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Protocol Inheritance Preserving Soundizability Problem and Its
Polynomial Time Procedure for Acyclic Free Choice Workflow Nets
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SUMMARY A workflow may be extended to adapt to market growth,
legal reform, and so on. The extended workflow must be logically correct,
and inherit the behavior of the existing workflow. Even if the extended
workflow inherits the behavior, it may be not logically correct. Can we
modify it so that it satisfies not only behavioral inheritance but also logi-
cal correctness? This is named behavioral inheritance preserving soundiz-
ability problem. There are two kinds of behavioral inheritance: protocol
inheritance and projection inheritance. In this paper, we tackled protocol
inheritance preserving soundizability problem using a subclass of Petri nets
called workflow nets. Limiting our analysis to acyclic free choice workflow
nets, we formalized the problem. And we gave a necessary and sufficient
condition on the problem, which is the existence of a key structure of free
choice workflow nets called TP-handle. Based on this condition, we also
constructed a polynomial time procedure to solve the problem.
key words: workflow net, Petri net, behavioral inheritance, soundness,
soundizability, polynomial time procedure

1. Introduction

A workflow may be extended to adapt to market growth,
legal reform, and so on. Business continuity requires the
extended workflow to inherit the behavior of the existing
workflow. The extended workflow must be logically cor-
rect, but it may be not logically correct even if it inherits the
behavior.

Workflows can be modeled as a subclass of Petri
nets [1], called workflow nets [2] (WF-nets for short). Van
der Aalst [3] has proposed a criterion of logical correctness
for WF-nets, called soundness. He has also shown that many
actual workflows can be modeled as a subclass of WF-nets,
called free choice WF-nets (FC WF-nets for short) [4], and
that the soundness of FC WF-nets can be verified in poly-
nomial time. Moreover, Van der Aalst et al. [5] have pro-
posed a concept of behavioral inheritance between WF-nets.
There are two kinds of behavioral inheritance: protocol in-
heritance and projection inheritance. Yamaguchi et al. [6]
have proposed a necessary and sufficient condition on pro-
tocol inheritance between an acyclic FC WF-net and its ex-
tended net, and have shown that the protocol inheritance can
be verified in polynomial time. The necessary and sufficient
condition suggests that there exists a non-sound extended
net even if it satisfies protocol inheritance. Can we mod-
ify the non-sound extended net so that it satisfies not only
protocol inheritance but also soundness? This is named pro-
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tocol inheritance preserving soundizability problem. Unfor-
tunately, there has been no research tackling this problem.

In this paper, we tackle the protocol inheritance pre-
serving soundizability problem. Limiting our analysis to
acyclic FC WF-nets, we formalize the problem. Next we
propose a necessary and sufficient condition on the prob-
lem, which is the existence of a key structure of FC WF-nets
called TP-handle. Based on this condition, we also construct
a polynomial time procedure to solve the problem. After
the introduction in Sect. 1, Sect. 2 gives the definition and
properties of WF-nets. In Sect. 3, we give the definition and
the necessary and sufficient condition on the problem. In
Sect. 4, we present the polynomial time procedure for solv-
ing the problem. We also illustrate the procedure with ex-
amples. Section 5 gives the conclusion and future work.

2. WF-Net and Its Properties

(1) WF-Net

A (labeled) Petri net [1] is a four tuple (P,T, A, �), where P
and T are respectively disjoint finite sets of places and tran-
sitions, A (⊆(P×T )∪(T×P)) is a set of arcs, and � : T→A

is a labelling function of transitions, where A denotes a set
of labels. Let x be a node.

