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PAPER

Dependency Chart Parsing Algorithm Based on Ternary-Span
Combination

Meixun JIN†a), Yong-Hun LEE††b), Nonmembers, and Jong-Hyeok LEE†c), Member

SUMMARY This paper presents a new span-based dependency chart
parsing algorithm that models the relations between the left and right de-
pendents of a head. Such relations cannot be modeled in existing span-
based algorithms, despite their popularity in dependency corpora. We ad-
dress this problem through ternary-span combination during the subtree
derivation. By modeling the relations between the left and right dependents
of a head, our proposed algorithm provides a better capability of coordina-
tion disambiguation when the conjunction is annotated as the head of the
left and right conjuncts. This eventually leads to state-of-the-art perfor-
mance of dependency parsing on the Chinese data of the CoNLL shared
task.
key words: dependency chart parsing, span-based parsing, factor-based
parsing, dependency parsing algorithm, averaged perceptron, syntactic
analysis

1. Introduction

Chart parsing is frequently used to derive the syntactic struc-
ture of a given sentence [1]–[3], and various chart parsing al-
gorithms are available for dependency parse tree derivation
(Sect. 3). Among them, Eisner’s algorithm [4], [5] is notable
for its efficiency, with a time complexity of O(n3). In [2],
Eisner’s algorithm has been successfully augmented with
current learning methods in the frame of graph-based data-
driven dependency parsing. Eisner’s algorithm was further
extended in the works of [6], [7] and [3], and all of these
parsers reported a state-of-the-art performance on the En-
glish dependency treebank that is converted from the En-
glish Penn Treebank [8]. We refer to these algorithms as
span-based algorithms because they all perform parsing by
composing spans (details in Sect. 2).

Our algorithm is another extension of Eisner’s algo-
rithm, and aims to model the relations between the left and
right dependents of a head. It is quite common that a head
simultaneously dominates the left and right dependents, e.g.,
the case in which a predicate verb takes subject and ob-
ject as its left and right dependents in a Subject-Verb-Object
(SVO) language, or the case of the coordinate structures in
which the conjunction is annotated as the head of the left-
and right-side conjuncts. Despite their popularity and the
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importance of modeling such relations in dependency pars-
ing, they have not yet been modeled in existing span-based
dependency parsing algorithms.

In the proposed parsing algorithm, we derive subtrees
by augmenting three spans, and the relations between the
left and right dependents are modeled during the span-
augmentation (Sect. 2.2). Experimental results show that
the proposed algorithm provides a better coordination dis-
ambiguation when the conjunctions are annotated as heads,
and that this improved coordination disambiguation eventu-
ally improves the overall parsing performance (Sect. 5).

This paper is organized as follows. We describe the
spans and present our algorithm in Sect. 2. In Sect. 3, we
compare our algorithm with other dependency chart pars-
ing algorithms. In Sect. 4, we briefly discuss various depen-
dency annotation schemes and their corresponding parsing
algorithms. Section 5 presents our experimental results and
finally, Sect. 6 provides some concluding remarks regarding
our propose.

2. Proposed Algorithm

As normal CYK algorithms [9], our algorithm derives a de-
pendency parse tree by recursively combining smaller sub-
trees in a bottom-up manner. We use a dynamic program-
ming table, known as a chart, to store the partial results for
each parsing step.

There are two types of dependency chart parsing algo-
rithms, i.e., constituent-based and span-based algorithms,
depending on the type of subtrees that the algorithm pro-
cesses. If the algorithm constructs subtrees of spans, it is
a span-based algorithm, otherwise, it is a constituent-based
algorithm. Ours is an improved version of Eisner’s span-
based algorithm [4].

