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PAPER

Homomorphic Filtered Spectral Peaks Energy for Automatic
Detection of Vowel Onset Point in Continuous Speech

Xian ZANG†, Nonmember and Kil To CHONG†a), Member

SUMMARY During the production of speech signals, the vowel on-
set point is an important event containing important information for many
speech processing tasks, such as consonant-vowel unit recognition and
speech end-points detection. In order to realize accurate automatic detec-
tion of vowel onset points, this paper proposes a reliable method using the
energy characteristics of homomorphic filtered spectral peaks. The homo-
morphic filtering helps to separate the slowly varying vocal tract system
characteristics from the rapidly fluctuating excitation characteristics in the
cepstral domain. The distinct vocal tract shape related to vowels is ob-
tained and the peaks in the estimated vocal tract spectrum provide accurate
and stable information for VOP detection. Performance of the proposed
method is compared with the existing method which uses the combina-
tion of evidence from the excitation source, spectral peaks, and modulation
spectrum energies. The detection rate with different time resolutions, to-
gether with the missing rate and spurious rate, are used for comprehensive
evaluation of the performance on continuous speech taken from the TIMIT
database. The detection accuracy of the proposed method is 74.14% for
±10 ms resolution and it increases to 96.33% for ±40 ms resolution with
3.67% missing error and 4.14% spurious error, much better than the results
obtained by the combined approach at each specified time resolution, es-
pecially the higher resolutions of ±10 ∼ ±30 ms. In the cases of speech
corrupted by white noise, pink noise and f-16 noise, the proposed method
also shows significant improvement in the performance compared with the
existing method.
key words: vowel onset point, homomorphic filtering, peaks energy, vocal
tract spectrum, noise robustness

1. Introduction

Speech signals are produced by exciting the time-varying
vocal tract (VT) system with an excitation sequence. The
changes taking place in the speech production system are
manifested as events in the speech signal. Motivated by this
nature, if certain events of significance can be identified and
detected, the analysis for feature extraction can be anchored
around such events. This kind of event-based analysis is
likely to produce consistent representation of speech infor-
mation for applications in speech signal processing [1].

The vowel onset point (VOP) is one such important
event at which there is a significant change in both VT and
excitation source. VOP is defined as the instant that the
onset of vowels takes place [1]–[3], or termed as the seg-
menting point in consonant-vowel (CV) transitions [4], [5].
Some earlier investigations [6]–[8] show that the very im-
portant and discriminatory information for speech analysis

Manuscript received October 29, 2012.
Manuscript revised December 17, 2012.
†The authors are with the Department of Electronic Engineer-

ing, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 561–
756, R.O. Korea.

a) E-mail: kitchong@jbnu.ac.kr (Corresponding author)
DOI: 10.1587/transinf.E96.D.949

lies in a small region round the VOPs in each CV unit. Since
the syllable-like CV units are basic units appropriate to de-
scribe the production and recognition aspects of speech [9],
the VOPs can be used as anchor points to extract information
for many speech processing tasks, such as: speech recog-
nition [3], [10], speaker recognition [11], speech segmen-
tation [12], [13], end-points detection [14], [15], keywords
spotting [16], and positioning of pitch movement [17].

To realize good performance of the VOP event-based
analysis, the first essential step is to develop a reliable
method for automatic detection of VOPs. This issue did
not attract specific attention until the 1990s. Hermes [2]
first proposed a method for automatic VOP detection in
fluent speech by identifying the points at which there is
a rapid increase in the vowel strength. Other methods
were later developed, such as the use of temporal informa-
tion on intensity and rough spectral envelope [18]; energy
profile, zero-crossing rate, and pitch information [19]; en-
ergy derivative [20]; neural network [12], [21]–[23]; wavelet
transform [4]; phone model [24]; and reassignment spec-
tra [25]. All of these methods mainly use VT system fea-
tures in one form or another, but the excitation features are
ignored. Thus, more recently, some works have focused
on exploring the excitation source information for detecting
VOPs. Prasanna et al. [26] proposed a combined method
for VOP detection using excitation source energy, spectral
peaks energy and modulation spectrum energy. Compared
with the best performing individual VOP detection method,
the combined method demonstrates a reduced total error
rate and high detection rate within ±40 ms, but the perfor-
mance degrades drastically at higher time resolution. This is
mainly attributed to the poor performance of each individual
method at the corresponding time resolutions. To increase
the time resolution, Vuppala et al. [27] proposed a second-
level procedure using uniform epoch intervals present in the
vowel region to correct the positions of the hypothesized
VOPs from combined evidence. However, this approach in-
creases time cost.