N•x and x
N• respectively denote

{y|(y, x)∈A} and {y|(x, y)∈A}.
Definition 1 (WF-net [3]): A Petri net N=(P,T, A, �) is a
(labeled) WF-net iff (i) N has a single source place pI

(
N•pI=∅ and ∀p∈(P−{pI}): N•p�∅) and a single sink place pO

(pO
N•=∅ and ∀p∈(P−{pO}): p

N•�∅); and (ii) Every node is on
a path from pI to pO. �

A marking of a WF-net N is a mapping M: P→N. We
represent M as a bag over P, and write [pM(p)|p∈P,M(p)>0]
for it. [pI] and [pO] are respectively the initial and fi-
nal markings. Let MX and MY be markings. MX=MY

denotes that ∀p∈P: MX(p)=MY (p). MX≥MY denotes that
∀p∈P: MX(p)≥MY (p). A transition t is said to be firable in
a marking M if M≥N•t. This is denoted by M[N, t〉. Firing t

in M results in a new marking M′ (=M∪t
N•−N•t). This is de-

noted by M[N, t〉M′. A marking M′ is said to be reachable
from a marking M if there exists a firing sequence of transi-
tions transforming M to M′. The set of all possible markings
reachable from M is denoted by R(N,M). R(N,M) can be
represented as a graph, called reachability graph G=(V, E).
The vertices represent markings generated from M and its

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



1182
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

successors, and each arc represents a transition firing†.
N is said to be FC if ∀p1, p2∈P: p1

N•∩p2
N•�∅ ⇒

|p1
N•|=|p2

N•|=1. If we add a transition t∗ to N which connects
pO with pI , then the resulting net N is strongly connected.
We call N the short-circuited net of N. There are key struc-
tures that characterize FC: handle and bridge. A path (a cir-
cuit) is said to be elementary if no node appears more than
once in the path (the circuit). Let ρ be an elementary path
from a node x to another node y, and c an elementary circuit
in N. ρ is called a handle [1], [7] of c if ρ shares exactly two
nodes, x and y, with c. Let h be a handle of c. ρ is called
a bridge between c and h if each of c and h shares exactly
one node, x or y, with ρ. A handle (a bridge) from a node
x to another node y is called an XY-handle (an XY-bridge),
where if x∈P then X is P, otherwise X is T; if y∈P then Y is
P, otherwise Y is T. For example, a handle from a place to a
transition is a PT-handle.

(2) Soundness

Soundness is a criterion of logical correctness defined for
WF-nets.

Definition 2 (soundness [8]): A WF-net N is sound iff
(i) ∀M∈R(N, [pI]): ∃M′∈R(N,M): M′≥[pO]; (ii) ∀M∈R(N,
[pI]): M≥[pO] ⇒ M=[pO]; and (iii) There is no dead tran-
sition in (N, [pI]). �

The following is the necessary and sufficient condition
on the soundness problem of acyclic FC WF-nets. It can be
checked in polynomial time.

Property 1: An acyclic FC WF-net N is sound iff (i) No
circuit of N has TP-handles; and (ii) If N has PT-handles,
then each PT-handle has a TP-bridge from the handle to the
circuit. �

(3) Behavioral Inheritance

Behavioral inheritance is a relaxation of branching bisimi-
larity, which is an equivalence relation on WF-nets. Branch-
ing bisimilarity allows some transitions not to be observed.
Such transitions are denoted by a designated label τ. Intu-
itively, branching bisimilarity equates WF-nets whose ob-
servable behaviors are the same.

Definition 3 (branching bisimilarity [9]): Let GNX and GNY

be respectively the reachability graphs of a WF-net
(NX , [pX

I ]) and another WF-net (NY , [pY
I ]). A binary re-

lation R (⊆R(NX , [pX
I ])×R(NY , [pY

I ])) is branching bisim-
ulation iff (i) if MXRMY and MX[NX , α〉MX

′, then
∃MY

′,MY
′′ ∈ R(NY , [pY

I ]): MY [NY , τ
∗〉MY

′′, MY
′′[NY ,

(α)〉MY
′, MXRMY

′′, and MX
′RMY

′; (ii) if MXRMY and
MY [NY , α〉MY

′, then ∃MX
′,MX

′′∈R(NX , [pX
I ]): MX[NX , τ

∗〉
†Formally, V=R(N,M), E={(M, �(t),M′)|M,M′∈V, t∈T,M[N,

t〉M′}. Let M,M′∈V , α∈�(T ). We write M[N, α〉M′ if M′ is
reachable from M by following an edge labeled as α. We write
M[N, τ∗〉M′ if M′ is reachable from M by following any number
of edges labeled as τ. We write M[N, (α)〉M′ if either (i) α=τ and
M=M′; or (ii) M[N, α〉M′.

