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Retargeting Derivative-ASIP with Assembly Converter Tool

Agus BEJO™, Nonmember, Dongju LI', Tsuyoshi ISSHIKI', Members, and Hiroaki KUNIEDA, Fellow

SUMMARY  This paper firstly presents a processor design with Deriva-
tive ASIP approach. The architecture of processor is designed by making
use of a well-known embedded processor’s instruction-set as a base archi-
tecture. To improve its performance, the architecture is enhanced with more
hardware resources such as registers, interfaces and instruction extensions
which might achieve target specifications. Secondly, a new approach for
retargeting compiler by means of assembly converter tool is proposed. Our
retargeting approach is practical because it is performed by the assembly
converter tool with a simple configuration file and independent from a base
compiler. With our proposed approach, both architecture flexibility and a
good quality of assembly code can be obtained at once. Compared to other
compilers, experiments show that our approach capable of generating code
as high efficiency as its base compiler and the developed ASIP results in
better performance than its base processor.
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1. Introduction

In system-on-chip (SoC) design, flexibility and performance
are two important aspects which usually need to be opti-
mized during the design phase. Recently, application spe-
cific instruction-set processor (ASIP) has been one of the
most popular solutions proposed by many researchers to
compromise those two aspects. ASIP solution balances ar-
chitecture flexibility through software programmability and
hardware performance through instruction extensions. Em-
ploying ASIP, however, leads to more complicated works
since four standard design phases, architecture exploration,
architecture implementation, software development tool and
application design, and system integration and verification
must be considered as a single design framework.

In the conventional ASIP design method all those de-
sign phases are done manually, consecutively and iteratively
with less automation. Therefore, the conventional ASIP de-
sign method suffers from four things. Fist, it is a long, te-
dious and extremely error-prone process so that it becomes
difficult to achieve time-to-market constraint. Second, it is
less flexible against architecture exploration. Third, with
less automation it is more difficult to match the profiling
tools to an abstract specification of the target architecture.
Fourth, manual process may cause inconsistency among
architecture specification, software development tools and
hardware implementation.
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Currently, the trend of ASIP design method has been
addressed to retargetable approach based on machine de-
scription language. It can generate more consistent software
development tools and synthesizable HDL code automati-
cally. Using machine description language ensures that a
processor architecture can be expressed easily either in in-
struction accurate or cycle accurate. Architecture modifica-
tion or even new architecture creation can be flexibly done
with higher level abstraction language. Profiling, simula-
tion and software verification become faster since all those
processes do not use the detail information of the hardware
implementation. A set of software development tool consist
of compiler, assembler, linker, debugger and simulator can
also be generated automatically. This method reduces the
design effort and the design time significantly.

One remaining problem involves how to provide an ef-
ficient compiler for the ASIP architecture. Some ASIP de-
sign methods have been facilitated with compiler generation
tool. Several works focusing on compiler design and retar-
geting compiler for ASIP have also been proposed. Those
compilers, however, could not achieve as high efficiency as
the conventional GPP’s compilers. The conventional GPP’s
compilers usually result in better code quality than the ex-
isting ASIP’s compilers.

In order to solve this problem, we propose a new ap-
proach to design ASIP with efficient compiler. Our proposed
approach, called Derivative ASIP, is developed with LISA
design framework. The compiler of the developed ASIP ar-
chitecture is retargeted from a base compiler by using as-
sembly converter tool. The contribution of our approach
is to provide a practical method for retargeting ASIP ar-
chitecture which can solve both architecture flexibility and
compiler performance problems. With our approach, a good
quality of assembly code can be inherited from its base com-
piler and the same performance at least can be achieved as
its base processor.