Addressing this issue from the viewpoint of efficiency
and low complexity, we propose an improved feature in this
paper, named homomorphic filtered spectral peaks energy.
As mentioned in the beginning, speech signals are produced
by exciting the time-varying VT system with excitation se-
quence. They are represented as two multiplied components
in the discrete Fourier transform (DFT) spectrum. The VT
system features used in previous research are mainly based
on the DFT spectrum, thus the mixed information reduce
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the purity of features and consequently degrade the perfor-
mance. To solve the problem, we adopt homomorphic filter-
ing to separate the slowly varying vocal tract system char-
acteristics from the rapidly fluctuating excitation character-
istics in the cepstral domain. In the VT spectrum recon-
structed based on the separated VT components, the filtered
peaks indicating the VT shape related to vowels are distinct,
and their amplitudes are extracted to form the time-varying
VT energy. We exploit the significant changes in the energy
level to realize VOP detection.

The paper is organized as follows: Sect. 2 explains the
homomorphic speech analysis for transforming the multi-
plied components of VT system and excitation source in the
DFT spectrum to linear combined form in the cepstrum and
proposes the energy characteristics of the homomorphic fil-
tered spectral peaks for VOP detection. Section 3 presents
four experiments to analyze the performance of the pro-
posed method under the cases of clean and noise-corrupted
speech, gender-dependent speech, and various difficult con-
tinuous utterances. The results are also discussed. Section 4
provides conclusions and the direction of future work.

2. VOP Detection Based on Homomorphic Filtered
Spectral Peaks Energy

In the process of pronouncing vowels, the vocal tract acts
as a resonant cavity. In this situation, the distinct vocal
tract shape is represented by prominent peaks, called for-
mants, in the spectrum. This unique character inspires that
the large energy of these formants could be used as feature
to detect VOP. However, the DFT spectrum consists of the
multiplication of excitation and vocal tract system compo-
nents. The formants cannot be easily identified since they
are smeared in the harmonics resulting from the excitation
source, which introduce redundant speaker-dependent infor-
mation. If these two kinds of components could be separated
from each other, the clear formants structure could be ob-
tained to provide accurate and stable information for VOP
detection.

However, it is difficult to separate them in the fre-
quency domain because of the relationship of multiplication
between them. In order to solve the problem, we adopt ho-
momorphic filtering to facilitate the separation in cepstral
domain, where the linear combination of the two compo-
nents is realized. Based on the separated VT system compo-
nents, the VT spectrum is reconstructed, where the spectral
peaks are free from excitation information. Thus the energy
of these spectral peaks could be extracted as a pure vocal
tract system feature for VOP detection.

Consider a frame of time-domain speech signal
(Fig. 1 (a)), we construct its spectrum via a K-point DFT op-
eration, expressed as

X [n, k] =
1
M

M−1∑

m=0

x (n,m) e− j2πk m
M ,0 ≤ k ≤ K − 1 (1)

where n is the frame index, M is the number of sampling

points in each frame, and k is the DFT coefficient index.
The corresponding magnitude spectrum |X [n, k]| is shown
in Fig. 1 (b), where each peak contains mixed information of
VT system and excitation. Next, we carry on homomorphic
filtering to retain the VT system components merely.

The real cepstrum C [n, l] (Fig. 1 (c)) of the DFT mag-
nitude spectrum is defined as

C [n, l] =
1
K

K−1∑

k=0

log |X [n, k]| e j2πl k
K , 0 ≤ l ≤ K − 1 (2)

In the cepstrum, the components in the lower quefrency part
are representative of the slowly varying VT characteristics
in the spectrum, while the high quefrency components cor-
respond to the more rapidly fluctuating excitation character-
istics. In this way, the multiplied two components are split
up into two linear combined parts. Thus we could use a low-
time liftering window to extract the cepstral components re-
lated to VT characteristics. The low-time liftering window
is given by [28]

w [l] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, l ≤ L1

0.5(1 + cos[π(l−L1)/ΔL]), L1 < l≤L1 + ΔL
0, l > L1 + ΔL

(3)

where L = L1 + ΔL is the cut-off length of the liftering win-
dow, and is typically 15 or 20. The section ΔL is tapered,
and its length can be as much as 25% of L. Multiplying the
whole cepstrum by the low-time liftering window, we ex-
tract the cepstral VT characteristics, indicated in Eq. (4) and
shown in Fig. 1 (d),

