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An Approximate Flow Betweenness Centrality Measure for
Complex Network
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SUMMARY In complex network analysis, there are various measures
to characterize the centrality of each node within a graph, which determines
the relative importance of each node. The more centrality a node has in a
network, the more significance it has in the spread of infection. As one of
the important extensions to shortest-path based betweenness centrality, the
flow betweenness centrality is defined as the degree to which each node
contributes to the sum of maximum flows between all pairs of nodes. One
of the drawbacks of the flow betweenness centrality is that its time com-
plexity is somewhat high. This Letter proposes an approximate method to
calculate the flow betweenness centrality and provides experimental results
as evidence.
key words: complex network, centrality, flow betweenness centrality, ap-
proximate flow betweenness centrality

1. Introduction

In the world, there are various systems. Every system is
composed of elements, which are interrelated and interacted
to form a whole. If we adopt a node to represent each el-
ement and utilize an edge to represent the contact between
each pair of elements, a system can be viewed as a network.
For example, the whole human society is a complex network
with multi-level structures.

Complex network theory comes from the graph theory,
and two famous Hungary mathematicians Erdös and Rényi
have made great contribution to its development. Since they
put forward a theory that is known as ER random graph
model, they have controlled the study of complex network
over 40 years. However, it has been found that many re-
sults that are obtained by calculating some actual network
data depart from the random graph theory, so new network
models are required to describe these real network charac-
teristics. In the late 1990’s, two pioneering works broke
the framework of random graph theory. One is the article
published in “Nature” where Watts and Strogatz proposed
a small-world network model known as the WS model [1].
This model simulates many real-world networks that have
high clustering coefficients and short average path lengths.
Newman and Watts improved the original model and pro-
posed the NW model [2]. Another is the article published
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in “Science” where Barabási and Albert pointed out that
the degree distribution form of many real-world complex
networks complies with the power law [3]. As there is
no obvious characteristic length for power-law distribution,
such networks are called scale-free networks. On this ba-
sis, Barabási and Albert established the BA model based
on the growth and preferential attachment mechanism, and
gave the numerical and analytical solutions [3]. These re-
searchers’ works have been recognized by academia, and
a large number of scholars have joined the ranks of those
working in complex networks. Lots of research works have
been made in the empirical research, evolutionary models
and network dynamics, which are related to physics, bi-
ology, social science, technological networks, engineering,
economic management and many other fields.

In general, a complex network contains many nodes,
but not all nodes share the same importance, some nodes
may make more contribution to the network structure. If
some important nodes in a network are removed, the net-
work may suffer great damage or even cannot work at all.
For instance, some diseases are spread through close con-
tact between people. If we manage to find out what kind
of people more likely become the medium of spreading dis-
ease and cure them, it will be easier to prevent the spread
of disease. Therefore, for a harmful network, it becomes an
important issue to find out the nodes with more importance
and destroy them. On the contrary, for a helpful network,
we can protect them to make the network safer.

The centrality measure is first proposed for social net-
work analysis, and later widely used to other fields. Nowa-
days, it becomes a fundamental issue to find out the impor-
tant nodes when analyzing a complex network. There have
been many measures to evaluate the importance of a node
in complex networks [4]. These measures can be classified
into two categories. The first category thinks that the im-
portance of a node is equivalent to the outstanding feature
arisen when the node has connection with other nodes. In
other words, this category adequately reflects the nodes’ po-
sitional characteristic in the network, and defines the impor-
tance of a node by zooming the nodes’ significance. The
second category is based on a hypothesis that the impor-
tance of a node is equivalent to its destructivity. That is,
if a node is removed from a network such that great dam-
age will occur, then this node should be an important node
in the network. The simplest centrality measure is degree
centrality [5], i.e., a node with high degree is considered as
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an important node. Considering the traffic characteristics of
a network, one can use the closeness centrality [6] that de-
notes the difficulty that a node has connection with other
nodes. For a node with a smaller degree but playing a key
role in the network connectivity, the betweenness central-
ity [7] can be adopted. The flow betweenness [8] ascertains
the network geometry center by the way of flowing. The
eigenvector centrality [9] is used to evaluate the impact on a
node from other connected nodes. According to the partic-
ipation level that a node takes part in different sub-graphs,
the subgraph centrality [10] has also been proposed. If the
network information is incomplete, then the random-walk
betweenness centrality [11] can be utilized.

As we know, it is computationally expensive to exactly
calculate betweenness, currently the fastest algorithm pro-
posed by Brandes [12] has the time complexity of O(NM)
for unweighted graphs, where N is the number of nodes and
M is the number of edges. In fact, in order to detect cen-
troids in a network, it is unnecessary to compute the accurate
betweenness centrality value of all nodes but only their rela-
tive betweenness value. Therefore, many scholars have been
engaged in approximation approaches. Bader et al. [13] pre-
sented an adaptive sampling technique that significantly re-
duces the number of single-source shortest path computa-
tions for nodes with high centrality. Geisberger et al. [14]
proposed a framework for unbiased approximation of be-
tweenness. Gkorou et al. [15] proposed an approximation
betweenness centrality for large and dynamically growing
networks. Lee et al. [16] presented a method that efficiently
reduces the search space by finding a candidate set of nodes
and computes their betweenness using candidate nodes only.