2. Related Work

As it has been a new trend, several works on machine de-
scription language for ASIP design have been proposed.
nML, ISDL, MIMOLA, EXPRESSION, FlexWare2, Xtensa
and LISA are some of examples.

nML language is firstly proposed in [1], [2]. It allows
designer to describe processor architecture in instruction-set
level. However it lacks of flexibility on expressing pipeline
mechanism since it cannot describe cycle-accurate model.
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ISDL language is an advanced version of nML proposed
in [3]. Although it supports synthesizable HDL code and
auto generation of software development tools consisting
of compiler, assembler, linker and simulator, it still has the
same limitation as nML language that is cannot cover cycle-
accurate model. Likewise, MIMOLA is a machine descrip-
tion language with Pascal-like syntax which is intended for
microarchitecture design. It can generate compiler, simula-
tor and hardware synthesizer but cannot support pipelined
model. EXPRESSION language proposed in [4] provides
better features which allows designer to describe processor
architecture in cycle-accurate. However, it suffers from sim-
ulation speed and lacks of synthesizable HDL code gen-
eration. FlexWare2 proposed in [5] is also a framework
which capable of generating a complete software develop-
ment tools. However, the synthesizable HDL code genera-
tion is also not available and the compiler generation must
be done in a separate framework by CoSy. Xtensa is an-
other ASIP design method proposed by Tensilica[6]. In
Xtensa, a customized RISC processor architecture can be
created based on instruction-set templates. Although this
method is flexible and retargetable but the architecture ex-
ploration space is limited by the availability of instruction
template. Therefore, Xtensa is not suitable for ASIP which
employs only a few instructions. Furthermore, Xtensa com-
piler cannot support instruction extensions directly unless
the instruction extensions are given in HDL description.

A unified design method for ASIP design which pro-
vides a common basis for all design phases is proposed in
[71,[8]. This method is Language for Instruction-set Ar-
chitectures (LISA). LISA uses similar concept to the nML
with more features. It can describe processor architecture
in cycle-accurate model and capable of generating synthe-
sizible HDL code. It can also generate a complete set of
tools includes architecture exploration tool, software devel-
opment tools, instruction-set simulator and debugger tool.
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Nevertheless, there still exists one problem in LISA design
method. LISA does not have efficient compiler. A C com-
piler generator tool for LISA-modeled architecture has been
proposed [9], [10]. Unfortunately, the assembly code gener-
ated by this compiler is less efficient than the one generated
by the conventional GPP compiler. Moreover, a well under-
standing on compiler design is required to create compiler
in LISA design framework. Because of these reasons, a new
approach for retargeting the LISA-modeled processor archi-
tecture by means of assembly converter tool is proposed.

3. Derivative ASIP Approach

The concept of Derivative ASIP approach is to create a pro-
cessor where its architecture is developed by referring to an
existing embedded processor model. By using this concept,
a compiler corresponding to the referred processor model
can be retargeted to the developed processor architecture. In
addition, the developed processor architecture can be either
simplified or enhanced with more hardware resources such
as instruction extensions, registers or interfaces to optimize
its performance. Because of this reason our developed pro-
cessor is called Derivative ASIP (DASIP) which means the
architecture is derived from certain embedded processor ar-
chitecture and enhanced with instruction extensions. The
DASIP architecture is created by using LISA design frame-
work. To enable our retargeting approach, original LISA de-
sign framework must be modified so that it provides a new
entity for retargeting compiler through assembly converter
tool. Figure 1 shows the modified LISA design framework
to support Derivative ASIP approach. Original LISA design
framework is shown on the left side and our proposed retar-
geting approach is added on the right side.

Derivative ASIP design flow begins with modeling pro-
cessor architecture in LISA description language. LISA ex-
presses processor architecture in C-like language. The ar-
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Processor Compiler . Compiler
Compiler
Generator Generator
LISA assembly
code
LISA P
Assembler
LISA object
code
LISA Linker
{ i A TISA executable
M A | code
SystemC ISS Simulator | )
RTL codes Model & Dobugger Executable File

Fig. 1

Derivative ASIP approach design flow.
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chitecture is basically defined by two components: (1) re-
sources definition such as pipeline stages, interfaces, mem-
ory and registers, and (2) instruction-set definition includes
syntax, coding and behavior. Since the DASIP architec-
ture refers to an existing embedded processor model its
instruction-set must be designed equivalently to the referred
processor model. In this paper, the referred processor model
will be called as a base processor and its compiler is called
as a base compiler.