MX
′′, MX

′′[NX , (α)〉MX
′, MX

′′RMY , MX
′RMY

′; and (iii) if
MXRMY then (MX=[pX

O]⇒ MY [NY , τ
∗〉[pY

O]) and (MY=[pY
O]

⇒ MX[NX , τ
∗〉[pX

O]). (NX , [pX
I ]) and (NY , [pY

I ]) are said to be
branching bisimilar, denoted by (NX , [pX

I ])∼b(NY , [pY
I ]), iff

there exists a branching bisimulation R between GNX and
GNY . �

To give the formal definition of protocol inheritance,
we use encapsulation operator ∂. For a set H of ob-
servable labels, ∂H removes transitions whose labels are
included in H. Formally, ∂H:N �→(P,T ′, A′, �′) such that
T ′={t∈T |�(t)�H}, A′=A∩((P×T ′)∪(T ′×P)), and �′: t (∈T ′)
�→ �(t).
Definition 4 (protocol inheritance [5]): A WF-net NX is a
subclass of another WF-net NY under protocol inheritance
iff ∃H: (∂H(NX), [pX

I ]) ∼b (NY , [pY
I ]). �

Protocol inheritance relation is partial-order [5]. This
means that protocol inheritance relation is transitive.

The following is the necessary and sufficient condition
to verify protocol inheritance between an acyclic FC WF-net
and its subnet [6]. It can be checked in polynomial time.

Property 2: Let NX (=(PX ,TX , AX , �X)) and NY (=(PY ,TY ,
AY , �Y )) be acyclic FC WF-nets, where NX is a sound subnet
of NY ; and every transition in NX (NY ) represents a unique
observable transition. NY is a subclass of NX under proto-
col inheritance iff (i) pX

I =pY
I and pX

O=pY
O; (ii) ∂�Y (TY−TX )(NY )

equals NX with 0 or more TT-handles with length 2;
and (iii) ∂�Y (TY−TX )(NY ) is sound, where isolated places in
∂�Y (TY−TX )(NY ) are removed. �

This necessary and sufficient condition suggests that
there exists a non-sound extended net even if it satisfies pro-
tocol inheritance. Let us consider an extension of an FC
WF-net, which is shown in Fig. 1. Figure 1 (a) shows a

(a) A sound acyclic FC WF-net N1.

(b) A non-sound acyclic FC WF-net N2 obtained by extending N1. Note
that N2 is a subclass of N1 under protocol inheritance.

Fig. 1 An instance of protocol inheritance preserving soundizability
problem.
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sound acyclic FC WF-net N1. Figure 1 (b) shows an acyclic
FC WF-net N2 obtained by extending N1. N2 is a subclass
of N1 under protocol inheritance but is not sound. The detail
is described later.

3. Protocol Inheritance Preserving Soundizability
Problem and Its Necessary and Sufficient Condition

In this section, we give the formal definition of protocol in-
heritance preserving soundizability problem of acyclic FC
WF-net, and the necessary and sufficient condition on the
problem.

3.1 Problem

The growth of business involves (i) extending the existing
workflow. The extended workflow must (ii) inherit the be-
havior of the existing workflow, and further (iii) be logically
correct. We model the existing workflow and the extended
workflow as WF-nets NX and NY , respectively, that satisfy
(i) NX is a subnet of NY ; (ii) NY is a subclass of NX under
protocol inheritance; and (iii) NX and NY are sound. Even if
NY is a subclass of NX under protocol inheritance, NY is not
always sound. If NY is not sound, can we modify it so that it
satisfies not only protocol inheritance but also sound? This
can be shown as Fig. 2.

Van der Aalst [4] has shown that many actual work-
flows can be modeled as FC WF-nets. The Workflow Man-
agement Coalition [10] (WfMC for short), an international
standardization organization on workflows, has identified
four routing constructions: sequential, parallel, selective,
and iterative. Acyclic FC WF-net can model workflows
composed of the former three routing constructions. There-
fore various extension of actual workflows would be mod-
eled as acyclic FC WF-nets. Thus we limit our analysis to
acyclic FC WF-nets and give the formal definition as fol-
lows.
Definition 5 (protocol inheritance preserving soundizability
problem of acyclic FC WF-nets): Let NX be a sound acyclic
FC WF-net and NY a non-sound acyclic FC WF-net such
that (i) NX is a subnet of NY ; and (ii) NY is a subclass of NX

Fig. 2 Illustration of protocol inheritance preserving soundizability
problem.

under protocol inheritance. Is there a sound acyclic FC WF-
net NZ that satisfies the following? (i) NY is a subnet of NZ ;
and (ii) NZ is a subclass of NX under protocol inheritance.