2.1 Span

A span is a dependency subtree or a sequence of words
linked by dependency arcs dominated∗ by the leftmost or
rightmost word of the sequence. For example, string[s:q]

shown in Fig. 1 (a) is a span dominated by the leftmost word
s, which we represent using a right triangle as shown in
Fig. 1 (d). The vertical side of the triangle indicates the
position of the head. If an internal word r dominates the

∗We say a word dominates a string, if it is possible for the
word to reach any other words in the string by following the paths
of dependency arcs.
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(a) string[s:q] (b) string[q+1:t] (c) string[s:t]

(d) span[s:q] (e) span[q+1:t] (f) span[s:t]

(g) span[s:q] (h) span[q+1:t] (i) span[s:t]

Fig. 1 Parse step represented by ternary-span combination.

string, as shown in Fig. 1 (b), string[q+1:t] is represented by
two spans, as shown in Fig. 1 (e).

Adding a dummy ‘ROOT’ in front of the sentence and
allowing the ‘ROOT’ to dominate the sentence, the parse
tree of this extended sentence becomes a span. This span is
the ultimate one that a span-based parser aims to derive.

2.2 Ternary-Span Combination

A span-based dependency parser derives parse trees by con-
structing spans in a bottom-up fashion. A larger span is
constructed by combining smaller spans. In this subsection,
we show how our algorithm combines smaller spans into a
larger span.

By adding a new dependency arc to connect s and
r, we can combine string[s:q] (Fig. 1 (a)) and string[q+1:t]

(Fig. 1 (b)) into string[s:t] (Fig. 1 (c)). String[s:q] corre-
sponds to span[s:q] in Fig. 1 (d), while string[q+1:t] corre-
sponds to two spans, i.e., span[q+1:r] and span[r:t] shown in
Fig. 1 (e). Thus, this derivation of string[s:t] can be rep-
resented by combining three spans into one, as shown in
Figs. 1 (d)–(f). We call it ternary-span combination. In a
similar way, the right-side head span construction is repre-
sented as shown in Figs. 1 (g)–(i).

The pseudocode for ternary-span combination is given
in Fig. 2 and explained in Sect. 2.3.

Figures 1 (a)–(c) show one derivation of string[s:t]. To
derive the parse tree of a string we must select a pair of
substrings that lead to an optimal parse tree. For string[s:t]

in Fig. 1 (c), we may select the optimal pair of strings, i.e.,
string[s:q] and string[q+1:t], by enumerating all possible val-
ues of q and r (Lines 11 and 16 of the pseudocode in Fig. 3).
Here, q is the boundary of the two strings concatenated into
string[s:t], and r is the newly selected dependent of s during
the parse step.

2.3 The Algorithm

As a normal chart parser, we store the max score of a span
and its related parameters, i.e., q and r, for each parse step
in the corresponding cells of the chart. For convenience,
we use K[s:t][d], B[s:t][d] and D[s:t][d] to represent the items in
the chart. K[s:t][d] represents the max score of the span that
yields over string[s:t][d], beginning at s and ending at t, with

s ≤ t. The variable d indicates the side where the head is
located: d = ‘L’, when the left side is the head, or d = ‘R’,
when the right side is the head. We use B[s:t][d] and D[s:t][d]

to represent the indices of two parameters q and r that give
the maximum score K[s:t][d].

The pseudocodes used to calculate K[s:t][d], B[s:t][d], and
D[s:t][d] are given in Fig. 3. Line 11 of Fig. 3 shows that,
to find the maximum score K[s:t][‘L’] of span[s:t][‘L’], we need
to find the indices q and r that lead to the maximum score
through ternaryCombination (the pseudocode in Fig. 2).
After enumerating all possible values of q and r, Line 11
selects the ternary-span combination that gives the high-
est score. The maximum score is then assigned to K[s:t][‘L’]

(Line 12), and the q and r (Q,R, Line 11) that give the max-
imum score are assigned to B[s:t][‘L’] and D[s:t][‘L’], respec-
tively (Lines 13 and 14). In a similar way for the right-
side head span[s:t][‘R’], the related derivations for K[s:t][‘R’],
B[s:t][‘R’], and D[s:t][‘R’] are given in Lines 16–19.

