IEICE TRANS. INE. & SYST., VOL.E96-D, NO.1 JANUARY 2013

[PAPER

Architecture and Implementation of a Reduced EPIC Processor

Jun GAO'™, Minxuan ZHANG', Zuocheng XING', Nonmembers, and Chaochao FENG', Student Member

SUMMARY This paper proposes a Reduced Explicitly Parallel Instruc-
tion Computing Processor (REPICP) which is an independently designed,
64-bit, general-purpose microprocessor. The REPICP based on EPIC ar-
chitecture overcomes the disadvantages of hardware-based superscalar and
software-based Very Long Instruction Word (VLIW) and utilizes the coop-
eration of compiler and hardware to enhance Instruction-Level Parallelism
(ILP). In REPICP, we propose the Optimized Lock-Step execution Model
(OLSM) and instruction control pipeline method. We also propose reduced
innovative methods to optimize the design. The REPICP is fabricated in
Artisan 0.13 um Nominal 1P8M process with 57 M transistors. The die
size of the REPICP is 100 mm? (10 x 10), and consumes only 12 W power
when running at 300 MHz.

key words: ILP, EPIC, IA-64, processor architecture, hardware implemen-
tation

1. Introduction

Over the past two decades, designers have focused on in-
creasing frequencies and exploiting parallelism to improve
the performance of processors. The development of semi-
conductor technology has led to the rapid increase in pro-
cessor frequency. However, with the increasing complexity
of integrated circuits, the frequency enhanced by using ad-
vanced technology is limited. To enhance the performance
of processors further, it must be depended on improving the
processor architecture [1].

ILP has made great contribution to improve the per-
formance of the processor. There are two traditional ILP
approaches: superscalar and VLIW [2]. Superscalar is
a hardware-based approach and shown to have diminishing
profit returns because of the increasing design complexity,
which imposes a great challenge on integrated circuits in-
dustry. In contrast, VLIW is a software-based static com-
piler technique, which can analyze program with a large
virtual instruction window globally. It can exploit more
ILP than superscalar, and hardware design is much sim-
pler. However, VLIW has its own drawbacks in handling
numerous dynamic indeterminate factors in programs, such
as the dynamic behaviors of branch, the indeterminacy of
access time, etc. It also has serious problems of wasted code
space and poor code compatibility. Consequently, an ILP-
oriented technique, Explicitly Parallel Instruction Comput-
ing (EPIC), has emerged.

Manuscript received April 12, 2012.
Manuscript revised August 15, 2012.
"The authors are with School of Computer, National University
of Defense Technology, China.
a) E-mail: gjun78 @sina.com
DOI: 10.1587/transinf.E96.D.9

As a design philosophy, EPIC takes advantage of both
static and dynamic scheduling sufficiently, utilizing the co-
operation of compiler and hardware to enhance ILP. It
can not only develop as much ILP as VLIW but also has
fixed-length instructions and supports register-register op-
erations similar to those in the superscalar RISC processor.
EPIC avoids the hardware complexity of superscalar and the
code space waste, poor code compatibility of VLIW, and
introduces a communication mechanism between compiler
and processor. Processor can expose hardware characteris-
tics to compiler. Using this, compiler performs instruction
scheduling and optimization, and then sends the information
of optimization to hardware to guide the pipeline execution.
Furthermore, EPIC emphasizes adaptive adjustment accord-
ing to the dynamic changes of hardware resources [3].

This paper proposes a Reduced Explicitly Parallel In-
struction Computing Processor (REPICP) which is a 64-bit
general-purpose microprocessor. REPICP is based on EPIC
design philosophy and [A-64 architecture. Compared with
IA-64 architecture, REPICP is a reduced design, which re-
moves the [A-32 engine, reduces instruction dispatch, sim-
plifies memory hierarchy, decreases memory capacity and
omits the hardware implemented Virtual Hash Page Table
(VHPT). In REPICP, we propose the Optimized Lock-Step
execution Model (OLSM) and instruction control pipeline
method to improve the performance. The REPICP is fab-
ricated in Artisan 0.13 um Nominal 1P8M process with
57M transistors. The die size of the REPICP is 100 mm?
(10 x 10), and consumes only 12 W power when running at
300 MHz.

The rest of the paper is organized as follows. Section 2
overviews the related work. Section 3 describes REPICP ar-
chitecture. Section 4 discusses details of REPICP microar-
chitecture. Section 5 describes the physical implementation
of REPICP. In Sect.6, the experimental results are pre-
sented and analyzed, followed by the conclusion and future
work in Sect. 7.

2. Related Work

Some principles of EPIC originate from VLIW architec-
ture, such as the long statically bundled instruction for-
mat and Non-Unit Assumed Latency (NUAL) execution
model. The contemporary VLIW processors are primar-
ily successful as embedded media processors for consumer
electronic devices, including the TriMedia media proces-
sor [4] by NXP, the SHARC DSP [5] by Analog Devices,

Copyright © 2013 The Institute of Electronics, Information and Communication Engineers

10

and the STMicroelectronics ST200 family [6] based on the
Lx architecture.

As a descendant of VLIW, EPIC is strongly sup-
ported by HP-Intel alliance as general-purpose high perfor-
mance processors due to its simplicity and power-efficient.
Itanium [7], [8] is the first generation implementation of
Intel IA-64 architecture which is based on EPIC design phi-
losophy. Tukwila [9], a four-core, eight-thread next gener-
ation Itanium, came to market in the first quarter of 2010.
Intel Itanium series appear to be the widest used EPIC
architecture.