�
Let us consider two instances of the problem. In fact,

those instances have different answers: The first is yes, but
the second is no.

The first instance is shown in Fig. 1. N2 is not sound
because N2 violates Condition (ii) of Property 1, i.e. N2 has
a PT-handle p1

I t2
1 p2

1t2
2 p2

2t1
3 which has no TP-bridge from the

handle to the circuit. Can we modify N2 as a sound acyclic
FC WF-net which is a subclass of N1 under protocol inher-
itance? The answer is yes. We have only to add a new TP-
bridge from the handle to the circuit. The obtained WF-
net N3 is shown in Fig. 3 (a). N3 is sound because each PT-
handle in N3 has a TP-bridge from the handle to the circuit.
Moreover, N3 is a subclass of N1 under protocol inheritance
because N3 satisfies the conditions of Property 2.

The second instance is shown in Fig. 3. N4 is not sound
because N4 violates Condition (i) of Property 1, i.e. there is
a TP-handle t1

1 p1
1t4

1 p1
O. Can we modify N4 as a sound acyclic

FC WF-net which is a subclass of N3 under protocol inheri-
tance? The answer is no. This is because the TP-handle will
never be removed.

We deduce from the analysis results that TP-handle
plays a core role in the protocol inheritance preserving soun-
dizability problem of acyclic FC WF-nets.

3.2 Necessary and Sufficient Condition

Based on our deduction, we divide the protocol inheritance
preserving soundizabiltiy problem of acyclic FC WF-nets
into two cases based on the existence of TP-handle. Let us

(a) A sound acyclic FC WF-net N3. N3 is a subclass under
protocol inheritance of N1.

(b) A non-sound acyclic FC WF-net N4 obtained by extending N3. Note
that N4 is a subclass of N3 (and N1) under protocol inheritance, but is
not soundizable because N4 has TP-handles.

Fig. 3 Another instance of soundizability problem.
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first consider the case with TP-handles.

Lemma 1: Let NX be a sound acyclic FC WF-net and NY

a non-sound acyclic FC WF-net such that (i) NX is a subnet
of NY ; and (ii) NY is a subclass of NX under protocol inheri-
tance. If NY has a TP-handle h, there is no sound acyclic FC
WF-net NZ such that (i) NY is a subnet of NZ ; and (ii) NZ is
a subclass of NX under protocol inheritance. �

Proof: Assume NZ exists. Since NY is a subnet of NZ , h still
exists in NZ . This implies NZ is not sound from Condition (i)
of Property 1. It is inconsistent with the assumption. Q.E.D.

This lemma means a necessary condition on the proto-
col inheritance preserving soundizability problem of acyclic
FC WF-nets.

Next, let us consider the case with no TP-handle. Any
non-sound acyclic FC WF-net satisfying protocol inheri-
tance has a structural property as follows.

Property 3: Let NX be a sound acyclic FC WF-net and NY

a non-sound acyclic FC WF-net such that (i) NX is a sub-
net of NY ; and (ii) NY is a subclass of NX under protocol
inheritance. NY equals ‘NX with 0 or more TT-handles with
length 2’ with PP-handles and/or PP-bridges, where the PP-
handles and/or PP-bridges are not included in ‘NX with 0
or more TT-handles with length 2’ except for their terminal
nodes. �

Proof: We show the contraposition. Assume that NY equals
‘NX with 0 or more TT-handles with length 2’ with a
PT/TP/TT-handle or PT/TP/TT-bridge ρ. Note that ρ is not
included in ‘NX with 0 or more TT-handles with length 2’
except for their terminal nodes. If ρ is a PT/TP-handle or
PT/TP-bridge, since ∂�Y (TY−TX ) makes a new source place or
new sink place, NY is not a subclass of NX under protocol
inheritance (Refer to Lemmas 1 and 2 of Ref. [6]). If ρ is a
TT-handle or TT-bridge with length 4 or more, for the sim-
ilar reason NY is not a subclass of NX under protocol inher-
itance (Refer to Lemma 5 of Ref. [6]). If ρ is a TT-handle
with length 2, it would be included in ‘NX with 0 or more
TT-handles with length 2’, so this case does not occur. If ρ
is a TT-bridge with length 2, since a new causality occurs
between its terminal nodes, NY is not a subclass of NX under
protocol inheritance (Refer to Lemma 4 of Ref. [6]). Thus
this property holds. Q.E.D.

This property means that all the transitions newly
added to NX are contained in the PP-handles and/or PP-
bridges. We illustrate this property with an instance shown
in Fig. 4. N6 is an acyclic FC WF-net obtained by extend-
ing N5, and is a subclass of N5 under protocol inheritance.
N6, however, is not sound, because N6 has a PT-handle
p5

I t5
1 p5

1t6
1 p6

1t6
2 p5

2t5
4 which has no TP-bridge from the handle to

the circuit, i.e. the PT-handle violates Condition (ii) of Prop-
erty 1. From Property 3, we can obtain that N6 equals N5

with a PP-handle p5
1t6

1 p6
1t6

3 p5
O and a PP-bridge p5

1t6
1 p6

1t6
2 p5

2.
Note that all the transitions newly added to N5, i.e. t6

1, t
6
2 and

t6
3, are contained in the PP-handle and/or PP-bridge.

From Condition (ii) of Property 1, NY must have a PT-
handle which has no TP-bridge from the handle to the cir-

(a) A sound acyclic FC WF-net N5.

(b) A non-sound acyclic FC WF-net N6 obtained by extending N5.
Note that N5 has a PP-bridge.

Fig. 4 An instance including a PP-bridge of soundizability problem.

cuit. We say, a PT-handle is wrong if the handle has no
TP-bridge from the handle to the circuit. Otherwise the
PT-handle is said to be right. From Property 3, NY equals
‘NX with 0 or more TT-handles with length 2’ with PP-
handles and/or PP-bridges. ‘NX with 0 or more TT-handles
with length 2’ has no wrong PT-handle, because it is sound
(Condition (iii) of Property 2). This means that a wrong PT-
handle is caused by the PP-handles and/or PP-bridges added
to ‘NX with 0 or more TT-handles with length 2’. In other
words, the wrong PT-handle must include such a PP-handle
or PP-bridge. Let us consider the instance shown in Fig. 4.
N6 has a wrong PT-handle p5

I t5
1 p5

1t6
1 p6

1t6
2 p5

2t5
4. N6 equals N5

with a PP-handle p5
1t6

1 p6
1t6

3 p5
O and a PP-bridge p5

1t6
1 p6

1t6
2 p5

2.
The PT-handle includes the PP-bridge.

Intuitively, for each of the wrong PT-handles, if we add
an arc as a TP-bridge from the handle to the circuit, we can
make NY sound. If the TP-bridge starts from a transition
added to NX , it can be removed with the removal of the tran-
sition by encapsulation operator, so the obtained net is a sub-
class of NX under protocol inheritance.

Lemma 2: Let NX be a sound acyclic FC WF-net and NY

a non-sound acyclic FC WF-net such that (i) NX is a subnet
of NY ; and (ii) NY is a subclass of NX under protocol inher-
itance. If NY has no TP-handle, there is a sound acyclic NZ

such that (i) NY is a subnet of NZ ; and (ii) NZ is a subclass
of NX under protocol inheritance. �

Proof: We construct a WF-net N by extending NY , and prove
N = NZ by showing the following: (1) N is acyclic FC;
(2) N is sound; and (3) N is a subclass of NX under protocol
inheritance.