The module ternaryCombination (Fig. 2) calculates the
score of the span generated by combining three smaller
spans. Deriving the boundary indices of the three spans
(s:q, q+1:r, and r:t), from its input parameters (Line 1 of
Fig. 2), the score of the newly generated span is the accu-
mulated scores of the three spans plus the score of the new
dependency arc linking them together. In Line 3, K[s:q][‘L’],
K[q+1:r][‘R’], and K[r:t][‘L’] are the scores of the three spans
combined into span[s:t][‘L’], and the dep(∗) function evalu-
ates the dependency arc linking them. Similarly, Line 5 cal-
culates the score for the right-side head span[s:t][‘R’].

The function dep(∗) evaluates the new dependency arc.
In addition to the indices of the target head s and dependent
r (Line 3 in Fig. 2), dep(∗) uses the parse history (parse
decisions from the previous parse steps), i.e., D[s:q][‘L’],
D[q+1:r][‘R’], and D[r:t][‘L’]. This parse history is closely re-
lated to the three spans in processing: D[s:q][‘L’] is the depen-
dent of s selected for the construction of span[s:q][‘L’], while
D[q+1:r][‘R’] and D[r:t][‘L’] are the dependents of r, selected for
span[q+1:r][‘R’] and span[r:t][‘L’], respectively.

Here, we include the parse history in dep(∗) to model
the relation between the left and right dependents of r. By
including the left-side dependent D[q+1:r][‘R’] and right-side
dependent D[r:t][‘L’] of r in dep(∗) at Line 3 of Fig. 2, we
evaluate the relations among (r,D[q+1:r][‘R’],D[r:t][‘L’]), simul-
taneously, along with the evaluation of the dependency arc
connecting s and r. Regarded as out-of-span relations [10],
the relations between the left and right dependents have been
ignored in existing span-based algorithms, and to the best
of our knowledge, this research may be the first attempt to
model them in a span-based approach.

The parse tree with the maximum score, which is de-
rived for the input sentence, is given by span[1:n][‘L’] for a sen-
tence length of n, and the parse tree can be constructed by
backtracking the parameters recorded in B[∗][∗] and D[∗][∗].

With a simple look through the pseudocode (Figs. 2 and
3), the overall time and space complexities of the algorithm
are O(n4) and O(n2), respectively.
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Fig. 2 Pseudo-code for ternary-span combination.

Fig. 3 Pseudo-code for the proposed algorithm.

3. Comparison with Other Algorithms

Considering certain parse history is an attempt to capture
syntactic relations beyond the explicitly-represented by de-
pendency arcs. There has been a recent trend of consid-
ering more parse history in graph-based approaches rang-
ing from one-side sibling [6] to tri-sibling [3]. Table 1 lists
seven different dependency chart parsing algorithms. These
algorithms differ in the method used for building larger sub-
trees from smaller subtrees. In this section, we focus on
how these algorithms differ in using parse history, when de-
termining a new dependency arc connecting from h(head) to
d(dependent).

3.1 Constituent-Based Algorithms

Algs. 1–5 in Table 1 are constituent-based algorithms. Ta-
ble 1 shows the step(s) these algorithms use to derive sub-
tree by combining the two subtrees and . Here,

and represent the subtrees dominated by h and d,
respectively; represents the newly constructed subtrees
produced by combining and .

The derivation of in Alg. 1 (Table 1) is processed
in a single step by augmenting and on the basis of

their dependency. The notation of K( ) in Table 1, repre-
sents the score of subtree . In Alg. 1, this is calculated
as: K( ) + K( ) + dep(∗). We define the dependency
function dep(∗) as: dep(h, d,( , )), which indicates
that the available parse history for Alg. 1 includes and

(represented by the dashed arcs in Fig. 4 (a)).
Algs. 2–5 are variants of Alg. 1, and are based on two-

step operations. Two-step processing improves the compu-
tational complexity of Alg. 1 from O(n5) to O(n4).

In Alg. 2, the first step generates a partial result ,
and evaluates the possibility that word h dominates .
Score K( ) is defined as dep(∗) + K( ). The second
step combines and into a new constituent. Evalu-
ating the dependency between h and d in the first step, the
available parse history for Alg. 2 is (h, ), which excludes
all the selected dependents of h (Fig. 4 (b)). Alg. 3 is sim-
ilar to Alg. 2. Its available parse history is ( , d), which
excludes all the dependents of h (Fig. 4 (c)).