Fig. 1 (a) Time-domain waveform of a vowel frame; (b) DFT magnitude
spectrum; (c) Real cepstrum; (d) VT characteristics in cepstrum by low-
time liftering; (e) Estimated VT spectrum of the vowel frame.
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Ch [n, l] = w [l] C [n, l] , 0 ≤ l ≤ K − 1 (4)

Applying the inverse transformation to the low-time
liftered sequence yields the homomorphic filtered smooth
spectrum, shown in Fig. 1 (e), which is the VT spectrum
of the given short term speech. Compared with the origi-
nal DFT magnitude spectrum, the peaks indicating formants
become more distinct since the excitation source informa-
tion is eliminated. Due to the fact that the spectrum ampli-
tude decreases with increasing frequency, formants above
5500 Hz have low amplitudes with no considerable differ-
ence from those in cases of non-vowel frames. Therefore,
they are not significant in forming substantial changes in
the energy level for VOP detection. In contrast, the five
largest formants below 5500 Hz emphasize the distinct en-
ergy feature of vowels. On the other hand, there exist influ-
encing consonants such as semivowels which share similar
characteristics of vowels; normally possessing three distin-
guishable formants in contrast to the five in vowels. In this
manner, we consider two more useful peaks to enhance the
dissimilarity between the energies of these consonants and
vowels. Given the above-mentioned reasons, we select the
five largest homomorphic filtered spectral peaks from the
VT spectrum and sum their amplitudes to be used as the en-
ergy feature for each frame.

Figure 2 (a) shows the continuous speech of Don’t ask
me to carry an oily rag like that, taken from the TIMIT
database, where the circles denote the reference VOPs. The
speech is divided into frames of 25 ms (sampling frequency
is 16000 Hz) by a Hamming window with a shift of 10 ms.
For each frame, a 400-point DFT is computed, and the VT
spectrum is then separated from the DFT spectrum by the
homomorphic filtering detailed above. We choose the five
largest peaks from each VT spectrum and plot the sum of
their amplitudes as a function of time to represent the time-
varying VT energy, as shown in Fig. 2 (b). Since the en-
ergy will reach peak when pronouncing vowel, the onset of
a vowel can be observed as significant change in the sum
of five largest peaks in the VT spectrum. To enhance the
change at the VOP, some unnecessary peaks are eliminated
by two steps [26]. The first one is computing the sum of
slops in a short duration centered at each peak with the help
of first-order difference (FOD), and the peaks with sum val-
ues lower than half the mean value are eliminated. The sec-
ond one is based on the assumption that two VOPs rarely
occur within a 50-ms interval; hence if two adjacent peaks
happen to be within 50 ms, then the lower peak is elimi-
nated. After this enhancement, the reserved peaks in the
sum of five largest peaks in the VT spectrum are represented
by asterisks in Fig. 2 (b). With respect to each of these local
peaks, the nearest local minimum on either side is identified
and marked with circles in Fig. 2 (b). The amplitudes in each
segment bounded by two successive local minima are then
normalized to [0, 1], as shown in Fig. 2 (c). From this nor-
malized version of the time-varying VT energy, the sharply
rising instants related to the VOPs can be easily observed.
To automatically detect such instants, a modulated Gaussian

window (MGW) [29] of length 100 ms is used with a suit-
able shape shown in Fig. 3. Figure 2 (d) shows the result of
convoluting the normalized values with the MGW, which is
called the VOP candidates plot using homomorphic filtered
spectral peaks energy. The peaks valid for VOPs are selected
from the candidates using a peak-picking algorithm based
on the logic that there should be a negative region between
two successive peaks, since the negative region is a symbol
of transition to the next vowel region. Otherwise, only the
larger peak is valid for VOP. For instance, in Fig. 2 (d), there
are two peaks around t = 0.3s with no negative region be-
tween them, which means they are in the same vowel struc-
ture. Since the first peak is higher, indicating a sharply ris-
ing point, it is hypothesized as the VOP, and the second one
is taken as an unwanted peak. The sentence has 12 refer-
ence VOPs, which are marked with circles in Fig. 2 (a). The
proposed method hypothesizes 12 VOPs marked with aster-
isks in Fig. 2 (d), and all of them are matched with the cor-

Fig. 2 (a) Time-domain waveform of the speech of Don’t ask me to carry
an oily rag like that; (b) Sum of the five largest peaks in the VT spectrum;
(c) Enhanced version of (b); (d) VOP candidates plot using homomorphic
filtered spectral peaks energy.