First of all, we give how to construct N by extending
NY . NY has wrong PT-handles. Let n be the number of
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Fig. 5 Illustration of the proof of Lemma 2, where NX
′ denotes ‘NX with

0 or more TT-handles with length 2’.

the wrong PT-handles. Let hi (i = 1, 2, · · · , n) denote each
wrong PT-handle, and ci the circuit of hi (See Fig. 5). For
PT-handle hi, let p(i) and t(i) denote respectively the start
node and the end node, and s(i) denote the input place of
t(i) which appears in ci. Let ρi be a PP-handle or PP-bridge
added to ‘NX with 0 or more TT-handles with length 2’ such
that ρi is a part of hi. For PP-handle or PP-bridge ρi, let q(i)

and r(i) denote respectively the start node and the end node,
and u(i) denote the input transition of r(i) which appears in
ρi. We construct N (= (P,T, A, �)) as follows: P=PY , T=TY ,
A=AY∪{(u(i), s(i))|i=1, 2, · · ·, n}, �=�Y . N is obviously an ex-
tended WF-net of NY .

Firstly, we prove (1). The extended part, {(u(i), s(i))|i=1,
2, · · ·, n}, consists of arcs from transition u(i) to place s(i).
Therefore the free-choiceness is preserved. There is no path
from s(i) to the nodes of ρi because such a path makes N
non-FC. Therefore the part does not produce any circuit, i.e.
N is acyclic.

Secondly, we prove (2). Arc (u(i), s(i)) forms a TP-
bridge from hi to ci. Note that NY originally has a TP-bridge
from ci to hi. Without the TP-bridge, ∂�Y (TY−TX ) would make
a new source place, i.e. NY does not become a subclass of
NX under protocol inheritance. NY has no TP-handle. This
means that the TP-bridge does not form any TP-handles.
From the symmetry of structure, arc (u(i), s(i)) also forms no
TP-handle. Therefore N is sound.

Finally, we prove (3). Since u(i) is a transition in PP-
handle or PP-bridge ρi, we can remove arc (u(i), s(i)) because
u(i) can be removed by encapsulation operator. N is a sub-
class of NX under protocol inheritance.

Summarizing the above results, we have N = NZ . Thus
this lemma holds. Q.E.D.

This lemma means a sufficient condition on the proto-
col inheritance preserving soundizability problem of acyclic
FC WF-nets.

Let us consider again the instance shown in Fig. 4. We
can say that N6 is soundizable because N6 has no TP-handle.
N6 has a wrong PT-handle p5

I t5
1 p5

1t6
1 p6

1t6
2 p5

2t5
4. The end node

of the PT-handle is t5
4. The input place of t5

4 which appears
in its circuit is p5

3. The PT-handle includes a PP-bridge
p5

1t6
1 p6

1t6
2 p5

2. The end node of the PP-bridge is p5
2. The input

transition of p5
2 which appears in the PP-bridge is t6

2. An arc

Fig. 6 A WF-net N7 obtained by adding (t62 , p
5
3) to N6. N7 is a sound

acyclic FC WF-net, and is a subclass of N5 under protocol inheritance.

(t6
2, p

5
3) forms a TP-bridge from the PT-handle to the circuit.

Adding the arc to N6, we can obtain WF-net N7 shown in
Fig. 6. N7 is an sound acyclic FC WF-net, and is a subclass
of N5 under protocol inheritance.

From Lemmas 1 and 2, we can immediately obtain the
following necessary and sufficient condition on the protocol
inheritance preserving soundizability problem of acyclic FC
WF-nets.

Theorem 1: Let NX be a sound acyclic FC WF-net and NY

a non-sound acyclic FC WF-net such that (i) NX is a subnet
of NY ; and (ii) NY is a subclass of NX under protocol inheri-
tance. Iff NY has no TP-handle, there is a sound acyclic FC
WF-net NZ such that (i) NY is a subnet of NZ ; and (ii) NZ is
a subclass of NX under protocol inheritance. �

4. Polynomial Time Procedure and Examples

4.1 Polynomial Time Procedure

Based on Theorem 1, we construct a procedure for solving
the protocol inheritance preserving soundizability problem
of acyclic FC WF-nets.
�Decision of Soundizability for Acyclic FC WF-nets�
Input: Sound acyclic FC WF-net NX and non-sound acyclic
FC WF-net NY such that (i) NX is a subnet of NY ; and (ii) NY

is a subclass of NX under protocol inheritance.
Output: Is there a sound acyclic FC WF-net NZ such that
(i) NY is a subnet of NZ ; and (ii) NZ is a subclass of NX

under protocol inheritance.