In Algs. 4 and 5, one of the constituents is divided into
two parts (spans). The first step combines the constituent
with the closest span by evaluating the dependency between
them. During the second step, the other span is attached to
the result from the first step to form a new constituent. Now,
the parse history is ( , ) for Alg. 4 (Fig. 4 (d)), and ( ,
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Table 1 Overview of dependency chart parsing algorithms: Algs. 1–5 are constituent-based and
Algs. 6–7 are span-based.

(a) Alg. 1 (b) Alg. 2 (c) Alg. 3 (d) Algs. 4 and 7 (e) Alg. 5 (f) Alg. 6

Fig. 4 Available parsing history (represented as dashed lines), for each parsing algorithm when
determining dependency between h and d.

) for Alg. 5 (Fig. 4 (e)).
For more information on Algs. 2 and 4, refer to [5].

Algs. 3 and 5 can be implemented in a similar way.

3.2 Span-Based Algorithms

In Table 1, Algs. 6–7 are span-based algorithms; they derive
a new span by combining , and . This deriva-
tion in Alg. 6 is processed with two steps. The first step

generates , which is known as an incomplete span in [5],
by combining two spans and and evaluating the depen-

dency between them. In the second step, is extended to
by combining with . This algorithm is notable for its

efficiency, with a computational complexity of O(n3). The
parse history available for Alg. 6 include two spans and ,
as shown in Fig. 4 (f).

Alg. 7 is the proposed algorithm, with a parse history
of ( , , ), as shown in Fig. 4 (d).
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Table 2 The subtrees modeled by each span-based algorithm. The dashed arcs are the parse history
used for determining the solid arcs.

There are a couple of extensions to Alg. 6, which are
known as 2nd-order [2], high-order [7] and 3rd-order algo-
rithms [3], by specifying certain parse history. In the 2nd-
order algorithm, the evaluation of a new dependent (the node
connected by a solid arc in Table 2 (b)) is based on the most
recently determined sibling node (the node connected by a
dashed arc in Table 2 (b)). We refer to the two dependents
in Table 2 (b) as one-side siblings, since both are located on
the same side of their head.

Carreras called his approach a high-order algo-
rithm [7]. In addition to the one-side sibling, it includes the
grandparent node, which is the head of head h, as shown
in Table 2 (c). Koo and Collins proposed a 3rd-order algo-
rithm by further extending the 2nd-order algorithms. The
3rd-order algorithm primarily models triple arcs, shown as
Tables 2 (d) and (c). For further details, see [3].

The original work with Alg. 6, such as in [2], did not
use parse history; it is based on modeling a single arc as
shown in Table 2 (a). Thus, Alg. 6 is also known as the 1st-
order algorithm [3].

3.3 Comparison

Alg. 6 in Table 1 uses the least amount of parse history, yet,
it is the most efficient; Alg. 1 uses the greatest amount of
parse history, but has the highest complexity. Of the algo-
rithms with a time complexity of O(n4), Algs. 4 and 5 use
more parse history than Algs. 2 and 3. Our algorithm uses
a similar parse history as Alg. 4 (Fig. 4 (d)), but ours obtains
a better space complexity of O(n2), when compared with
O(n3) for Alg. 4.

The parse history used by each span-based algorithm is
clearly specified in Table 2. The 3rd-order algorithm models
more relations than the 1st-, 2nd- and high-order algorithms
(Table 2). In addition to one-side sibling (Table 2 (b)) and
grandparent relations (Table 2 (c)), the 3rd-order algorithm
models tri-sibling and grand-sibling relations as shown in
Tables 2 (d) and (e).

As shown in Fig. 5 (a), our algorithm can model parse
history involved in three spans. Figures 5 (b)–(e) show some
of the relations enclosed in Fig. 5 (a), which are modeled in
our algorithm (Table 4). The prominent difference between
our algorithm and other span-based algorithms is that exist-
ing span-based algorithms focus on modeling, or are biased
in modeling dependency arcs that point toward the same di-
rection, i.e., either from left to right (all dependency arcs in

(a) Three spans and corresponding parse history.