Once the processor architecture has been modeled,
LISA processor generator generates RTL codes, SystemC
model, instruction-set simulator (ISS), assembler and linker
automatically. All these auto-generated files are indicated
by light blue boxes. A LISA C compiler (LCC) can also
be generated by using LISA compiler generator. However,
a set of rules indicated by compiler generator configuration
file is required to configure the C compiler generation. Cre-
ating this configuration file usually takes time and needs
well understanding on compiler design. It is not suitable
for non-expert ASIP designer. In original LISA toolchain
flow, an application which is written in C is compiled by
LISA C compiler. It generates LISA assembly code. The
LISA assembly code then will be feeded to LISA assembler
and LISA linker to generate LISA object code and LISA
executable code respectively. The LISA executable code fi-
nally can be simulated or executed either in ISS simulator,
SystemC model simulator, RTL simulator or hardware im-
plementation such as FPGA.

In Derivative ASIP approach, we propose a differ-
ent toolchain flow. Figure 2 shows the Derivative ASIP
toolchain flow. Instead of using LISA C compiler, we com-
pile the application using a base C compiler. By employing a
well-optimized base C compiler, a good quality of assembly
code can be obtained. Assembly converter tool is employed
to convert the base assembly code into LISA assembly code.
After the LISA assembly code is available, standard LISA

Base Compiler Toolchain LISA Compiler Toolchain

Assembly
Converter
Tool

Application
file *.c

Application
file *.c

LISA C Compiler
LISA assembly code
file *.s ) file *.s

base assembly code
LISA Assembler

Base C Compiler

D 4
LISA object code
file *.lof
LISA Linker
D 4

LISA executable code
file *.out

D 4

Derivative ASIP
Processor

Fig.2  Derivative ASIP toolchain flow.
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toolchain flow can be used to generate LISA object code
(*.1of) and LISA executable code (*.out) consecutively.

To verify the functionality of the DASIP architecture
and the developed application software, LISA debugger is
used. LISA debugger is a debugging tool that can monitor
all hardware resources includes register, memory and I/O in
every step cycle. It also provides instruction set simulator
that can simulate the behavior of all instructions includes
instruction extensions. With LISA debugger, the developed
application can be emulated on the DASIP prior to FPGA
hardware implementation.

4. Derivative ARM ASIP

This section presents an example of ASIP design with
Derivative ASIP approach. Actually, the base processor ar-
chitecture can be selected from any existing embedded pro-
cessor model. In this paper, however, we used ARM as
the basis of DASIP architecture because of its superiority
among other embedded processors and the benefit of high
quality code generated by ARM C compiler (ARMCC).
Therefore, the developed DASIP will be called Derivative
ARM ASIP or DAA for short. DAA is a 32-bit proces-
sor. It is designed with Harvard RISC architecture. Simi-
lar to ARMDO as its base architecture, DAA has 16 x 32-bit
general purpose registers. However, it only has 4 pipeline
stages consist of Fetch (FE), Decode (DC), Execute (EX),
and Writeback (WB). This is different from ARM9 which
has 5 pipeline stages. Figure 3 shows LISA codes to define
DAA resources such as register, pipeline, memory map and
IO interface.