Using Application Specific Integrated Circuit (ASIC)
design methodology to design a high performance processor
is not very practical. EPIC architecture can achieve relative
higher performance with relative simpler hardware, thus is
a more suitable architecture for ASIC implementation due
to the limitation of ASIC. With the purpose of getting es-
sentials of EPIC and designing a locally used low power
processor, we have implemented a 64-bit general-purpose
REPICP.

3. REPICP Architecture

This section presents instruction set architecture, sys-
tem architecture, predication and speculation technique of
REPICP.

3.1 Instruction Set Architecture

Implemented based on IA-64 architecture, the instruc-
tion set architecture (ISA) of REPICP resembles that of
TA-64[10]. Similar to VLIW, the instructions of the
REPICP ISA are encoded in bundles. As can be shown in
Fig. 1, each bundle is 128 bits, contains three 41-bit instruc-
tion slots and a 5-bit template field.

Figure 2 shows the format of instruction held in slot.
Instruction slots in the same bundle have the degrading pri-
orities from slot0 to slot2.

Generated by complier, the template specifies what
types of execution units each instruction in the bundle re-
quires. The template also holds the stop information asso-
ciated with instruction dependence in the bundle. The com-
piler encodes a stop when dependence exists, and the hard-
ware issues the instructions separately according to the stop
information. Besides, the hardware can dynamically collect
resource information and specify an implicit stop when re-
source is adjusted, which is called adaptive scalability.

3.2 System Architecture

The system architecture of REPICP includes instruction
fetch unit, branch prediction unit, instruction queue, instruc-
tion dispatch unit, execution unit, instruction control unit,
register files and system bus, as shown in Fig. 3.

The program is loaded by instruction fetch unit, which
consists of PC (Program Counter), L1ICache, and L1ITLB.
PC is up to 64-bit wide and supports both virtual and real

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

127 87 86 46 45 54 0
Slot2 Slot1 Slot0 Template
41 41 41 5

Fig.1 Bundle format of REPICP.

40 2726 2019 1312 65 0

Destination Source Source Predication

Opecode
P register register2 register 1 register

Fig.2 Instruction format of REPICP.

addresses. Instructions of REPICP are aligned on 128-bit
boundary. L1ICache is four-way set associative, 16 Kbytes,
with 32-byte blocks. L1ICache supports simultaneous write
and read, and single-cycle non-blocking accesses. L1ITLB,
which is full associative with 32 entries and a 4-Kbyte-page
size, handles the instruction address translated from virtual
to real.

The branch prediction unit (BP) of REPICP supports
both hardware and software branch prediction. In soft-
ware branch prediction, compiler generates prediction in-
structions, and hardware utilizes the software prediction in-
formation to guide the hardware branch prediction unit. In
hardware branch prediction, multi-level branch prediction
schemes, including IP-based single cycle prediction, adap-
tive multi-path prediction, return address prediction and pre-
diction adjustment based on fetched instructions, improves
the prediction accuracy and reduces pipeline flush caused by
branch mis-prediction.

Instruction queue holds instructions that has been
fetched from L1ICache and but not yet dispatched. It acts
as a separate buffer, decouples the front end from the back
end, and thus makes them independent with each other. In
other words, instruction fetch in the front end still works
when the back end is blocked. Similarly, as long as the in-
struction queue is not empty, the back end continues to issue
instructions even if the front end is blocked.

Instruction dispatch unit delivers instruction bundles to
the execution units of the pipeline. There are 11 instruc-
tion issue ports in REPICP, corresponding to four memory
units (M), two integer units (I), two floating point units (F)
and three branch units (B) respectively. The dispatch win-
dow of REPICP can hold two instruction bundles, three in-
structions each, and thus can issues up to six instructions per
cycle.

There are abundant hardware resources in REPICP, in-
cluding 11 execution units: four memory units, two inte-
ger units, two floating point units and three branch units.
Memory unit, consisting of L1DCache, LIDTLB, L2Cache,
and Advance Load Address Table (ALAT), fulfils data ac-
cess, memory management and integer ALU operations.
L1DCache is 16 K bytes, with 64-byte blocks and is write
through and no-write allocate on a write miss. It supports
four simultaneous write and read, and single cycle non-
blocking access. LI1DTLB which is full associative with
32 entries and page size ranging from 4-Kbyte to 4-Gbyte,

GAO et al.: ARCHITECTURE AND IMPLEMENTATION OF A REDUCED EPIC PROCESSOR

| REN |WLD|REG| EXE

11

| WRB |

IPG | FET | ROT EXP DET
| BP | Dependence Controller
l Elng Hee
— o e S 3BUs ™
- w || L=
= | Instruction = — g
5 2
g Queue =:‘—> v(-_? ; 2FUs g
= d ing g
LR it e
> =™ & =1
= B = g
5 Z e = o i I~ g
& E= SN 2 E g >
E = = | o>
L | Z > ® |
| L2Cache |

| Bus Controller

Fig.3

handles virtual to real address translation. L2Cache is
a data/instruction mix cache with 128-byte blocks, and sup-
ports four requests each cycle through the multi-bank tech-
nique. L2Cache employed the four-state Modified, Exclu-
sive, Shared, Invalid (MESI) protocol and write back policy
to maintain cache coherency between multiple processors.
L2Cache can handle data requests and instruction requests
simultaneously. ALAT, which is an address conflicts de-
tect table with 32 fully associative entries, is used to detect
the address conflicts between speculative load and previous
store, and acts as an important control mechanism for load
data speculation. If a conflict is detected, then the specula-
tive load fails. Integer unit deals with integer ALU and mul-
timedia operations. Floating point unit supports both single
and double precision floating point arithmetic and complies
with IEEE754 standard. In addition, it supports 82-bit ex-
tended double precision floating point operations to meet
the demand of scientific computation applications. Float-
ing point unit also implements Single Instruction Multi Data
(SIMD) operations for single precision floating point data.
Branch unit is responsible for the transfer of control, and
supports jump within 64-bit address space. Three branch
units can work together, executing multiple parallel branch
operations based on the compiler scheduling.