(b) (c) (d) (e)

Fig. 5 Relations modeled in the proposed algorithm.

Table 3 Comparison of the counts/percentages of the heads dominating
triple one-side dependents (tri-siblings).

Table 4 Feature types modeled in the proposed algorithm.

Feature Types Descriptions
uni-gram

Fea.arc bi-gram
(Fig. 5 (a)) surrounding

in-between
Fea.oneSide.Sib h-POS d-POS sib-POS
(Fig. 5 (b)) d-POS sib-POS
Fea.grandChild1 h-POS d-POS right-POS
(Fig. 5 (c)) d-POS right-POS
Fea.grandChild2 h-POS d-POS le f t-POS
(Fig. 5 (d)) d-POS le f t-POS

h-POS d-POS le f t-POS right-POS
Fea.twoSide.Sib d-POS le f t-POS right-POS
(Fig. 5 (e)) h-POS le f t-POS right-POS

le f t-POS right-POS

Tables 2 (a)–(e) are in this direction), or from right to left.
Such a bias is more significant for the third-order algorithm
by modeling the relations of tri- and grand-siblings. The
proposed algorithm is helpful to remove this bias by model-
ing two-side siblings (dashed arcs in Table 2 (f)).

4. Dependency Annotation and Parsing Algorithm

Previous work has shown that the use of parse history is cru-
cial to achieve a high performance parsing. The comparison
provided in Sect. 3 shows the trade-off between a decrease
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in parse complexity and utilizing a greater amount of parse
history. Thus, we must choose a parsing algorithm that bal-
ances the parse complexity and the use of the parse history.

Another factor related to the appropriate selection of a
parse algorithm is the structural bias of the corpus. Accord-
ing to the description given in [11], the structural bias of a
corpus is the tendency for a corpus to contain more specific
types of structured subtrees. For example, the English de-
pendency treebank (abbreviated as English data) converted
from the English Penn Treebank [8] using Penn2Malt†, con-
tains more of the subtree as Table 3 (a), compared with
the Chinese treebank of CoNLL’07 (abbreviated as Chinese
data).

In addition to the inherent characteristics of the lan-
guage, structural bias of a corpus is partly due to the
adopted dependency annotation method. Depending on the
dependency annotation scheme, a syntactic relation may
be represented differently. For example, we can anno-
tate the Coordinate Conjunction as the Head (CCH-type),
with the left and right conjuncts as its dependents; whereas
other methods may set the Coordinate Conjunction as the
Dependent (CCD-type) by annotating one of the conjuncts
as its head [10].

As SVO languages, both English and Chinese share
many syntactical similarities. Yet, the portion of the heads
that dominating triple one-side dependents (tri-siblings as
subtree of Table 3 (a)) in the English data is 3.73%, which
is much higher than that in the Chinese data. The reason for
this is partly due to the difference in annotating coordina-
tions. In the English corpus, most verbal-coordinations are
dominated by their left-most conjunct†† [12], upon which
other conjuncts and conjunction(s) are attached. Thus, it is
necessary to model the subtree of Table 3 (a) in English cor-
pus for coordination disambiguation. In this sense, among
the algorithms of Table 2, the 3rd-order algorithm [3] is the
better choice for the English corpus. Actually, the system of
[3] includes some features, with which the 3rd-order algo-
rithm gives better coordination disambiguations.

The Chinese corpus is one with CCH-type coordina-
tions. Considering the importance for coordination disam-
biguation in parsing, an algorithm that models the subtrees
shown as Table 2 (f) (the pair of arcs shown with the dashed
lines) is a better choice.