To maintain the compatibility with ARMCC, DAA
instruction-set is created equivalently to ARM instruction-
set. This means that every instruction in DAA must have the
equivalent one in ARM. Nevertheless, both instruction syn-
tax and coding are not necessary to be the same. Moreover,

1 : RESOURCE

2 A

3: /* Register file @ 16 x 32-bit registers */

4 REGISTER TClocked<uint32> R[0..15];

5: /* Program Counter Register */

6 : REGISTER TClocked<uint32> PC ALIAS R[15];

7 e

8 : /* 4 pipeline stages */

9: PIPELINE pipe = {FE;DC;EX;WB}
10 : /* pipeline register to pass data through the pipeline */
11 : PIPELINE_REGISTER IN pipe

12 ¢ {

13 : uint32  insn; /* instruction word */
14 uint8 rsl; /* operand register 1 #/
15 : uint8 rs2; /* operand register 2 */
16 :

17 : }

18 : /* Memory Mapping for Program and Data +*/

19 : MEMORY_MAP

20 : {

21 : RANGE (PMEM_START , PMEM_END)—>prog_mem[ (31..2)1;
22 RANGE (DMEM_START , DMEM_END)->data_mem[ (31..2)1;
23 : }

24 : /#* 10 interface */

25 PIN OUT TClocked<bit[32]> PO;

26 : PIN IN TClocked<bit[32]> PI;

27}

Fig.3  LISA code to define DAA resources.
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they can be totally different. To show the instruction equiv-
alency between DAA and ARM, add instruction is given as
an example. Figure 4 shows LISA codes to declare add in-
struction in DAA architecture. Every instruction declaration
must contain three information, coding, syntax and behav-
ior each of which is used to define the binary code, assembly
code and functionality.

Figure 5 shows the instruction syntax and coding com-
parison betwen ARM and DAA. Although it is an equivalent
instruction, the syntax and coding are different. The instruc-
tion equivalency here is applicable in instruction level, not in
cycle-accurate level. Two instructions are equivalent if it has
the same behavior that process the same input and produces
the same output regardless how it works internally. DAA
microarchitecture can be different from that of ARM. How-
ever, the input and output will be the same for every equiv-
alent instruction. Moreover, instruction scheduling needs
to be considered in the microarchitecture level. The DAA
architecture must be designed so that its microarchitecture
will be compatible with the instruction scheduling generated
by ARMCC. In our example case, the number of pipeline
stages on DAA is less than the one on ARM9. Therefore,
bypassing and stalling techniques are employed to handle
hazard conditions which may be caused by ARMCC instruc-
tion scheduling. With this design consideration, the number
of pipeline stages will not affect the processor operation in
general.

DAA owns basic ARM9 architecture with optimized
resources for the target application. DAA, on the one side,
simplifies ARMY architecture by eliminating some redun-

1 : /* Add instruction to add register data and immediate data */
2 : OPERATION addrri IN pipe.DC
3:A
4 :
5 : CODING { cond opcode I S 0b0OO Rn Rd imml imm2 }
6 :  SYNTAX { opcode~cond~S~”" ” Rd” ,” Rn” ,#” imml",#” imm2 }
7
8 :  BEHAVIOR
9: |
100 o
1 : )
12t}
Fig.4  LISA code to define add instruction on DAA.
ARM Instruction Format :
Condition OpCode S Operand
(4-bit) (2 b|t) (1- b1t (4-bit) (1-bit) (4 blt (4- blt (12-bit)
ARM Instruction Syntax :
<OpCode> {Condition} {S} Rd,Rn,#<Operand>
Example :
ADDEQ R2,R4,#0x12
DAA Instruction Format :
Condition || OpCode Rn Opl Op2
(4-bit) @bity || @ bn (14 b\t) (2 bn) @bit) || @ blt @bit) || @-bit)
DAA Instruction Syntax :
<OpCode> {Condition} {S} Rd,Rn,#<Op1>#<Op2>
Example :
DAAADDEQ R2,R4,#0,#0x12

Fig.5 add instruction equivalency between ARM and DAA.
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dant resources such as multi operation modes, bank reg-
ister, debugging hardware, THUMB instruction-set (16-bit
encoding), DSP enhancement instructions (64-bit long mul-
tiply and long multiply-accumulate instructions) and swap
instruction. On the other side, DAA enhances its architec-
ture with instruction extensions. In summary, Table 1 and
2 respectively show the feature similarities and the feature
differences between ARM9 and DAA.