Instruction control unit consist of both dependence
controller and interrupt controller. Dependence control in
REPICP is handled by both hardware and software in a co-
operative way. Software schedules the instructions to en-
sure there is no read-after-write (RAW) or write-after-write
(WAW) dependence among instructions in the same instruc-
tion group, while hardware only concerns about the RAW
and WAW dependence between different instruction groups.
REPICP employs scoreboard mechanism and records the
states of registers in scoreboard. If data dependence is de-
tected, the scoreboard will stall the pipeline until the de-
pendence is resolved. Interrupt controller handles the in-
terrupt and detects all the exceptions from each execution

System architecture of REPICP.

unit before instruction commit, and then handles these ex-
ceptions according to the order of instructions to ensure
accuracy.

According to the EPIC design philosophy, REPICP
provides abundant register files, including 128 general pur-
pose integer registers (GR), 128 floating point registers
(FR), 64 predicate registers (PR), 8 branch registers (BR),
128 application registers and 82 control registers. This ben-
efits compiler scheduling and parallelism exploiting. More-
over, REPICP implements register rotation for GR, FR and
PR, facilitating software pipelining. For the call and return
of function, register stack engine, which is implemented in
hardware, provides software with a logically unlimited num-
ber of registers.

The system bus of REPICP is compatible with the Intel
Itanium series, connecting the off-chip bridge processors.
In order to improve the transfer rate, data bus is designed
with double speed source synchronization signal latch pro-
tocol (2X transfer speed). Data is transmitted at the rising
and falling edge of the bus clock. Selection signal (STBP#,
STBN#) is transmitted at the 25% and 75% point of the bus
clock. Receiver uses the selection signal to capture data. All
other buses use synchronized common clock latch protocol
(1X transfer speed).

3.3 Predication Technique

As an effective technique[11], predication employs a bit,
called predicate, for each predication instruction. Instruc-
tions after the branch are predicated by specifying a predi-
cate register, which indicates the legitimacy of the instruc-
tion. Therefore, control dependence is converted to data de-
pendence, eliminating branch instructions and avoiding the
extra cost of branch mis-prediction. Besides, it is more con-
venient for compiler to schedule instructions across branch.

REPICP defines a set of one-bit predicate registers to
hold the results of branch comparing. Each predication

instruction uses a predicate register to specify the execute
condition. If the register value is ‘true’, the instruction can
be executed and the states can be updated, otherwise the in-
struction would be treated as a NOP instruction.

3.4 Speculation Technique

In order to alleviate the long memory access delay, spec-
ulation is adopted in REPICP, including data speculation,
which moves loads across stores, and control speculation,
which moves loads across branches. If the speculation suc-
ceeds, access delay is concealed and performance is im-
proved. Otherwise, recovery mechanisms are needed to en-
sure the correctness of programs.

REPICP provides both data speculation and control
speculation. For data speculation, the compiler places
a check instruction at the location of the load instruction,
and then the load instruction is moved across the store in-
struction. Executing this load instruction will create an entry
in the ALAT, which records address of the load. When the
store is executed, an associative lookup against the ALAT
entries is performed. If there is an entry matched, a con-
flict is found and an entry matching is cleared. When check
instruction is executed, an associative lookup against the
ALAT entries is also performed. If an entry matching ex-
ists, the data speculation is marked as success. Otherwise,
the load speculation fails, and non-speculative load or re-
covery codes are needed.

Control speculation differs from data speculation
slightly, with a series of speculative instructions executed,
which may not need to be executed in fact. If the instruc-
tions need not to be executed, just discard the correspond-
ing results. Similarly, if exception occurs when executing
such instructions, the exception should be ignored. Defer-
ring exception handle for control speculation instructions
till the confirmation of speculative instructions for excep-
tion is considered to be effective [12]. Deferring exception
is supported by adding an extra bit in registers, called Not
a Thing (NaT) bit. To deal with control speculation, a check
instruction is placed at the location of the load instruction. If
an exception arises at the time of executing the speculative
load instruction, then the extra bit NaT of the destination
register is set and the exception is deferred. If the load in-
struction needs not to be executed, the exception is ignored.
If the load instruction needs to be executed, then the check
instruction determines whether the NaT bit is set. If the NaT
bit is not set, the control speculation succeeds. Otherwise,
recovery jumped from the check instruction is needed.