5. Experiments

We evaluated the performance based on an Unlabeled At-
tachment Score (UAS), following the measure defined in
the CoNLL shared task [13], [14]. Most data-driven depen-
dency parsers [6], [15] adopt two-stage for labeled parsing
by deriving dependency labels at the second-stage upon the
unlabeled dependency tree of the first-stage. Multi-labeled
classifiers are often adopted to label each dependency arc.
In this sense, the proposed algorithm has little effect on de-
pendency labelling, we did not evaluate with Labeled At-
tachment Score (LAS) in this paper.

The parsing model in this paper is conventionally de-

fined by selecting the maximum score parse tree. The score
of the parse tree is the sum of the scores of the dependency
arcs. The dependency function dep (∗) (included in Lines 3
and 5 of Fig. 2) is defined as:

dep(∗) = Feature(∗) ×Weight(∗)
Feature(∗) represents the features related to the target

dependency arc, while Weight(∗) is the associated weight
function, which is learned through the average percep-
tron [16]. The average perceptron allows for fast learning
with a respectable performance and a simple implementa-
tion, compared with other structured training algorithms,
such as the max-margin model [17], the margin infused re-
laxed algorithm (MIRA) [6] and the log-linear model [15].

5.1 Features

Our algorithm can model the relations represented by the
subtrees shown in Fig. 5; we define the five types of features
accordingly, as shown in Table 4. The Fea.arc features are
directly related to the target dependency arc, including the
uni-gram, bi-gram, surrounding and in-between features, as
defined in [18]. Other types of features are targeted to model
the one-side sibling, grand-child and two-side sibling rela-
tions, respectively.

In Table 4, for example, we use Fea.oneSide.Sib to rep-
resent features modeling the one-side sibling relation be-
tween the arc linking from h to d and arc connecting from h
to sib (Fig. 5 (b)). Since the pair of arcs in one-side sibling
indicates the relation among three nodes: h, d, and sib, we
define Fea.oneSide.Sib to include a POS tag tri-gram of h, d
and sib (represented as h-POS d-POS sib-POS in Table 4),
and a POS tag bi-gram of d and sib (d-POS sib-POS). The
other feature types in Table 4, are defined in a similar way.

Similar features of Fea.oneSide.Sib, Fea.grandChild1
and Fea.grandChild2 has also been defined and used in the
systems of [6], [18], and [7], while, Fea.twoSide.Sib fea-
tures in Table 4, are newly defined for our algorithm. The
Fea.twoSide.Sib features are defined primarily to evaluate
the relations between the left and right dependents of d
shown as Fig. 5 (e).

5.2 Results

We evaluated our system on Chinese CoNLL-2007 data and
the English data converted from the English Penn Treebank.
For the Chinese data, we used the original included training
and test sets; for the English data, we used the sections 2–
21 for training and the section 23 for test as convention. For
both data sets, we used the gold standard part-of-speech tags
in the treebanks.

†Penn2Malt is an automatic tool for converting a Penn Tree-
bank style phrase structure tree into dependency tree.
http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html
††In case of a nominal-coordination, the right-most conjunct is

annotated as the head in the English data with Penn2Malt.
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5.2.1 Effect of Each Feature Type

First, we evaluated the performance of our algorithm with
each type† of features described in Table 4. As shown
in Table 5, adding features modeling parse history such
as Fea.oneSide.Sib, Fea.grandChild1, Fea.grandChild2 or
Fea.twoSide.Sib on base feature Fea.arc, results in better
performances than using only Fea.arc type features.

With Fea.oneSide.Sib, our system obtained perfor-
mances of 91.20% and 88.40% for the English and Chinese
data, respectively; these performances are better than those
obtained from Fea.grandChild1 and Fea.grandChild2 (Ta-
ble 5). These results also indicate that Fea.oneSide.Sib is
one of the most important features for both data.

With Fea.twoSide.Sib, our system obtained a perfor-
mance of 88.58% for the Chinese data, and this performance
is better than the performance with other types of features.

5.2.2 Effect of Modeling Two-Side Siblings

CCH-type coordinate are the primary case that require
to model two-side siblings. Table 6 shows that with
Fea.twoSide.Sib, 83.78% of the conj.head†† are correctly
attached to their heads in the Chinese data, which is
an improvement of 1.48%, compared to the result using
Fea.oneSide.Sib.