Instruction extensions are usually created based on ap-
plication profiling information. Table 3 shows the profiling
result of fingerprint authentication application[12] as the
target application of DAA architecture. There are two func-
tions that consume much more cycles than the others. Pre-
processFilter and Extraction functions contribute 40% and
59% of the total execution cycles respectively. Based on this
profiling result, two instruction extensions are created to im-
prove the execution cycle of those functions. Table 4 shows

Table1 ARMY and DAA feature similarities.
Features ARMY9 DAA
Number of General Purpose Registers 16 16
ARM instruction-set (32-bit encoding) YES YES
Branch Instructions (B, BL) YES YES

Data Processing Instructions (AND, EOR, SUB,

RSB, ADD, ADC, SBC, RSC, TST, TEQ, CMP, YES YES
CMN, ORR, MOV, BIC, MVN)

Multiply and Multiply-Accumulate (MUL, MLA) YES YES

Single Data Transfer Instructions (LDR, STR) YES YES
Block Data Transfer Instructions (LDM, STM) YES YES
Table 2 ARMY and DAA feature differences.

Features ARMY9 DAA

Number of Operating Modes 6 1
Bank Registers YES NO
THUMB instruction-set (16-bit encoding) YES NO
Multiply Long and Multiply-Accumulate Long

(MULL, MLAL) YES NO
Single Data Swap Instruction (SWP) YES NO
Instruction Extensions NO YES

Table 3  Fingerprint authentication profiling.
Function Name Calls % Cycles
SetFeatureData 0.06 320980
ZeroWordMem 0.04 209704
SetWorkspace 0.00 2108
PreprocessFilter 40.46 228676813
Extraction 59.44 335917509
CheckFeatureQuality 0.00 2012

Table 4

MC {B}{F} Ra,Rb,Rc

Filter {F} Ra,Rb,Rc,Rd

{B}: Data type either byte (8-bit), half (16-bit) or word (32-bit)
{F}: Filter type either HPF or LPF

Ra: Source address

Rb: Destination address

Rc: Data size

Rd: Initial data

Two instruction extensions created on DAA architecture.
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the syntax of instruction extensions.

MC is a new instruction created to perform memory
copy operation with additional function to accumulate the
copied data. Filter is another new instruction designed to
perform filter operation. Operands Ra, Rb, Rc and Rd indi-
cate source address, destination address, data size and initial
data respectively. Parameter {B} determines the data type of
the copied data. It can be either byte, short or word. Param-
eter {F} in MC instruction indicates the accumulation status.
Asserted {F} means the copied data will be accumulated and
stored in an internal register which later on can be used to
support filter operation. Parameters {F} in Filter instruction
determines the type of filter operation. It can be either HPF
for high pass filter or LPF for low pass filter.

5. Assembly Converter Tool

Assembly converter tool plays an important role in the
Derivative ASIP approach. It acts as a bridging tool that
allows toolchain flowing from a base compiler toolchain
to LISA compiler toolchain. Assembly converter tool per-
forms assembly code conversion from one assembly code to
another assembly code which is suitable for LISA environ-
ment. Besides, it also handles instruction extension genera-
tion. With this concept, the base compiler can be retargeted
to the LISA-modeled processor architecture.