4. REPICP Microarchitecture

REPICP is a reduced design based on EPIC architecture.
This section presents the details of the REPICP microarchi-
tecture, including pipeline, execution mode, logic reduction
and optimization.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

4.1 Pipeline

Figure 3 shows the ten-stage pipeline of REPICP, includ-
ing IPG (Instruction Pointer Generate), FET (Instruction
Fetch), ROT (Instruction Rotation), EXP (Instruction Ex-
pand), REN (Register Rename), WLD (Word Line Decode),
REG (Register File), EXE (Instruction Execution), DET
(Deferred Exception Detected) and WRB (Write Back). The
function of each stage is introduced as follow:

In the IPG stage, an IP-select multiplexer determines
the proper IP for ICache access. Two instruction bundles
can be fetched each cycle. Odd bundle address should be
aligned to even address, therefore only the useful bundle is
fetched, and others are abandoned.

In the FET stage, ICache is accessed simultaneously
with ITLB access and tag comparison. On an ICache miss,
the instruction bundles are filled from L2 Cache through the
bypass logic.

After the FET stage, instructions and the pre-decode
bits are inserted into the instruction buffer. Instruction buffer
can hold up to eight bundles. If the instruction buffer is
empty, the instructions and the pre-decode bits are sent di-
rectly to the instruction window, which has a capacity of
two instruction bundles, including six instructions. If the in-
struction buffer is full, a signal is generated to indicate the
overflow and instruction fetch stops. Instructions alignment
will be performed in the ROT stage according to the EXP
instruction window information collected per cycle. This is
a guarantee of issuing two bundles per cycle.

The two bundles templates in the current instruction
window are decoded in the EXP stage. Instructions are dis-
patched to the corresponding ports according to the tem-
plates field and dispatch rules, as long as there is no stall
or not short of resources. Compiler sets the template field,
which indicates the execution units and the corresponding
stall bits. Information of hardware resources was detected
dynamically by hardware.

In the REN stage, re-mapping of logical register to
physical register is performed. In REPICP, only physical
register indicates the actual register file that can be accessed.
Furthermore, register renaming is implemented for both reg-
ister stack and rotation in REPICP.

The word line decoding of register files is implemented
in the WLD stage. The REG stage performs register file
access, source operands read, data dependence check and
scoreboard update.

In the EXE stage, instructions are executed in func-
tional units, which are fully pipelined. Therefore, there is
always a new instruction ready to be executed every cycle
without stall.

The DET stage is responsible for exception detection
and handle. When an exception happens, the pipeline would
be flushed. In addition, the DET stage is the second exe-
cution stage of the integer pipeline for multimedia instruc-
tions, and is also a stage of the memory pipeline, respon-
sible for updating the ALAT table. Branch pipeline checks

GAO et al.: ARCHITECTURE AND IMPLEMENTATION OF A REDUCED EPIC PROCESSOR

in-orde
issue

13

IPG | FET | ROT | EXP | REN | WIID | REG EXE”]]:'[E]ﬂ&iB
S
—~
instruction buffer lock step J
L2L | L2A | L2M | L2D| L2C | L2W
(a)
in-ordei in-order™\ /in-order exception detection
issue executiol ommi
7
IPG | FET | ROT | EXP | REN | WIID | RIEG | EXE | OET | WRB out-of-order
complete
t | t
- . v J
instruction buffer lock step
L2L | L2A | L2M | L2D | L2C | L2W
(b)
Fig.4 (a) LSM of EPIC. (b) OLSM of REPICP.

the branch prediction in the DET stage. If the branch pre-
diction is false, the pipeline would be flushed and the new
instruction pointer would be sent to the IPG stage. In the
WRB stage, instruction retirement and architecture state up-
date are performed.

4.2 Optimized Lock-Step Execution Model

In EPIC, any instruction i; can be issued if all previous in-
structions have been issued or issued simultaneously with i;.
Instructions that can be issued simultaneously are treated as
an executing group, which is specified by the compiler. The
issue mode of EPIC, in essence, is in-order issuing, which
enhances the instruction-level in-order issue to group-level.
In REPICP, each group-level issues up to six instructions
per cycle. And such group-based in-order issuing mode
achieves high instruction issue performance, in respect that
11 execution units in REPICP are fully pipelined.

The basic EPIC structure adopts Lock-Step Model
(LSM), in which multiple instructions in the same issue
group move forward with synchronization before entering
into the EXE stage and instructions in different issue groups
don’t intersect before entering into the EXE stage and re-
main the strict order. However, after the issue group en-
ters into the EXE stage, due to the uncertainty of the mem-
ory operation latency, the commit time of the instruction
arriving at the DET stage in the same issue group is also
uncertain. In order to maintain the correction of the pro-
gram, each pipeline needs a delay buffer to write results. As
soon as the results of out-of-order executing are available,
it will write results into the delay buffer. Once all instruc-

tions in the same issue group execute completely, they can
be committed simultaneously. The DET stage of all func-
tion pipeline need to adopt a delay buffer queue with the
same depth to buffer the results. Figure 4 (a) shows the in-
order issuing, out-of-order executing, in-order committing
and in-order completing in LSM of EPIC. The memory op-
eration is responsible for accessing the L1D Cache at the
EXE stage. If the accessing is missing, it needs to access
the L2 Cache or main memory, and then fill the L1D Cache
and the delay buffer. After all data of the same issue group
in the delay buffer are available, it will enter into the DET
stage to commit instructions in order and support accurate
interruption, and finally write back the results in order.

The depth of the delay buffer queue in the basic EPIC
structure will affect the performance directly. The deeper
the depth of the buffer queue is, the higher the potential
Memory-Level Parallelism (MLP) is and the higher perfor-
mance the system can achieve, but the required hardware
cost is larger. In addition, because of the introduced buffer,
each entry in the buffer may become the register of the re-
sults, which will introduce large cost of dependent control
logic and data bypass logic and make the latency of the cir-
cuit uncontrollable.