1◦ Construct a flow network DNY (=(VNY , ENY )) whose ev-
ery edge has capacity 1, where VNY=PY∪TY , ENY=AY .

2◦ For each vertex pair (vi, v j) (∈VNY×VNY ), if

• vi corresponds to a transition t of NY s.t. |tNY• |≥2;

• v j corresponds to a place p of NY s.t. |NY• p|≥2; and
• The maximum value of flow between vi and v j ex-

ceeds 1,

then output no and stop.
3◦ Output yes and stop.
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Fig. 7 The directed graph DN2 of N2.

Property 4: Algorithm �Decision of Soundizability for
Acyclic FC WF-nets� outputs yes iff NY is soundizable,
i.e. NY has no TP-handle. �

Proof: The max-flow min-cut theorem states that if every
edge of a flow network has capacity 1, the number of the
disjoint paths from a vertex to another vertex is equal to the
maximum value of flow between those vertices [11].

The “if” part: Since NY has no TP-handle, the number
of the disjoint paths from any transition t to any place p is at
most one. The maximum value of flow between the vertices
corresponding to t and p does not exceed 1. Therefore the
procedure outputs yes.

The “only-if” part: If NY has a TP-handle, the number
of the disjoint paths from the start transition to the end place
of the TP-handle is two or more. The maximum value of
flow between the corresponding vertices exceeds 1. There-
fore the procedure outputs no. Q.E.D.

Property 5: The following problem can be solved in poly-
nomial time: Given a sound acyclic FC WF-net NX and a
non-sound acyclic FC WF-net NY such that (i) NX is a sub-
net of NY ; and (ii) NY is a subclass of NX under protocol
inheritance, to decide whether there is a sound acyclic FC
WF-net NZ such that (i) NY is a subnet of NZ ; and (ii) NZ is
a subclass of NX under protocol inheritance. �

Proof: Algorithm �Decision of Soundizability for Acyclic
FC WF-nets� can run in polynomial time, because Step
1◦ takes time O(|PY | + |TY | + |AY |) and Step 2◦ takes time
O(|TY ||PY |(|PY | + |TY |)3). Note that the computation of the
maximum flow takes time O((|PY | + |TY |)3). Q.E.D.

4.2 Examples

We illustrate the proposed procedure with the instances
shown in Figs. 1 and 3. Let us first consider the instance
shown in Fig. 1. In Step 1◦, we construct a flow network
DN2 shown in Fig. 7. In Step 2◦, we compute the maximum
values of flow from vt1

1
to vp2

2
, from vt1

1
to vp1

O
, and from vt1

4

to vp1
O
. Since the maximum values are all 1, our procedure

outputs yes and stops. In fact, there exists a sound acyclic
FC WF-net N3.

Next, let us consider the instance shown in Fig. 3. In
Step 1◦, we construct a flow network DN4 shown in Fig. 8.
In Step 2◦, we obtain the maximum value of flow from vt1

1
to

vp1
O

as 2. Therefore our procedure outputs no and stops.

Fig. 8 The directed graph DN4 of N4. Note that the maximum flow from
vt11

to vp1
O

is 2. This means that the path from t11 to p1
O is a TP-handle.

5. Conclusion

In this paper, we have tackled the protocol inheritance pre-
serving soundizability problem of acyclic FC WF-nets. We
have first given the formal definition of the problem. Next
we have proposed a necessary and sufficient condition on
the problem. The condition is the existence of TP-handle.
Based on this condition, we have also constructed a poly-
nomial time procedure to solve the problem. The proposed
procedure enables us to check it efficiently. It would con-
tribute to strengthen the organization’s competitive power
in business environment that is changing rapidly.

This paper is the first step for soundization of WF-nets.
The next step is to give how to soundize soundizable nets.
A WF-net obtained by soundization is not unique in general,
so it is desirable to have a minimal one. As a future work,
we first propose a measure of quality of soundized nets, e.g.
net size. Then considering the measure, we are going to
construct a procedure of soundization.
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