaluation Tools

This section describes the statistical tools employed to as-
sess the metric performance and the statistical significance
of results when comparison is made with other methods.

The perceptual significance of a metric is determined
by the PLCC index (prediction accuracy). If the correlation
coefficient approaches 1, the relationship between the scores
of the objective metric and the perceptual quality perceived
by the HVS is strongly developed. PLCC is calculated using
a set of K data pairs (μk, νk) that can be quantified as [24]–
[28], [34]:

PLCC =

∑K
k=1 (μk − μ) (νk − ν)√∑K

k=1 (μk − μ)2
√∑K

k=1 (νk − ν)2
, (A· 1)

where μk and νk are the feature difference and the subjective
rating related to the kth frame, respectively; μ and ν are the
means of the respective data sets.

Monotonicity is used to quantify if changes in one
measure (increase or decrease) is followed by magnitude
changes (increase or decrease) with respect to another mea-
sure. Monotonicity is quantified by the SROCC and is de-
scribed as [24]–[28], [34].
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S ROCC =

∑K
k=1 (χk − χ) (γk − γ)√∑K

k=1 (χk − χ)2
√∑K

k=1 (γk − γ)2
, (A· 2)

where χk and γk are the ranks of the predicted and the sub-
jective scores, respectively. In addition, χ and γ are the
midranks of the respective data sets.

The R-Square (R2) [34] represents the degree of vari-
ations in the subjective metric values (DMOS) and is de-
scribed by the fit technique [32].

R2 = 1 − S S E
S S T

, (A· 3)

where SSE (Sum of Square Errors) express the sum of
the squared prediction errors between DMOS and DMOSp.
SST (Total Sum of Squares) represents the sum of squared
deviations of DMOS. R-Square assumes values in the inter-
val [0, 1], where a good fit approaches 1.

The Root Mean Squared Error (RMSE) of the absolute
prediction error Perror(i) when applied to FR and RR metrics
expresses the standard error of the fitting between DMOS
and DMOSp [24]–[28].

RMS E =

√√√(
1

Nf − d

) N f∑
i=1

Perror(i)2, (A· 4)

where Nf is total number of videos in the analysis (discard-
ing the video references) and d is the number of degrees of
freedom of the non-linear mapping function [34]. In this pa-
per, as recommended by VQEG [25]–[28], we adopt d = 4
for the 3rd-order cubic polynomial mapping function and
Perror(i) is calculated with the formula:

Perror(i) = DMOS (i) − DMOS p(i). (A· 5)

The RMSE indicates a better fit for values closer to 0.
However, it is recommended that RMSE with a 95% con-
fidence interval be less than 7.24, as experimental studies
point out in [33]. Using the χ2(Nf − d) distribution, the lim-
its of the 95% confidence interval for RMSE are defined as
[24]–[28]

RMS E
√

Nf − d√
χ2

0.025(Nf − d)
< RMS E <

RMS E
√

Nf − d√
χ2

0.975(Nf − d)
.

(A· 6)

And the half width of this confidence range is given as

C95% = ±1
2

∣∣∣∣∣∣∣∣∣
RMS E

√
Nf − d√

χ2
0.025(Nf − d)

− RMS E
√

Nf − d√
χ2

0.975(Nf − d)

∣∣∣∣∣∣∣∣∣ .
(A· 7)

In addition, another figure of merit within the scope of
this work is the statistical significance (ζ). It represents the
difference between the RMSE of two objective metrics and
is calculated as [34]

ζ =

(
RMS Eob jective metric

)2

(
RMS ERRVQA

)2
, (A· 8)

where RMS Eob jective metric assumes the values obtained with
PSNR, SSIM, or VQ [16] metric. The statistical significance
has an F-distribution with n1 and n2 degrees of freedom.
VQEG reports [24]–[28] establishes the ζ parameter to be
evaluated against the tabulated value F(0.05, n1, n2) that en-
sures 95% of significance. The n1 and n2 degrees of free-
dom are given by N f 1 − d and N f 2 − d, respectively, with
N f 1 and N f 2 expressing the total number of samples used
for calculating RMSE and d being the number of parame-
ters in the non-linear mapping function. If ζ is higher than
the tabulated value F(0.05, n1, n2), then there is a signifi-
cant difference between metrics in terms of RMSE, other-
wise both metrics are considered equivalent. Another way
of expressing this comparison is through the percentage of
F-distribution (Fp), defined as

Fp = (ζ − 1) × 100. (A· 9)

If ζ is higher than 1.05 (or is higher than 5%), then
there is a significant difference between the metrics.

The outlier ratio (OR) is employed for measuring the
prediction consistency, which is defined as [24]–[28]

OR =
ρ

Nf
, (A· 10)

where Nf is the number of samples and ρ is the total of out-
liers, whose number is determined by considering samples
out of the interval calculated as

|Perror(i)| > 2σ (DMOS )i , i = 1, . . . ,Nf , (A· 11)

where σ (DMOS ) is the standard deviation error of each
sample. In addition, the MAE prediction between DMOS
and DMOSp, given as

MAE =
1

Nf

N f∑
i=1

|Perror(i)| , (A· 12)

is also computed. Both OR and MAE indicate a better con-
sistency and error predictions when their values approaches
0 [32].
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