Fig. 3 Modulated Gaussian Window.
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responding reference VOPs within small deviation, respec-
tively. In other word, all the reference VOPs are detected
successfully.

3. Experiments and Discussions

VOP detection experiments are conducted on the TIMIT
speech corpus. We choose the test set consists of 168 speak-
ers with 56 females and 112 males grouped into eight dif-
ferent dialect regions. The reference VOPs of each sentence
are manually marked according to the associated phonetic
transcription files.

To evaluate the performance of the proposed method,
we adopt three criteria as follows:

1) Detection rate with a resolution of T (DETR T), the per-
centage of reference VOPs matched by hypothesized
VOPs within ±T ms deviation with respect to the total
of reference VOPs;

2) Missing rate (MISSR), the percentage of undetected ref-
erence VOPs with respect to the total of reference
VOPs after the maximum resolution of ±T ms;

3) Spurious rate (SPUR), the percentage of unmatched hy-
pothesized VOPs with respect to the total of reference
VOPs after the maximum resolution of ±T ms.

Here, the three criteria are proposed under the consid-
eration of comprehensive error analysis. On the one hand,
we desire high detection rate; on the other hand, we also
wish the number of unmatched hypothesized VOPs as few
as possible. Hence, if the method realizes higher DETR T
with lower MISSR and SPUR, the performance is better.

In the first experiment, performance of the proposed
method on clean speech is compared with Prasanna’s [26]
results of VOP detection using excitation source (EXC),
spectral peaks (VT), modulation spectrum (MOD) and com-
bined (COMB) method. The evaluation is based on two sen-
tences Don’t ask me to carry an oily rag like that, and She
had your dark suit in greasy wash water all year selected
from each of the 168 speakers, There are 25 VOPs in these
two sentences per person and hence a total of 4200 VOPs.

The performance of each different method for clean
utterances is given in Table 1. Column 1 indicates differ-
ent methods considered in the analysis for VOP detection.
Column 2 indicates the total number of VOPs hypothesized
by each method. Columns 3-6 indicate the percentage of

Table 1 Performance of VOP detection using excitation source (EXC), spectral peaks (VT), modula-
tion spectrum (MOD), combined (COMB) and proposed methods for clean TIMIT database consists of
4200 VOPs.

VOPs detected within specified time resolution. Columns
7 and 8 indicate the percentage of missed reference VOPs
and spurious hypothesized VOPs, respectively. From the
results, it is evident that the performance of the combined
method is better than the individual methods (EXC, VT and
MOD). However, the detection accuracy decreases signifi-
cantly at higher time resolutions (±10 ∼ ±30 ms). The pro-
posed method is observed to be superior to the combined
method. By comparison, about 20% more VOPs are de-
tected within ±10, ±20, and ±30 ms deviations; besides,
both the missing error and spurious error are maintained at a
low level. This demonstrates that the homomorphic filtered
spectral peaks carry more accurate VOP information. Al-
though the performance of the proposed method at ±10 ms is
limited due to the high similarity of the signal characteristics
preceding and following the VOP when voiced consonants
present before vowel, the high detection rate at resolutions
of ±20 ∼ ±40 ms may be sufficient for applications such as
end-point detection and identification of voiced/unvoiced re-
gions.

In the second experiment, to verify the robustness of
the features to noise, the same clean test utterances consists
of 4200 VOPs are corrupted using white noise, pink noise
and f-16 noise from the NOISEX92 database, at SNRs of
20, 10, and 0 dB. The results of VOP detection using the
aforementioned methods under three different noises envi-
ronment at various SNR levels are given in Tables 2–4, re-
spectively. Compared with the detection rate for the clean
speech, the performance of the individual methods (EXC,
VT and MOD), especially MOD, degrades significantly in
each noisy case. For this reason, the improvement in the
performance of combined method suffers from a great lim-
itation. In the cases of 10 and 20 dB SNR, the proposed
method maintains a relatively higher detection rate from
about 85% at ±40 ms resolution to about 65% at ±10 ms res-
olution, much greater than the results obtained by the best
performing method among EXC, VT, MOD, and COMB at
each corresponding resolution. Moreover, the missing and
spurious error of the proposed method are both lower than
17%, but they are more than 30% in the combined approach.
In the noisy case of 0 dB, although the proposed method has
almost same level in the missing and spurious error as com-
bined method, it ensures the detection rate more than 45%
at the highest time resolution. By this comparison, it is ob-
vious that the homomorphic filtered spectral peaks energy
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Table 2 Performance of VOP detection using excitation source (EXC), spectral peaks (VT), mod-
ulation spectrum (MOD), combined (COMB) and proposed methods for TIMIT database consists of
4200 VOPs under white noise environment at various SNR levels.