Including a coordination-specialized feature Coor.Fea,
defined as:

if left conj.head POS == right conj.head POS coor.Fea = 1
else coor.Fea = 0

the system provides more accurate results on coordination
disambiguation than using only Fea.TwoSide.Sib (Table 6).
Furtherly, as shown in Table 7, Coor.Fea is more helpful
for identifying remote conj.heads from their conjunctions.
Here, Coor.Fea is a flag-like feature that provides symmet-
ric information for the coordination by comparing the POS
tags of its conjuncts.

The case of a verb dominating a subject at its

Table 5 Performance comparison of the proposed algorithm on feature
types defined in Table 4.

Features UAS (English) UAS (Chinese)

Fea.arc 90.73% 87.34%

+ Fea.oneSide.Sib 91.20% 88.40%
+ Fea.GrandChild1 90.82% 87.97%
+ Fea.GrandChild2 90.97% 87.92%
+ Fea.twoSide.Sib 90.99% 88.58%

Table 6 Comparison between the overall parsing performance and the
percentage of conj.heads that were correctly attached to their heads for the
Chinese data.

Fea.oneSide.Sib Fea.TwoSide.Sib Fea.TwoSide.Sib
+ Coor.Fea

overall conj.head overall conj.head overall conj.head

88.40% 82.30% 88.58% 83.78% 88.78% 84.11%

left-side and an object at its right-side (sub Verb obj),
is a typical syntactic structure for a SVO language.
With Fea.twoSide.Sib, about 89.72% of sub Verb objs
are correctly identified for the English data, which was
7.70% higher than the result of 82.02% gained with
Fea.oneSide.Sib.

However, the portion of sub Verb obj is rather lower
than expected in the English data. Among test sen-
tences (totally 2,416), only 336 sentences are dominated by
sub Verb obj type ROOTs. The reason for such a low por-
tion is partly due to the existence of so many sub Verb vmod
ROOTs (total 1,146 cases) and annotation scheme assigning
auxiliary verb as the head of main verb (614 cases) in the
English data. For cases of sub Verb vmod and sub Verb vc
(the case including auxiliary verb), the effect of modeling
two-side sibling is limited since the correlations between
left- and right-side dependents of Verb in these cases are
weak. And because of the low portion of sub Verb obj,
modeling two-side siblings has little effect on the overall
performance in the English data.

5.2.3 Effect of Combined Features

We then evaluated our system empirically on the com-
bined features. For the Chinese data, the best result was
89.41% (Table 8) with (Fea.oneSide.Sib + Fea.twoSide.Sib
+ Coor.Fea).

For the English data, the best performance of
our system was 91.99%, which was obtained using
(Fea.OneSide.Sib + Fea.grandChild1 + Fea.grandChild2)
(Table 8).

Table 7 Performance comparison of conj.heads relative to their distance
to the conjunction.

Distancea 0 1 2 3 >= 4
Fea.twoSide.Sib 93.19% 78.00% 56.25% 55.00% 57.14%
Fea.twoSide.Sib 92.88% 79.21% 64.49% 60.20% 59.22%
+ Coor.Fea

aThe distance is the number of words that appeared between the
conj.head and conjunction. For example, given ‘Tom and the pretty Jerry’,
Tom and Jerry are 0-distance and 2-distance conj.heads, respectively.

Table 8 Performances of the proposed algorithm on combined features.

Name Features UAS (English) UAS (Chinese)

Proposed.I
+ Fea.oneSide.Sib

91.99% 88.49%+ Fea.grandChild1
+ Fea.grandChild2

Proposed.II
+ Fea.oneSide.Sib

91.03% 89.41%+ Fea.twoSide.Sib
+ Coor.Fea

†Fea.arc features were included in each experiment.
††conj.head refers to the head word of a conjunct. In CCH-type

coordination, each conj.head is attach to the conjunction.
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Table 9 Comparisions with other systems.

system UAS (English) UAS (Chinese)
proposed.I 91.99% 88.49%
proposed.II 91.03% 89.41%

2nd-order [6] 91.5% 88.29%a

proposed.I-word 92.39% 88.65%
3rd-order [3] 93.04% -

Chen [19] 92.21% -
Sagae [20] - 88.94%

Nakagawa [15] - 88.88%
high-order [7] 93.14%b 86.20%

aEvaluated with MSTParser (V0.2).
bEvaluated on development data (section 24 of Penn Treebank), based

on the report given by [3].