Above-mentioned improvements are all designed for
calculating betweenness centrality, which should perform
time consuming computation of shortest paths. This Let-
ter focuses on the flow betweenness centrality [8], which is
redefined from the measure of betweenness centrality with-
out considering whether the path between a pair of nodes is
the shortest one or not. This measure calculates all possi-
ble paths connecting two nodes, and it is also known as the
generalized betweenness centrality. If a network is with N
nodes, then the flow betweenness of Node i can be defined
as:

CB(i) =
∑

j<k

g jk(i)

g jk
(1)

where CB(i) is the flow betweenness of Node i, g jk is the
number of all possible paths between Node j and Node k,
and g jk(i) is the number of all possible paths between Node
j and Node k that pass through Node i. Although the flow
betweenness measure can obtain more accurate network ge-
ometry center, it takes more time to deal with data especially
when a network has a huge number of nodes. In this Letter,
we first propose an approximate calculation method of the
flow betweenness centrality, and then compare our measure
with the flow betweenness centrality by analyzing a sim-
ple network. Furthermore, we show the effectiveness of our
method by analyzing an example network.

2. Approximate Calculation Method

In fact, the flow betweenness of a node is a probability that
the information created by other nodes flows through this
node after a long time of free flowing. In other words, if we
suppose a node in the network creates a message segment,
then after some steps the message will reach any other node.
In the flowing process, as long as the network is a connected
graph, the message will definitely flow through a given node
i. Here, we assume that the given node just receives infor-
mation without any output, and thus it is easy to know the
amount of information it has collected from other nodes. In
other words, the flow betweenness of the given node i can be
defined as the ratio of its collected information to the sum of
information in the whole network. Therefore, our proposed
method can be simply described as follows:
Step 1: Initialization. Define the amount of information for
each node is 1;
Step 2: Information flowing. Suppose the degree of a node is
k, then the information that flows to its each adjacent node is
1/k. In this way, the whole information capacity is a constant
value that equal to the number of nodes.

If the diameter of a network is D, we can think that after
D steps, the information created by a node will be spread
throughout the entire network.

Based on the above idea, we can get an approximate
calculation result for each node’s flow betweenness. If Ui

stands for a set of k nodes connected with node i and λ j

equals 1/k, then the above approximate calculation can be
defined as:

CFM
i =

D∑

k=1

∑

j∈Ui

λ jC j(k) (2)

C j(k) =
∑

m∈U j

λmCm(k − 1),m � i (3)

In general, if a node is close to the network center, its cor-
responding centrality value will be big. Below we compare
our approximate calculation results with the original mea-
sure by analyzing a simple network, which is generated ran-
domly. The results are shown in Fig. 1 and Fig. 2 respec-
tively.

From above two figures, we can see that the approxi-

Fig. 1 Results of the flow betweenness centrality.
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mate calculation also can accurately find the geometric cen-
ter of the network. However, there is a little difference be-
tween two results that the node with the maximum centrality
value for the latter case is more close to the network center.
The reason is that the flow betweenness is based on the paths
between nodes, while the approximation flow betweenness
is concerned in the ability that one node collects the infor-
mation around. Although there is a little error between the
approximation method and the original method, the approx-
imation result can also reflect the characteristics of the net-
work very well, and thus we can save a lot of computation
time. If a network has N nodes, the time complexity is about
O(N3) for the flow betweenness, while O(N2) for the ap-
proximation measure.

In the process of information flowing, since the flow-

Fig. 2 Results of the approximate calculation.

Fig. 4 The structure of the test network.

ing direction is free, a few factors may affect the result. The
severest factor is that some information may just be flowed
between two or several nodes. In this case, the network can
be pretreated before evaluation. For example, in the exam-
ple network as shown in Fig. 3, Node 2 and Node 8 can
be combined into one node that should be endowed a new
value, which is the sum of the values appointed to the two
nodes. Based on the same rule, Node 5, Node 6 and Node 13
can also be combined into one node. After this pretreatment,
the result will be more precise.

3. Example

This section gives an example. The network in Fig. 4 de-

Fig. 3 Pretreatment before the approximate calculation.
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Table 1 The results of the approximate calculation scheme.

picts an air kidnapping incident that happened in New York
in November 2001. This network is a random network
whose degree distribution is exponential. In this network,
nodes represent the terrorists, and edges represent their con-
tact. We adopt the approximate calculation method to evalu-
ate the importance of each node, obtaining the approximate
flow betweenness values for all nodes. We list the 20 largest
values in Table 1 in the descending order. It is easy to find
that Node 1 has the biggest value, and it is most important
node in the network. Node 4, Node 2, Node 43 and Node 3
are with the following bigger values, thus they are also im-
portant nodes in this network. In the example network, all
above nodes close to the network center. In a word, the ap-
proximate calculation works well in finding important nodes
in a network.

4. Conclusions

In this Letter, we have proposed an approximate calculation
method for the flow betweenness centrality. By calculating
the ability that a node collects the information around it, we
obtain an approximate result of this node’s flow between-
ness. Then we give a simple comparison between two meth-
ods and also provide the experimental results as a proof. The
time complexity of our approach is O(N2), which is far less
than that of the original flow betweenness. Since our ap-
proach avoids calculating the shortest path between nodes,
it is more efficient than many existing approaches for be-
tweenness calculation. However, the proposed method can
only be used in the static network with complete informa-
tion. We have not verified the accuracy under the situations
that the network information is incomplete or the network is
dynamic. Future work will concentrate on obtaining a gen-
eral formula that can be used for different conditions.
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