Our assembly conversion concept works well on some
assumptions. Firstly, the instruction scheduling is handled
not in assembly conversion stage, but in hardware design
stage. Secondly, the memory mapping of DASIP architec-
ture must be set in the same configuration as its base proces-
sor architecture. Thirdly, the register introduction and the
register allocation must maintain one-to-one mapping be-
tween base architecture and DASIP architecture. Fourthly,
the compiler parameter must be set up for not thumb, but
arm architecture as a target CPU. Fifthly, for simplicity, the
instruction extension must be designed with the maximum
4 arguments. Sixthly, compiler optimization must not affect
the assembly code generation of calling convention. There-
fore, when the application source code is compiled with op-
timization level -O1, -O2 or -O3, the body of instruction ex-
tension function must be kept the same as its original one. In
contrast, if the application source code is compiled without
optimization (-O0), the body of instruction extension func-
tion can be filled with an empty statement.

5.1 Assembly Conversion Mechanism

The idea behind assembly conversion mechanism is inspired
by GCC machine description (MD) file. In GCC compiler
internal mechanism, an input source code will be translated
into intermediate representation in the form of register trans-
fer level (RTL). This RTL contains instruction patterns that
represent statements declared in the source code. Instruction
pattern is independent from target processor architecture.
Therefore, it can be freely ported to any processor architec-
ture. In this case, MD file is required to help the assembly
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Base Compiler Assembly Converter Tool

/EsTanTbly Converter
Féont-:jend Configuration File
( t‘vo‘ e) “h)
— = ¥
4
Middle-end ‘ Pattern Name : “MOVSI” ‘

(Intermediate
Representation) ‘ MOV %R, %IMM w DAAMOV %R, %IMM1,%IMM2 ‘

fffffff S - 5 e

Input Assembly Code : ‘ Output Assembly Code : ‘

(Assembly Code) MOV RO0,#0x190 DAAMOV RO,#14,#0x19

Fig.6  Assembly conversion mechanism.

code generation. Every target processor architecture must
have one MD file to describe their proper assembly code.
This means that the key of retargeting compiler depends on
the availability of intermediate representation which is usu-
ally obtained from C code in the front end of base compiler.
Once intermediate representation has been obtained, it can
be used to generate any assembly code suitable for the target
processor architecture.

In our retargeting approach, instead of using one di-
rection flow that is from intermediate representation to as-
sembly code, we introduce the inverse one. This inverse
direction flow allows an assembly code of specific proces-
sor architecture to be reversed back to its intermediate rep-
resentation in the form of instruction pattern. With this
concept, we can lift up any assembly code into instruction
pattern and then retarget it to another assembly code. Fig-
ure 6 shows our proposed assembly conversion mechanism.
Suppose that we already have assembly code generated by
a base compiler. This assembly code will be the input of
assembly converter tool. The conversion begins with scan-
ning the input assembly code and parsing it into opcode and
operand. Based on these opcode and operand information, it
will be translated into instruction pattern form. If the input
instruction pattern has been known, the equivalent one can
also be obtained from the information given in configuration
file. Using this instruction equivalency information, another
assembly code for the target processor architecture can be
generated.

