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Winning the Kaggle Algorithmic Trading Challenge with the
Composition of Many Models and Feature Engineering

Ildefons MAGRANS DE ABRIL†a) and Masashi SUGIYAMA†b), Members

SUMMARY This letter presents the ideas and methods of the winning
solution∗ for the Kaggle Algorithmic Trading Challenge. This analysis
challenge took place between 11th November 2011 and 8th January 2012,
and 264 competitors submitted solutions. The objective of this competi-
tion was to develop empirical predictive models to explain stock market
prices following a liquidity shock. The winning system builds upon the
optimal composition of several models and a feature extraction and selec-
tion strategy. We used Random Forest as a modeling technique to train all
sub-models as a function of an optimal feature set. The modeling approach
can cope with highly complex data having low Maximal Information Coef-
ficients between the dependent variable and the feature set and provides a
feature ranking metric which we used in our feature selection algorithm.
key words: Kaggle challenge, model architecture, boosting, feature selec-
tion, high frequency trading, liquidity shock, maximal information coeffi-
cient

1. Introduction

The goal of the Kaggle Algorithmic Trading Challenge was
to encourage the development of empirical models to predict
the short term response of Order-Driven Markets (ODM)
following large liquidity shocks [1]. A liquidity shock is de-
fined as any trade that changes the best bid or ask price. Liq-
uidity shocks occur when a large trade (or series of smaller
trades) consumes all available volume at the best price.

This letter presents an empirical model meant to predict
the short-term response of the top of the bid and ask books
following a liquidity shock. This kind of model can be used
as a core component of a simulation tool to optimize execu-
tion strategies of large transactions. Compared to existing
finance research models [2], [3], we were not interested in
understanding the underlying processes responsible for the
price dynamics. On the other hand, by chasing the optimal
predictor we may have uncovered interesting insights that
could be a source of research inspiration.

The challenge data consists of training and test
datasets. The training dataset is meant to fit a predictive
model and contestants are asked to submit predictions based
on the test dataset using this model. The training dataset
consists of 754018 samples of trade and quote data observa-
tions before and after a liquidity shock for several different
securities of the London Stock Exchange (LSE). Changes
to the state of the order book occur in the form of trades and
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quotes. A quote event occurs whenever the best bid or the
ask price is updated. A trade event takes place when shares
are bought or sold.

The test dataset consists of 50000 samples similar to
the training dataset but without the post-liquidity shock ob-
servations (i.e., time interval 51–100). Due to a data bug,
the quotes at time 51 and 50 were the same. Therefore,
the final objective was to predict the post-liquidity shock
observations in the interval 52–100. In addition to the
bid and ask price time series, each training and test sam-
ple contains some few variables to distinguish the particu-
lar security (security id), to indicate whether the trade has
been initiated by a buyer or a seller (initiator), the volume-
weighted average price of the trade causing the liquidity
shock (trade vwap) and the total size of the trade causing
the liquidity shock (trade volume) [1].

2. Model

The search for an optimal model was guided by one hypoth-
esis and an additional self-imposed constraint:

Hypothesis: The predictive potential closer to the liq-
uidity shock should be higher and it should degrade with
the distance. The rationale of this hypothesis is that future
events will depend also on post-liquidity shock events that
still need to be predicted. Therefore, the prediction error
will tend to increase with the distance from the liquidity
shock.

Constraint: Feature extraction should generate seman-
tically meaningful features. This self-imposed constraint
was motivated by one of the authors’ will to generate a pre-
dictive model with the highest possible explanatory capac-
ity.

In the following sections we will show how these two
points were strong potentials that helped to reach a good
solution and finally to win the competition.

2.1 Architecture

The model architecture consists of separate models for bid
and ask. Bid and ask models are each further divided into
K sub-models responsible for predicting a constant price at
specific future time intervals between 52 and 100. The set P
consists of K disjoint time intervals and its union is the full
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Algorithm 1 Time interval partitioning algorithm
1: b← e← 52; P← NULL; i← 1
2: while b < 100 do
3: Ci ← NULL; e← b + length(Ci); bestError← ∞
4: repeat
5: Ci ← createTimeInterval(b,e)
6: Call ← createTimeInterval(e+1,100)
7: error← evaluateModel(P,Ci,Call)
8: if bestError > error then
9: bestError← error

10: end if
11: e← e + 1
12: until bestError� error
13: addTimeInterval(P, Ci)
14: i← i + 1; b← e
15: end while

interval 52–100:

Mbid(t) =
K∑

i=1

ai,t Mbid,i(t), Mask(t) =
K∑

i=1

ai,t Mask,i(t),

where ai,t =

⎧⎪⎪⎨⎪⎪⎩
1 if t ∈ Ci,

0 otherwise,
t ∈ [52, 100].

Ci represents the i-th K post-liquidity shock time interval
and Mbid/ask,i(t) is the sub-model responsible for predicting
the constant price on the interval Ci.