5.3 Comparison with Other Parsers

5.3.1 Performance

Among the systems listed in Table 9, the 2nd-order sys-
tem and ours, proposed.I and proposed.II, are based on
POS tagged features. The 2nd-order system was based on
Fea.oneSide.Sib. In addition to Fea.oneSide.Sib, proposed.I
and proposed.II model more types of features (Table 8).
For the English data, proposed.I obtained a performance
of 91.99%, which outperformed the 2nd-order system (Ta-
ble 9). For the Chinese data, proposed.II gave the best per-
formance by including Coor.Fea features.

In Table 9, the systems of [3], [7], and [19] include sur-
face words in their feature vector, and proposed.I-word is
the version using word features based on the same feature
template defined for proposed.I. Proposed.I-word gave a
performance of 92.39% for the English data, which is bet-
ter than the performance of [19], and lower than the perfor-
mance obtained by the 3rd-order system of [3]. In our opin-
ion the performance gap between the 3rd-order system and
ours is on modeling tri-siblings, especially, disambiguating
CCD-type of coordination (e.g., Table 3 (a)) in the 3rd-order
system. We compared the performance our system on the
Chinese data with two top-ranked systems [15] and [20] for
the CoNLL’07 shared task, since the systems of [3], [19] did
not evaluated on the same Chinese data. Comparing the per-
formances of [15] and [20], our systems gave the best per-
formances on the Chinese data†.

The work of [3] also reported the performance on the
development data set (the section 24 of the English Penn
treebank) as 93.49%. According to report of [3], the em-
ulated high-order system of [7] gave a similar (or slightly
lower) performance as 93.14% on the same data set. Despite
of the high performance for the English data, the high-order
system gave a performance of 86.20% for the Chinese data
(Table 9). In our opinion, lack of modeling two-side sib-
lings is the main reason for the low performance of [7] on
the Chinese data.

†The systems of [15] and [20] also reported their performances
on the English data included in CoNLL’07, yet the English data of
CoNLL’07 is not identical to the one used here.

Table 10 Efficiency Comparisions on the test data of English.

system time
proposed.I-word (Python) 489 s

3rd-order (emulated in Python) 1233 s

5.3.2 Efficiency

We implemented our systems in Python and ran on a single
machine of 64-bit Intel i5 quad-cord with 3.3 GHz CPUs.
The proposed.I-word system spent totally 41.2 hours on
training (for 10 iterations).

Both the 3rd-order system and our systems have a time
complexity of O(n4), while, our algorithm is more efficient.
When comparing the the total time spent for decoding the
English test data, proposed.I-word spent 489 seconds, while
the emulated 3rd-order system spent much more time than
ours (Table 10).

6. Conclusion

This paper proposed a new span-based dependency chart
parsing algorithm, that is suitable for a language or corpus
where modeling the left and right dependents is essential to
achieve a high parsing performance.

By modeling the relation between the left and right de-
pendents of a head, the algorithm provides a solution for
coordination disambiguation when the conjunction is anno-
tated as the head of its left and right conjuncts. When ap-
plied to the Chinese data of the CoNLL’07 shared task, our
algorithm achieved a better parse performance on the co-
ordinate structures, which eventually improved the overall
parsing performance.

We believe our algorithm can also achieve better
performances for Arabic, Czech, and Slovene corpora
of CoNLL 2007 [10] than existing span-based algorithms
through an improved coordination disambiguation, since the
coordinations in these corpora are also of CCH-type. In case
of SVO langauges, the proposed algorithm also provides a
platform to model the relation between the subject and ob-
ject with regard to their common predicate verb.
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