In fact, most of operations in EPIC can finish the calcu-
lation at the EXE stage. Although a few memory operations
cannot finish all calculations at the EXE stage, whether an
exception occurring or not can be confirmed before enter-
ing into the DET stage. Based on this feature, we propose
an Optimized Lock-Step execution Model (OLSM) [13]. In
OLSM, the time point of the instruction commit and the data
write-back is divided. When an instruction is committed in

the DET stage, it only checks whether the instruction causes
an exception or not and do not check whether the data have
been written back or not. Figure 4 (b) shows the in-order
issuing, in-order executing, in-order committing and out-of-
order completing in OLSM of REPICP. The stages before
DET work under in-order mode. The memory operation fin-
ishes accessing the L1D Cache at the EXE stage. If the ac-
cess of the L1D Cache hits, the L1D Cache can provide data
directly. If the access of the L1D Cache misses, the L1D
Cache does not access L2 Cache directly. After the instruc-
tions in the same issue group enter into the DET stage to
commit in order, the control pipeline will control whether to
access the L2 Cache or not. If exceptions occur, it doesn’t
need to access the L2 Cache, otherwise the L2 Cache will
be taken as the data provider to write back data and fill the
L1D Cache.

The in-order committing and out-of-order completing
of OLSM will utilize a great number of computing and
memory resources to hide memory latency and improve
MLP significantly. The OLSM model removes the mech-
anism in basic EPIC model that developing MLP is depend-
ing on the buffer to improve performance. Removing the
buffer can reduce the hardware cost and make the control
simple. OLSM of REPICP is proved to be effective, not
only achieving higher performance but also making hard-
ware design simpler [13].

4.3 Instruction Control Pipeline

There are 11 pipeline stages in REPICP, and each instruc-
tion in the pipeline needs to know its own bundle IP to sup-
port precise interrupt or execute data transfer from bundle
IP to register files. If each pipeline stage contains the 64-bit
bundle IP, there are a large number of pipeline registers. Be-
cause the instruction dispatch window contains two bundles
and the dispatch logic always splits the bundle when en-
countering branch instructions, it can be inferred that the
simultaneous issue instructions have continuous IP. There-
fore, we propose an instruction control pipeline method [14]
based on OLSM, which carries the common information of
the 11 pipeline stages.

The instruction control pipeline is an individual
pipeline including IREN, IWLD, IREG, IEXE and IDET,
which can share a front pipeline with 11 execute pipelines.
The stage in the instruction control pipeline is correspond
with the stage in the execute pipeline and moves forward
in lock step with other pipelines. The instruction dispatch
module dispatches instruction to the execute pipeline at the
meanwhile dispatches the common information, such as IP
address, to instruction control pipeline. Figure 5 shows
the structure of the instruction control pipeline. The real
line and dashed line represent the data path and control
path between the instruction control pipeline and the exe-
cute pipeline respectively. The data path implements the
interaction of common information and the control path
implements the lock step execution. Comparing with the
traditional method that each pipeline takes the common in-

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

— pipeline

REN WLD REG EXE DET WRB
EXP
4 [4

Frqnt —— —
Pipeline IREN TWLD IREG IEXE IDET

instrudtion control fipelin
T T

[} [}
I

| | | |
~ v v v | %

Ly | Y
REN WLD REG EXE DET WRB

execution pipeline

Fig.5 Instruction control pipeline.

formation independently, using the instruction pipeline will
reduce the utilization of the stage registers significantly.
In REPICP, the required stage registers in the instruction
pipeline are only 1/11 of the traditional method. For the IP
address, the reduced number of flip-flop cells is 5 x 10 x 64,
where 5 is the number of pipeline stages, 10 is the number of
execute pipeline stages minus 1 and 64 is the bit-width of the
IP address. Except the reduced stage registers, using the in-
struction pipeline can still increase the signal locality, which
will reduce the interaction between the instruction control
system and the execution pipeline.

4.4 Logic Reduction and Optimization

REPICP is designed with Verilog language. We propose
many innovative methods to reduce and optimize the de-
sign. REPICP is a reduced design based on IA-64 architec-
ture, which removes the IA-32 engine, reduces instruction
dispatch, simplifies memory hierarchy from IA-64 three-
level to REPICP two-level, decreases memory capacity from
256 KB L2Cache to 128 KB L2Cache and omits the hard-
ware implemented Virtual Hash Page Table (VHPT).

In REPICEP, there are 11 instruction dispatch ports and
6 issue slots with 41-bit long instructions. Considering the
routing and timing of the large cross network caused by the
arbitrary instruction issue, some restrictions are employed
by IA-64 compiler to simplify the dispatch network, allo-
cating no more than 3 instruction types for each dispatch
port through only supporting 24 kinds of limited instruction
combinations which are defined by [A-64 instruction tem-
plates. Besides it, the asymmetry design strategy of multi
same type execution units is adopted in REPICP. In multi
execution units of the same type, one executes the entire
instructions and others execute the simplified common in-
structions. In order not to affect the performance, the dis-
patch units are designed to use pre-decoded main op-codes,
and prefer to dispatch the more districted instructions of the
same type firstly. Performance degradation due to asymme-
try design strategy is trivial, but chip timing and area are
improved.