Dividing the future time interval into the set of inter-
vals P should avoid mixing the low signal-to-noise-ratio of
“far-away” prices with the more predictable prices close
to the liquidity shock. An additional model feature is
that time intervals should have an increasing length (i.e.,
length(Ci+1)≥length(Ci)). This feature is a consequence of
the main hypothesis because an always increasing predic-
tion error may require averaging longer price time series to
obtain a constant price prediction with an acceptable error.

Algorithm 1 is responsible for dividing the future time
interval 52–100 into disjoint and consecutive sub-intervals
of increasing length (line 3). It is implemented as a greedy
algorithm and it is able to partition the post-liquidity shock
time interval with O(n) time complexity.

2.2 Feature Engineering

Our feature engineering strategy is, together with the model
architecture, one of the relevant contributions of this letter
and an important piece of our success. The following two
sections describe in detail the feature extraction and selec-
tion methods. However, a key component of the feature se-
lection method, the feature selection algorithm, will be pre-
sented later in Sect. 2.3 because it has a strong dependency
on the modeling approach that we have chosen.

2.2.1 Feature Extraction

The semantically meaningfulness constraint discussed in the
beginning of Sect. 2 encouraged the development of more
than 150 features (predictors) with well-known characteris-
tics:

Price: Price features provide information about the
bid/ask normalized price time series (price values divided
by the post liquidity shock price). Technical analysis [4]
and statistical estimators are the fundamental instruments to
compute these predictors (e.g., the detrended price oscilla-
tor, the exponential moving average of the last n [bid/ask]
prices before the liquidity shock, the number of price incre-
ments during the last n [bid/ask] prices before the liquidity
shock).

Liquidity book: This class contains all features able to
provide information about the depth of the liquidity book
(e.g., liquidity book improvements in the last n time periods
understood as bid/ask price increases between two consecu-
tive quotes).

Spread: Spread related features are meant to distill in-
formation about the bid/ask spread. As price features, tech-
nical analysis and statistical estimators are the fundamental
instruments to compute these predictors. Before computing
the predictor, spread time series were divided by the mini-
mum price increment allowed for the particular security id
(e.g., exponential moving average of the last n spreads be-
fore the liquidity shock).

Rate: This class of features provides information about
the arrival rate of orders and/or quotes (e.g., number of
quotes and/or trades during the last n events).

2.2.2 Feature Selection

Not all features have the same predictive potential. More-
over, just choosing a set of features which are most related
to the predicted variable could generate a highly collinear
feature set which could be very confusing for our model fit-
ting algorithm. Overfitting could also be a consequence of
having too many features as we may tend to describe ran-
dom errors. In addition, as discussed in Sect. 2.1, we have
to fit bid and ask models composed in turn by several sub-
models. An exhaustive search of the optimum feature set
for all bid and ask sub-models is not feasible. This section
discusses the feature selection strategy. It is meant to iden-
tify a suitable minimal subset of features with low mutual
interdependencies and we want to achieve that goal with af-
fordable computing resources in an acceptable amount of
time. Having those goals and constraints, we have defined
a feature selection method which consists of the following
components:

Relaxation of the feature selection optimization prob-
lem: A highly time consuming feature selection strategy
would consist in choosing an optimal feature sub-set for
each of the many sub-models of the architecture described
in Sect. 2.1. We simplified this step by choosing only two
feature sub-sets: A sub-set common to all sub-models that
describe the future bid price (Fb) and a second feature sub-
set common to all sub-models that describe future ask price
(Fa).

Feature selection algorithm: It is an algorithm to
choose the suitable feature sets (i.e., Fb and Fa). The details
of this algorithm will be presented in the following section
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together with our modeling approach.

2.3 Modeling Approach

An initial analysis of the mutual information between fea-
tures and the dependent variable revealed a very low mutual
information and non-functional relationships according to
the Maximal Information Coefficient (MIC [5]): More than
90% of features had mutual information and functional met-
ric values below 10% of the maximum possible. This initial
analysis suggested us the need for a modeling approach able
to cope with the complex non-linear non-functional nature
of the challenge data.

Gradient Boosting Machines [7] and Random For-
est [6] have been successfully used in other challenges of
similar complexity [8]. A performance comparison between
these two approaches was carried out. For this exercise,
our modeling dataset consisted of 50000 samples randomly
sampled from the training dataset with the same security id
proportions than the test dataset. All features were com-
puted for each sample. We used a 4-fold cross validation
with a 75%–25% proportion for training and testing respec-
tively. Each model performance was measured by separately
computing the root mean squared error (RMSE) for the bid
and ask at each time step following a liquidity shock.

The optimized Gradient Boosting Machine and Ran-
dom Forest models delivered respectively an average cross-
validated RMSE of 1.163 and 1.156. This initial result sug-
gested us that Random Forest could be more appropriate for
this particular problem. Besides, the R implementation of
the Random Forest [6] has the embedded capability to mea-
sure the importance of each feature using out-of-bag obser-
vations. This was an additional motivation to select this
technique as a modeling approach.