Table 3 Performance of VOP detection using excitation source (EXC), spectral peaks (VT), mod-
ulation spectrum (MOD), combined (COMB) and proposed methods for TIMIT database consists of
4200 VOPs under pink noise environment at various SNR levels.

feature yields much better robustness to noises than the com-
bination of individual evidence from EXC, VT, and MOD.

The next experiment conducted is to analyze the
gender-dependent performance of the proposed VOP de-
tection method. The database used earlier is considered
in this case also. The 168 speakers are composed of 112
male speakers with 2800 VOPs and 56 female speakers
with 1400 VOPs. The whole database is classified into two
groups according to their gender. The performance of the
proposed method for each group is shown in the Table 5. In
the male case, the detection accuracy is 74.00% for ±10 ms
resolution and increases to 96.57% for ±40 ms resolution.
In the female case, the detection accuracy is 74.43% for
±10 ms resolution and increases to 95.86% for ±40 ms res-

olution. It is observed that there is only slight difference in
the detection rate, missing error and spurious error between
the two groups. The nearly same performance demonstrates
that the gender-independency of the proposed method.

Finally, to analyze the performance of the proposed
VOP detection method with respect to different continuous
speech, another 100 different utterances are selected form
the test set. In this experiment, we focus on some difficult
cases of continuous speech, such as the sentence of Where
were you while we were away with many semivowels highly
articulated with vowels and the sentence of Thus technical
efficiency is achieved at the expense of actual experience
with polysyllabic words containing multiple vowels. There
are a total of 926 VOPs under this situation in the 100 sen-



954
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

Table 4 Performance of VOP detection using excitation source (EXC), spectral peaks (VT), mod-
ulation spectrum (MOD), combined (COMB) and proposed methods for TIMIT database consists of
4200 VOPs under f-16 cockpit noise environment at various SNR levels.

Table 5 Performance of the proposed VOP detection method for 112 male speakers with 2800 VOPs
and 56 female speakers with 1400 VOPs.

Table 6 Performance of the proposed VOP detection method for 100 difficult continuous speech with
926 VOPs.

tences. The performance of the proposed method is shown
in Table 6. It is observed that the number of hypothesized
VOPs is less than the number of reference VOPs. This may
be mainly due to the closely ranked vowels in the polysyl-
labic word; the transition from a vowel to another vowel
is not distinct enough for detection, thus some VOPs are
missed. Compared with the earlier cases of two sentences,
the performance in detection rate at each specified resolu-
tion is relative poorer. This may be attributed to the pres-
ence of highly confusable voiced consonants units, such as
semivowels. Since their characteristics are very similar with
vowels, the sharply rising instants related to the VOPs in
the time-varying homomorphic filtered spectral peaks en-
ergy may be located in a larger deviation, accordingly the
detection accuracy is reduced. The detection rate of 86.61%
within ±40 ms is acceptable but it is not satisfying at higher
time resolution, the present method needs to be improved to
solve the problem in this situation.

4. Conclusions

In this paper, an improved method for VOP detection with
low complexity is proposed. The method explores the fea-
tures of VT system represented by homomorphic filtered
spectral peaks energy. The homomorphic filtering is used to
transform the multiplied components of VT and excitation
in the DFT spectrum to linear combined form in the cep-
stral domain and then realize the separation of them. The
VT spectrum reconstructed based on the separated compo-
nents possesses the distinct peaks indicating the VT shape
related to vowels, which are free from the redundant infor-
mation existing in excitation source. The amplitudes of the
homomorphic filtered spectral peaks are extracted as energy
feature and the sharply rising instants in the energy level are
exploited for detecting VOPs.

The proposed method is compared with the existing ap-
proach using the combination (COMB) of evidence from the
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excitation source (EXC), spectral peaks (VT), and modula-
tion spectrum (MOD) energies. Since the combined method
needs three kinds of features to realize enhancement of VOP
information, the computation complexity is higher than the
proposed method. Moreover, in both the cases of clean and
noise-corrupted speech, the proposed method shows signifi-
cant improvement in the performance compared to the com-
bined approach, especially at the higher resolutions, about
20% more VOPs are detected. Further improvement should
focus on the performance at a time resolution of ±10 ms and
robustness in difficult cases of speech to satisfy the needs of
different practical applications in speech processing.
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