There are four memory units in REPICP, using
single-port implementing multi-ports data cache to support
four simultaneous memory requests. REPICP adopts the

GAO et al.: ARCHITECTURE AND IMPLEMENTATION OF A REDUCED EPIC PROCESSOR

PORT3 PORT2 PORTI PORTO

I S S

Arbiter, Crossbar ‘

! ! ! !

BANK3 BANK2 BANK1 BANKO

! ! ! !

PORT2 ———|
’ Crossbar ‘

U e

HIT3HIT2 HITIHITO DATA3 DATA2 DATA1 DATAO

|
PORTO TAGO
I

PORT] ———»|

Fig.6 DTD multi-ports data cache.

Different Tag Data (DTD) design [15] for 16 K L1DCache
with 64-byte blocks. As depicted by Fig. 6, cache is made
up of data array and tag array. DTD design duplicates
resources, and produces four tag array copies, with each
copy corresponding to an access port. Therefore, the four
pipelines don’t stall for tag array access port conflict. DTD
adopts the cross multi-bank design for data array. Each bank
holds a 16 B of 64 B-sized block of L1DCache and the two
low bits of block address are crossed. Since only the differ-
ent access requests to the same bank in a cycle raise con-
flict, REPICP compiler can schedule instructions to avoid
the conflict. Conflicts that cannot be statically determined,
is detected at runtime by the hardware-implemented logic. If
bank conflict is detected, it is handled in the order of prior-
ity. The hardware implementation of static priority without
starvation is simple.

Exceptions are detected and arbitrated in the DET
stage. Branch exceptions can only be determined until the
branch predicate has been accessed in the DET stage, thus
the combinational path is rather long. Therefore, branch
stall mechanism is used in the DET stage of REPICP, which
means that the pipeline is halted one cycle for branch so as to
access the predicate first, and then performs exceptions ar-
bitration in the next cycle. As a result, the process of branch
exceptions is divided into 2 cycles, reducing the logic each
cycle and improving the chip frequency.

Multi-ports register files are implemented in REPICP
in order to support parallel execution of multi-function units.
For example, 128 65-bit general-purpose registers support
up to 12 reads and 8 writes per cycle. However, large multi-
ports register files cause the problem of long access delay
and restrict frequency. To overcome it, WLD stage is added
in REPICP pipeline, decoding the registers and dividing the
register access into two stages.

5. Physical Implementation

REPICP is designed with the ASIC design flow. We use
Design Compile of Synopsys Company for synthesis, SoC
Encounter of Cadence Company for floorplan, place and
route, Celtic of Cadence Company for crosstalk analysis,
Fireice of Cadence Company for RC extraction, PrimeTime
of Synopsys Company for static timing analysis, and Calibre

15

Fig.7 Layout for REPICP.

Table1 Technical parameters of REPICP.
Word Length 64 bits
Issue Width 6 instruction/cycle
Primary Cache 16KB Lllcache+16KB L1Dcache
Secondary Cache 128KB L2Cache
Frequency 300MHz@1.2V
Power 12W@1.2V
Process Technology 0.13um CMOS
Nominal Voltage 1.2v
Number of Metal Layers 8
Die Size 100mm* (10x10)
Transistor Count 57Mega
Package HPBGA
Number of Pins 696

of Mentor Company for physical verification. Figure 7
shows the layouts of REPICP.

Despite inserting WLD stage in logic design, large
multi-ports register files of REPICP for parallel execution
of multi function units, which needs 12 reads and 8 writes,
are still in the critical path. Therefore, in addition to the
standard ASIC design flow, harden design of large multi-
ports register files is implemented to shorten the critical path
more. By manual half-customized placement and routing,
the access delay of large multi-ports register files is reduced
more than 1/3 and the area of register files is also decreased.

REPICP is implemented with a standard-cell in Artisan
0.13 um Nominal 1P8M process, and die size is 100 mm?
(10x 10), its power is only 12 W when running at frequency
of 300 MHz. The chip integrates 57 Mega transistors and is
packaged into HPBGA with 696 pins. Table 1 lists the main
technical parameters of REPICP.

6. Performance Analysis
6.1 Reduced Structure Performance Analysis

The design of instruction dispatch and memory system in

16

REPICP is reduced in consideration of chip timing and
chip area. We simulate the performance of reduced strat-
egy to ensure its rationality. The simulation is based on the
Palladium hardware accelerator of Cadence Company, run-
ning both reduced and unreduced RTL design to test the ex-
ecution time of programs. We simulated three specint2000
and three specfp2000 benchmarks. The emulation fre-
quency of Palladium is 300 KHz.

Figure 8 shows the performance comparison of Non-
Restricted Instruction Dispatch and Restricted Instruction
Dispatch. The Non-Restricted Instruction Dispatch adopts
symmetric strategy of execution units which execution units
of the same type are designed the same to execute the en-
tire instructions. The Restricted Instruction Dispatch adopts
asymmetric strategy of execution units. One execution unit
with the same type implements a full version and others
implement a simple version. The full version supports all
instructions for the unit and the simple version only im-
plements several common instructions. For the Restricted
Instruction Dispatch, in order to avoid the negative effect
of the asymmetric strategy, we add a priority dispatch rule,
in which the main operation code of the instruction is pre-
decoded, the simultaneous issued instruction is adjusted
dynamically and the limited instruction is dispatched with
a higher priority. Through the extra dispatch restricted rules
introduced by Restricted Instruction Dispatch, the programs
execution time differs little. The area of the execution unit
can be reduced and the performance of the processor can be
improved. In REPICP, one of two I units and two of three
B units adopt the simplified design strategy. The areas of
one simplified I unit and B unit are 1/3 and 1/4 of the full
version [unit and B unit respectively.