2.4 Feature Selection Algorithm

Our feature selection algorithm (see Algorithm 2) is in-
spired by a similar method [9] already applied to the Her-
itage Health Prize dataset [8]. It is a backward feature elim-
ination method able to select an accurate feature subset with
acceptable time and computing resources. Our variant com-
putes the model performance of Step 2) using the evaluation
metric discussed in Sect. 2.3, and Steps 3) and 6) compute
the feature rank using the capabilities of the Random Forest
R package. We have also added Steps 10)–19). These ad-
ditional steps require a human expert. Steps 10)–15) corre-
spond to a backward feature elimination method and Steps
16)–19) correspond to a method to add features. For this
challenge, the semantic similarity among features was eval-
uated by one of the authors with amateur trading skills (e.g.,
two similar features are the exponential moving averages of
the last 3 and 5 bid prices. Two semantically orthogonal
features are the exponential moving average of the last 3 bid
prices and the bid/ask spread before the liquidity shock).

Algorithm 2 Feature selection algorithm
1: Train a single piece model using all S features
2: Compute model performance against the test set
3: Rank features importance (RF importance method)
4: for each subset size S i=S , S − 1, . . . , 1 : do
5: Retrain the model with only S i most important features
6: Re-compute individual variable importance and re-rank
7: Fit the model to S f features and rank individual features
8: end for
9: Determine which S i yielded the smallest RMSE. Call this S f

10: repeat
11: Choose a set of semantically similar features from S f

12: Select the feature with less rank not selected before
13: Evaluate the model performance
14: If smaller RMSE, then remove the feature
15: until no improvement
16: repeat
17: Choose a feature set among the already removed in Steps 1)-9)

considering only those semantically orthogonal with the already se-
lected in Steps 1)-15)

18: If smaller RMSE, then we add the feature to S f

19: until no improvement

3. Validation

The first step to validate the model ideas was to select a
suitable feature subset. We applied the feature selection al-
gorithm described in Sect. 2.4 to the same sample dataset
used in the same section to evaluate the suitability of dif-
ferent modeling approaches. According to the discussion
in Sect. 2.2.2, we should have applied our feature selection
algorithm separately to single piece bid and ask models de-
fined in the full time interval 52–100. However, due to time
constraints, we only optimized one side Fb. Fa was esti-
mated from Fb by just taking the ask side of price features.
The selected feature sets Fb and Fa were used by all bid and
ask sub-models respectively as suggested by the optimiza-
tion problem relaxation described in Sect. 2.2.2.

The following step was to learn the optimal set P of
time intervals. We used again the same sample dataset used
in Sect. 2.3 to evaluate the suitability of different modeling
approaches and computed the Fb feature subset found in the
previous step. The application of the partitioning algorithm
(Sect. 2.1) on the bid model (i.e., Mbid(t)) delivered the fol-
lowing set of time intervals: {52–52, 53–53, 54–55, 56–58,
59–64, 65–73, 74–100}.

Our final model fitting setup consisted of three datasets
of 50000 samples each randomly sampled from the train-
ing dataset and with the same security id proportions as the
test dataset. We computed Fb and Fa for each sample and
trained a complete model with each training dataset. Finally,
the models were applied to the test dataset and the three
predictions from each sub-model were averaged. Figure 1
shows the evolution of the public and private scores during
the two months of the competition. The private score is the
RMSE on the full test set. The private score was only made
public after finishing the competition. The public score is
the RMSE calculated on approximately 30% of the test data.
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Fig. 1 Evolution of public (dashed line) and private (solid line) scores.
Feature extraction, selection, model partitioning and final prediction aver-
age were performed sequentially as indicated in the plot.

The public score was available in real time to all competi-
tors.

Public and private scores are more correlated during the
initial process of adding new features than during the second
process of selecting the optimal feature subset. This lack
of correlation could be due to a methodological bug dur-
ing the execution of the feature selection algorithm: During
this step the authors used a single dataset of 50000 sam-
ples instead of the three datasets used in the other vali-
dations stages. This could have biased our feature selec-
tion towards those features that better explain this particular
dataset. Finally, the best solution was obtained by averaging
the predictions obtained from each of three models fitted
respectively with the three sample datasets (last three sub-
missions). In order to test the main hypothesis, we also sub-
mitted an additional solution based on a single-piece model
(4th and 5th last submissions). The many-piece model solu-
tion clearly provided the final edge to win. Therefore, we
consider that this is a strong positive indicator for the model
hypothesis discussed in Sect. 2. It is worth mentioning that,
according to information disclosed in the challenge forums,
a common modeling choice among most competitors was to
use a single time interval with constant post liquidity shock
bid and ask prices. This is an additional clue that points to
the suitable implementation of our main hypothesis as a key
component of our solution.

4. Conclusions

This letter presented our solution for the Kaggle Algorith-
mic Trading Challenge. Our main design hypothesis was
that the predictive potential close to the liquidity shock
should be higher and it should be degraded with the dis-
tance. This hypothesis guided the design of our model ar-
chitecture and it required a complex feature extraction and
selection strategy. An additional self-imposed constraint on
this strategy was to uniquely generate semantically mean-
ingful features. This self-imposed constraint was motivated
by the authors’ will to generate a predictive model with the
highest explanatory potential, but it also helped to identify
features which had not been initially selected using a simple
backward feature elimination method.
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