
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013
735

LETTER

Model Checking an OSEK/VDX-Based Operating System for
Automobile Safety Analysis∗

Yunja CHOI†a), Member

SUMMARY An automotive operating system is a typical safety-critical
software and therefore requires extensive analysis w.r.t its effect on system
safety. Our earlier work [1] reported a systematic model checking approach
for checking the safety properties of the OSEK/VDX-based operating sys-
tem Trampoline. This article reports further performance improvement
using embeddedC constructs for efficient verification of the Trampoline
model developed in the earlier work. Experiments show that the use of
embeddedC constructs greatly reduces verification costs.
key words: OSEK/VDX, Trampoline, model checking, safety analysis

1. Introduction

An operating system is a representative safety-critical sys-
tem, since a fault in an automotive operating system can
result in catastrophic failures of the automobile. A com-
prehensive safety analysis is a must, not only at the overall
system level, but also at the software level. Model check-
ing [3], one of the most commonly used automated formal
verification techniques, has been applied for the verification
of operating systems [4]–[6]. Nevertheless, existing works
are either limited to small-scale operating systems such as
TinyOS or focus on specific aspects of a system, such as
timing and scheduling analysis.

Our earlier work [1] reported a case study for model
checking the safety properties of Trampoline [7], an oper-
ating system based on the OSEK/VDX international stan-
dard [2]. By adopting a faithful model translation from
the kernel code and thus avoiding aggressive abstractions,
the approach made the comprehension of counterexamples
straightforward, reducing the time needed for manual anal-
ysis. The faithful translation approach, however, naturally
suffers from high verification cost. This paper presents a
method for further improving the verification performance
by utilizing the embeddedC constructs in Promela. Exper-
iments show that the use of embeddedC constructs reduces
the number of states and transitions to be traversed during
the model checking process, resulting in greatly reduced
verification costs.

This paper briefly reviews the model checking ap-
proach presented in [1] and then explains how the former
approach is extended for better performance together with
the experimental evidence showing its positive impact.

Manuscript received May 31, 2012.
Manuscript revised October 17, 2012.
†The author is with School of CSE, Kyungpook National Uni-

versity, South Korea.
∗Based on [1] c©2011 IEEE.

a) E-mail: yuchoi76@knu.ac.kr
DOI: 10.1587/transinf.E96.D.735

2. Model Checking Safety Properties

The safety properties are identified by means of a Soft-
ware Fault Tree Analysis (SFTA), starting from system-
level safety requirements, such as “an automobile control
system shall change the direction of the wheels in time”.
Each safety requirement is analyzed in a top-down manner
to identify detailed potential software faults such as “delay
in task sequencing”. Each such software fault is further
analyzed to identify operating system level safety proper-
ties by combining the top-down analysis with the identifica-
tion of safety requirements from the international standards
OSEK/VDX and AUTOSAR to reduce the depth of the soft-
ware fault tree; in our study, a total of 56 safety properties
were identified from three software fault trees with an aver-
age depth of six. The two safety properties identified from
the SFTA are listed in the following:

SR1. Tasks shall not be in the waiting state indefinitely
while allocating resources.

SR2. Tasks shall not wait for events indefinitely.

Figure 1 illustrates our model checking process in three
steps: (1) light-weight model checking, (2) incremental ver-
ification, and (3) performance improvement using embed-
dedC, which is an extension from the earlier work.

2.1 Light-Weight Model Checking

In the first step, a formal model (the Promela model in this
case study) is constructed from the Trampoline kernel code,
which is validated using the SPIN simulator and then ver-
ified with respect to each safety property using the SPIN
model checker. Our model construction process eliminates

Fig. 1 Verification process for Trampoline.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

736
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

wrapper functions, tracing functions, and emulating func-
tions from the code. As a result, the original Trampoline
operating system comprising a total of 4,530 lines of code is
converted into a Promela model comprising a total of 1,500
lines of code. The model checker generates a counterexam-
ple for each refuted safety property. We analyze this using
counterexample replay in the SPIN simulator and use it to
generate a test scenario so that we can confirm through run-
time testing that the counterexample trace actually leads to
a safety violation. In this step, light-weight model checking
is applied using limited resources, e.g., 4 Gbytes of system
memory. The process ends if all the properties are verified
in this step.

2.2 Incremental Verification

However, it is possible that the model checker neither veri-
fies nor refutes the property due to a lack of resources. The
second step tries to address this issue by using incremen-
tal verification, which imposes constraints on the external
model (i.e., the task model) of the operating system and per-
forms incremental verification as the constraints are gradu-
ally lifted. This provides a method for quantitatively mea-
suring the verification coverage even when comprehensive-
ness cannot be achieved.

2.3 Performance Improvement Using EmbeddedC

Even incremental verification might not scale in case the
number of application tasks is over the threshold. The third
step utilizes the embeddedC constructs in Promela to reduce
the number of states and transitions to be traversed during
the model checking process. This step is applied only to
those properties that are not verified or refuted in the first
and the second step, due to the issue of usability; SPIN does
not provide simulation capabilities for models using embed-
dedC constructs, and thus it is extremely difficult to validate
models with embeddedC constructs in the initial step.