Figure 9 shows the performance comparison between
real four-ports and virtual four-port L1DCache, which
also differ little in programs execution time. The vir-
tual four-ports L1DCache is implemented with the mem-
ory bank technique of DTD, and each bank holds 16 B of
the 64 B-sized block of L1DCache. The real four-ports
LIDCache is implemented with the technique of dupli-
cate data arrays, and four data arrays support four simul-
taneous memory requests. Compared with real four-ports
L1DCache, DTD designed virtual four-ports L1DCache ex-
ists bank conflict. However, this bank conflict can be
avoided effectively by instruction scheduling. Thus, Com-
pared with real four-ports L1DCache, DTD designed with
virtual four-port L1DCache decreases 3 data array area,
which is 3 x 16 KB, with almost the same performance of
the real four-ports L1DCache.

Due to the physical implementation restriction,
REPICP employs the reduced two-level memory hierar-
chy, decreasing the capacity of L2Cache from 256 KB to
128 KB. Figure 10 shows the performance of reduced and
non-reduced memory system, with large distinctions in pro-
grams execution time. Gzip, swim and equake access mem-
ory alot. Swim and equake equal to almost two to four times
of that of crafty and mesa, and gzip equals to even four to
eight times memory access. All these programs are typi-

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

500 O Non—Restricted
:c:, 200 W Restricted
S
£
E 300
& 200
5
S 100
2
0
gzip crafty twolf swim mesa equake
Fig.8 Instruction Dispatch comparison.
500 O 4-ports
E: 400 B virtual 4-ports
2
E 300
2 200
ey
S 100
2
0
gzip crafty twolf swim mesa equake
Fig.9 LI1DCache comparison.
500
O Non—Reduced
E 400 B Reduced
E
= 300
£ 200
>
S 100
“

gzip crafty twolf swim mesa equake

Fig.10 Memory System comparison.

cal memory-bound programs, whose performances are seri-
ously affected by the reduction of memory system. Twolf
and mesa don’t have much memory access. The reduction
of memory system has little impact on the execution time.
Compared with twolf, mesa accesses memory more irreg-
ularly. Therefore, as L2Cache decreases from 256 KB to
128 KB, replace conflict increases, resulting in longer pro-
gram execution time, which is unconspicuous. Memory ac-
cess of crafty is relatively low and regular, however, it is
seriously influenced by the capacity of memory. Therefore,
crafty is the most affected program by the reduction of the
memory system. When L2Cache decreases from 256 KB to
128 KB, crafty has two to three more times of access miss,
consequently its execution time increases much more than
other program. The design of REPICP memory system is
limited by chip physical implementation. Though reduced
memory system design increases the programs execution
time and affects the performance, it indeed saves the chip
area and improves chip timing.

6.2 Chip Performance Analysis
A special test board is designed for REPICP to verify chip

function and performance. The test system is made up of
two REPICPs, a north bridge implemented in FPGA, a spe-

GAO et al.: ARCHITECTURE AND IMPLEMENTATION OF A REDUCED EPIC PROCESSOR

REPICP REPICP
4 4
Y Y
4
Y
UART [*—%| Brdge (& Prozam
memory
A A
A4 A
Memory Network
controller controller

Fig.11 Structure of the test system.

- ',
, Network -
<Controller %

Memory - |}

Controller
\& i

Fig.12 REPICP-based test board.

cial network controller, a memory controller, a program
memory and a uart interface. Figure 11 shows the structure
of test system. Figure 12 shows REPICP-based test board.
On the test board, Reduced Linux OS and various applica-
tions can successfully run on REPICP.

Based on the test board shown by Fig. 12, we test
the REPICP chip performance by using spec2000 bench-
marks. Figure 13 is the experimental results of specint2000.
Figure 14 is the experimental results of specfp2000. An
800 MHz Itanium server (Dell WorkStation 730) is used
as the baseline for comparison[16]. The Itanium pro-
cessor has a 16 KB L1ICache, a 16 KB L1DCache and
a 96 KB L2Cache, and uses the Intel C++ and Fortran
Compiler 5.0.1. Our REPICP has the same configura-
tion for L1ICache and but larger L2Cache (128 KB) and
uses the Intel C/C++ and Fortran Compiler 9.0.18. Fig-
ure 13 and Fig. 14 show the execution time difference be-
tween REPICP, denoted by REPICP curve, and the base-
line Itanium, denoted by Itanium curve. The X axis rep-
resents different benchmarks used. The Y axis stands for
the execution time. As shown by the Fig. 13 and Fig. 14, the
execution time of REPICP is proportional to that of the base-
line Itanium at most points, indicating that though reduced,
REPICP is able to maintain performance feature of Itanium
while running some workloads. But compared with base-
line Itanium, the execution time of REPICP is quite long.

17

1800

. -
000 /RAWANY.J

=d=Itanium

runtime(s)

600
400
200

——REPICP

o) & A QX Q&S N
AN Q‘ &L ‘5:\ & & R @ o
AN &8 Q(’ k2 i\\q\ %Q(\. R o

Fig.13 SPECint2000 performance comparison.

3000

2500

2000 A /r
1500
’\ f —e—Itanium
1000
=li—REPICP
500

runtime(s)

swim
mgrid
applu
mesa
luca
frna3d
sixtrack
apsi

wupwise

Fig.14 SPECfp2000 performance comparison.

Three reasons may cause this drawback of REPICP. First
of all, REPICP is implemented with ASIC, rather than full-
custom, which limited its frequency to 300 MHz. Secondly,
to simplify the test, we use a self-designed 100 MHz north
bridge implemented with FPGA on the test board, with lim-
ited off-chip memory bandwidth. Thirdly, to save area, we
cut hardware implemented VHPT in REPICP.

7. Conclusions

REPICP is an independently designed 64-bit general-
purpose processor, supporting the main OS. The article
describes architecture, implementation and performance of
REPICP. REPICP is an IA-64 based processor that ex-
ploits EPIC philosophy. We have grasped 1A-64 ISA and
EPIC architecture design techniques in the implementation
of REPICP. EPIC architecture explores ILP of programs.
However, inherent ILP of programs is limited, Thread Level
Parallelism (TLP) is explored at a higher level. In future, we
will focus on the combination of EPIC, multi-thread, multi-
core in the corresponding processor design.

Acknowledgments

The authors acknowledge the contributions from the en-
tire REPICP research team. This work is partially
supported by national 863 plans projects under Grant
No. 2009AA01Z102 and by natural science foundation of
china under Grant No. 60970036, 60873016, 61170083,
61170045.

References

(1]

(2]

(3]
(4]
[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Zhang and Y. Wang, High-performance microprocessors: tech-
niques and architectures (in Chinese). Changsha: NUDT press,
2004.

J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quan-
titative Approach, pp.182-315, 3rd Edition, Morgan Kaufmann,
2002.

M.S. Schlansker and B.R. Rau, “EPIC: Explicitly parallel instruction
computing,” Computer, vol.33, no.2, pp.37-45, 2002.

G. Slavenburg, S. Rathnam, and H. Dijkstra, “The TriMedia TM-1
PCI VLIW media processor,” Hot Chips 8, Aug. 1996.
http://www.analog.com, SHARC Processor Architectural Overview:
Super Harvard Architecture.

P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and F. Homewood,
Lx: a technology platform for customizable VLIW embedded pro-
cessing, SIGARCH Comput. Archit. News 28, 2, pp.203-213, May
2000.

H. Sharangpani and K. Arora, “Itanium processor microarchitec-
ture,” IEEE Micro, vol.20, no.5, pp.24—43, Sept.-Oct. 2000.

S. Naffziger, “The implementation of the Itanium 2 microprocessor,”
IEEE J. Solid-State Circuits, vol.37, no.11, pp.1448-1460, Nov.
2002.

B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer,
J. Desai, E. Francom, M. Gowan, P. Gronowski, D. Krueger, D.
Morganti, and S. Troyer, “A 65 nm 2-billion transistor quad-core ita-
nium processor,” IEEE J. Solid-State Circuits, vol.44, no.1, pp.18—
31, Jan. 2009.

Intel® IA-64 Architecture Software Developer’s Manual vol.3: In-
struction Set Reference, July 2000.

D.. August, Systematic Compilation for Predicated Execution,
Ph.D. thesis, University of Illinois at Urbana-Champaign, 2000.

Y. Wang and M. Zhang, “A compiler and architecture combined
mechanism for speculative data load,” J. Computer Research and
Development, 39 (Suppl), pp.220-224, 2002. (in Chinese)

R. Deng, H.-Y. Chen, Z.-C. Xing, L.-G. Xie, and X.-J. Zeng, “The
research on memory-level parallelism execution model in EPIC ar-
chitecture,” Chinese Journal of Computers, vol.1, pp.74-80, 2007.
(In Chinese)

J. Jiang, “Research and implementation on instruction control
pipeline in general-purpose EPIC microprocessor,” J. Chinese Com-
puter Systems, vol.9, pp.1661-1664, 2006. (in Chinese)

Y. Wang and M. Zhang, “On low power multi-port data cache de-
sign for multi-issue processors,” Proc. 13th National Conference
on Information Storage Technology, Xian, pp.326-331, 2004. (in
Chinese)

http://www.spec.org

Jun Gao received his B.S. degree in
computer science and technology from National
University of Defense Technology, Changsha,
China, in 2002. His main research interests in-
clude high-performance computer architecture,
micro-processor design and VLSI design.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.1 JANUARY 2013

Minxuan Zhang received the M.Sc. de-
gree in computer science and technology from
National University of Defense Technology,
Changsha, China, in 1987. He is currently a Pro-
fessor at School of Computer, National Univer-
sity of Defense Technology. His research in-
terests include high-performance computer ar-
chitecture, micro-processor design and VLSI
design.

Zuocheng Xing is professor at College
of computer, National University of Defense
Technology. He received his B.S. degree in
computer science and technology from National
University of Defense Technology in 1987. His
main research interests include high perfor-
mance computer system, micro-processor archi-
tecture and micro-electronics design.

Chaochao Feng received the B.Sc. and
M.Sc. degrees in computer science and elec-
tronic science from National University of De-
fense Technology, Changsha, China in 2005
and 2007 respectively, where he is currently
working toward the Ph.D. degree in electron-
ics science and technology. His current re-
search interests include Network-on-Chip, high-
performance microprocessor design and VLSI
design.