3. A Safety Bug Found

Our case study revealed that Trampoline violates S R2. A
counterexample trace that leads to an abnormal system halt
is illustrated in Fig. 2: Task t1 activates task t2, which pre-
empts t1 as soon as it is activated. t2 activates task t3 and
then waits for event 2. While t2 is in the waiting state, t3
goes to the running state, since it has higher priority than
t1, and activates task t4. t3 is preempted by t4, but is soon
resumed after t4 goes to the waiting state for event 0. t3 sets
event 0 for t4 and terminates afterwards. Setting event 0 is
supposed to resume t4, but t1 is resumed instead. Both t2 and
t4 remain in the waiting state indefinitely.

The counterexample trace is applied directly to the
Trampoline kernel code for analysis since the mapping be-
tween the kernel and the Promela model is one-to-one, mak-
ing the analysis straightforward. It turns out that the prob-
lem is due to the encoding and checking mechanism for

Fig. 2 A counterexample of S R2.

events in the Trampoline kernel code:

1: tpl_status
tpl_set_event(tpl_task_id task_id,

tpl_event_mask in_event){
2:
3: if((events->evt_wait & in_event)!=0){
4:
5: // wake up and put the waiting process

//in the ready queue
6: ...
7: } ...
8: }

As stated in line 3 of the code, tpl set event performs a
bitwise-and operation of the event mask and the event num-
ber to check that the event number is indeed on the wait-
ing list. However, this encoding and checking mechanism
only works correctly when the event number is greater than
0; tpl set event(t4, 0) does not have any effect on the event
mask since the bitwise-and operation of the event mask and
the event number are always equal to 0. In this case, the lines
between 4 and 6 are not executed, and thus cannot wake up
the task waiting for event 0. Trampoline does not provide
any means for checking or warning that the value of an event
is not supposed to be equal to zero. We anticipate that this is
a typical case of a safety gap; bad things may happen where
we take things for granted.

4. Incremental Verification

Though the initial verification was successful in finding a
safety bug for S R2, it failed to verify or refute S R1. SPIN
quickly ran out of memory on a SUN workstation with
30 Gbytes of memory. Even when using the bit-state hash-
ing option provided by SPIN for better scalability, the mea-
sured coverage was around 20%, which is far from being
comprehensive. We anticipate that the inefficiency of the
initial verification comes from two factors: (1) The Tram-
poline kernel itself is too large in the statespace, and (2) the
task model is too generous in that it allows an arbitrary num-
ber of system calls per task, which is not realistic in practice.

We tackle the second issue by adopting an incremen-
tal verification approach that limits and increases the num-
ber of system calls per task as verification succeeds. In this
way, we still allow arbitrary behavior of user tasks up to
a certain point while providing comprehensive verification
under the given constraints. Table 1 shows the performance
of model checking S R1 as the number of system calls per
task increases from 3 to 11. The columns from left to right

LETTER
737

Table 1 Performance of incremental verification.

APIs Depth States Transitions Memory Time

3 35,159 8.00e+06 1.26e+07 1019.498 289
5 1,041,301 4.20e+07 6.57e+07 3318.760 1.37e+03
7 2,180,863 1.12e+08 1.75e+08 8555.065 3.65e+03
9 3,396,568 1.92e+08 2.97e+08 13,418.443 6.20e+03
11 4,934,305 3.02e+08 4.67e+08 28,229.922 9.90e+03

represent the number of API calls, the depth of the verifi-
cation search, the number of states explored, the number of
transitions, the amount of memory used in Megabytes, and
the time required to finish verification in seconds.

5. Performance Improvement Using EmbeddedC

Though the experimental result is promising, it was per-
formed with limited environmental parameters; the number
of tasks was limited to four, with the maximum number of
API calls per task being limited to 11. We suggest utilizing
embeddedC constructs to achieve better performance.

5.1 EmbeddedC Constructs

EmbeddedC constructs were introduced to facilitate model-
driven verification of software systems, making it possible
to directly embed implementation code into Promela mod-
els [8]. In this way, high-level system design can be mod-
eled independent of implementation details, which can be
embedded later and replaced whenever necessary [9].

The nature of the constructs and the way they are han-
dled in the model checking process have an interesting side
effect: The execution of the embedded code is invoked dur-
ing the model checking process, which is treated as a single
transition no matter how many lines of code are embedded
inside. In contrast, a typical model checking process treats
each statement as a source of a new transition, producing a
large number of intermediate states. For example, Fig. 3 il-
lustrates two Promela models for the same C program code.
The model in the first column is a model that uses no em-
beddedC constructs and the model in the second column is
a model that uses embeddedC constructs.

Table 2 shows the performance comparison when
model checking the two models in Fig. 3, as the number
of global variables increases from two to five in lines 1–2
and their corresponding assignment statements are added in
lines 9–12. From columns two to six, Table 2 shows the
number of global variables, the search depth, the number
of states traversed, the number of transitions traversed, and
the amount of memory in Mega bytes consumed during the
model checking process. The first model is a Promela model
that uses atomic sequences (PWA), and the second model is
a Promela model that uses embedded C constructs (PWE).
Note that the model using embedded C requires far fewer re-
sources than the one using the original Promela model and
that the verification cost does not increase as the number of
variables increases in the models using embedded C con-
structs.

Fig. 3 Sample models.

Table 2 Performance comparison of the sample models.

model vars depth states transitions memory
PWA 2 9,057 50 82 2.64

3 9,062 65 108 2.73
4 9,067 81 133 2.73
5 9,072 96 159 2.83

PWE 2,3,4,5 25 38 58 2.54

5.2 Application of EmbeddedC to the Trampoline Model

We anticipate that embeddedC is applicable not only for
model-driven verification, but also for improving model
checking scalability, especially for synchronized event pro-
cessing systems with a large number of global variables,
which is a common characteristic of embedded software.

As illustrated in Fig. 1, the Promela model constructed
from the Trampoline kernel is partly converted into a model
with embeddedC constructs in the third step, which is used
for incremental verification afterwards. This partial model
conversion is performed according to the following steps:

1. Convert the atomic sequence of statements into c code
blocks for synchronized event-driven processes.

2. Embed all global variables referenced or used from the
converted c code blocks into c code blocks.

3. Embed all user-defined data types used in the c code
blocks into c decl declarations.

4. Track each global variable declared in c code blocks
using the c track construct.

The conversion process converts only the atomic se-
quence of statements and related variables into embededC.
This preserves the semantics of the original model since an

738
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

atomic sequence is executed without interrupts, and thus
there is no need to handle them as individual transitions.

Figure 4 shows a fragment of the Trampoline model
with embeddedC code, converted from the original Promela
model. The atomic sequence in the inline function is con-
verted into a c code block, the global variables tpl f i f o rw
and tpl h prio accessed from the c code block are declared
in a c code block, and then the user-defined data type
T PL FIFO S T AT E is declared in a c decl block. Finally,
the global variables are traced by using the c track con-
struct. We note that the multiple transitions required by the
inline function tpl get proc are reduced to one by collaps-
ing them into one c code construct.

5.3 Performance Improvement

Figure 5 illustrates the performance difference between the
original Trampoline kernel model and the model with em-
beddedC constructs in terms of memory and time consump-
tion as the number of API calls per task increases from 3 to
11. We see that both the absolute value of the verification
cost and the rate of the cost increments are greatly reduced
as the number of API calls increases.

Fig. 4 Conversion example from the Trampoline OS.

Fig. 5 Performance comparison.

6. Conclusion

This case study indicates that model checking can be ef-
fective in identifying subtle safety issues even if aggres-
sive abstractions are not employed in model construction.
Our approach of faithfully translating the kernel code into
a formal model is systematic and allows engineers to eas-
ily understand the counterexamples. The scalability issue,
which is aggravated by the faithful translation, is handled
through incremental verification and the reverse use of em-
beddedC constructs. The embeddedC constructs were ex-
tremely useful for systematically reducing the verification
cost. Nevertheless, the approach must be used with care
since merging multiple transitions may result in the obfusca-
tion of the important interleaving behavior of asynchronous
processes. The application of embeddedC constructs was
limited to atomic statements only in our case study for this
reason. It was also delayed till the third step because merg-
ing transitions makes it difficult to analyze counterexamples
and simulation results; the original Promela model is pre-
ferred for initial and incremental verification as long as the
available resources allow this. EmbeddedC is the last choice
for better scalability.

Acknowledgements

This work was partially supported by Kyungpook National
University Research Fund, 2012 and the National Research
Foundation of Korea Grant funded by Korean Government
(2012R1A1A4A01011788).

References

[1] Y. Choi, “Safety analysis of the Trampoline OS using model checking:
An experience report,” Proc. 22nd IEEE International Symposium on
Software Reliability Engineering, 2011.

[2] “OSEK/VDX operating system specification 2.2.3.”
[3] G.J. Holzmann, The SPIN Model Checker: Primer and Reference

Manual, Addison-Wesley Publishing Company, 2003.
[4] J. Penix, W. Visser, S. Park, C. Pasareanu, E. Engstrom, A. Larson,

and N. Weininger, “Verifying time partitioning in the DEOS schedul-
ing kernel,” Formal Methods in Systems Design Journal, vol.26, no.2,
pp.103–135, March 2005.

[5] D. Bucur and M. Kwiatkowska, “On software verification for sensor
nodes,” J. Systems and Software, vol.84, no.10, Oct. 2010.

[6] L. Waszniowski and Z. Hanzálek, “Formal verification on multitask-
ing applications based on timed automata model,” Real-Time Sys-
tems, vol.38, pp.39–65, 2008.

[7] “Trampoline – opensource RTOS project.” http://trampoline.rts-
software.org.

[8] G.J. Holzmann and T.C. Ruys, “Effective bug hunting with Spin and
Modex,” Model Checking Software: The SPIN Workshop, April
2005.

[9] G.J. Holzmann, R. Joshi, and A. Groce, “Model driven code check-
ing,” Automated Software Engineering, pp.283–297, 2008.