Similar to GCC MD file, a file is required to config-
ure the assembly conversion mechanism. This file is called
assembly converter configuration file. It contains informa-
tion such as register definition, register allocation, instruc-
tion pattern equivalency and instruction extension. Figure 7
shows an example of assembly converter configuration file
suitable for retargeting ARMCC to DAA architecture. DAA
registers are designed with the same structure as ARM.
Lines 3-14 show the register definition and the register allo-
cation. RO-R3 and R4-RS8 are allocated as register argument
and register variable. RO, R12, R13, R14 and R15 are defined
as register return value, register index pointer, register stack
pointer, link register and register program counter. Lines 16-
23 describe instruction pattern equivalency. There will be a
pair of instruction pattern for each input assembly code, one
for the base instruction pattern and one for the target instruc-
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1 : #define DER(__INSTRUCTION__) "DER"__INSTRUCTION__ 1 @ void HPF_Execute (short *pSrc, short *pDst, int size, int iData)
2 2
3 : REGDEF  REGLIST[] = { 3 int nTotal = iData;
40 4 for(i=0; i<size; i++) {
5 : {REG_RIN, 0, 0}, 5: short *pSumL, *pSumR;
6 : {REG_ARG, 0-3, 0-3}, 6 :
7 : {REG_VAR, 4-8, 4-8}, 7 // Update sum of next one block
8 - 8 : pSuml = (pSrc + i);
9 : {REG_IP, 12, 12}, 9: pSumR = (pSrc + i + HPF_SIZE);
10 : {REG_SP, 13, 13}, 10 : nTotal += ((*(pSumR++)) - (*(pSuml++)));
11 : {REG_LR, 14, 14}, 11 :
12 : {REG_PC, 15, 15}, 12 : // Calculate HPF value for a current pixel
13 ¢ - 13 : int nAvg = -(((unsigned short)nTotal) >> (HPF_SHIFT - 1));
14 ) 14 : *(pDst++) = (short)(128 + (short)(nAvg >> 1) + *(pSrct+t));
15 : 15: }
16 : INSPATTERN  PATTERNLIST[] = { 16 : }
170
18 : {code_addsi, "ADD %R,4R", DER("ADD &R.%R")}, Fig.9  The original source code of HPF_Execute function.
19 : {code_movsi, "MOV %R,%IMM", DER("MOV %R,#%IMML,#%IMM2")},
20 : {code_addsi, "ADD %R,%R, ASR %IMM", DER("ADD %R, %R, ASR #%IMM")},
21 : {code_cmpsi, "CMP %R,%IMM", DER("CMP %R,#%IMM1,#%IMM2")},
22 1 (a) (b) (c)
23 % C codes to call ARM Assembly Codes DAA Assembly Codes
2 : instruction extension
25 : XINST XINSILIST[] = { 1 : void XINST_HPF_Execute ||XINST_HPF_Execute PROC ||XINST_HPF_Execute:
26 1 - 2 : (short #*pSrc, PUSH {r4-r8,Ir} Filter HPF r0,r1,r2,r3
27 : tHPFFilter, 3 short #*pDst, MOV r4,r0 s BX Ir
28 1 4 : int size, ARMCCNIDR 17, [rd,# Converter
29 1 }; 5: int iTotal) Comiler... Tool

6 : { SIR  r0, [r4,#0x60]
Fig.7  Assembly converter configuration file. 7 e POP  {r4-r8,pc}
8:} ENDP
Fig.10  Filter instruction generation.

1 : XINST tHPFFilter =
2 :{
3 :  "HPF_Execute",
4 i "XINST_HPF_Execute”, function. It has 4 arguments pSrc, pDst, size and iData each
5: "Filter HPF r0,r1,r2,r3", . . g . . ..
6 4 of which indicates input data, output data, data size and ini-
R tial input data respectively. Referring to the register alloca-

Fig.8  Filter instruction definition in configuration file.

tion pattern. For example, MOV %R, %IMM is an instruction
pattern for ARM. The equivalent one in DAA is DAAMOV
YR, #BIMM 1,#%IMM?2. Lines 25-29 is optional informa-
tion used to define instruction extensions. This information
is stored as XINST data type. It contains 4 elements such
as instruction name, function name, assembly code and the
number of operand.

5.2 Instruction Extension Generation

The base compiler usually works for GPP architecture only.
It does not have ability to generate instruction extensions.
Therefore, the assembly converter tool is also employed
to handle the instruction extension generation. To explain
how the instruction extension can be called from C code,
HPF_Execute function is given as an example. This func-
tion performs high pass filter operation for a line block of
data input. It will be replaced by a single instruction Filter
HPF r0,r1,r2,r3. The information of this instruction must be
provided in the configuration file as indicated by tHPFFil-
ter data in Fig. 7 line 27. The content of tHPFFilter data is
shown in Fig. 8. During the assembly conversion, if a func-
tion with XINST_HPF _Execute name and has 4 arguments is
detected, instruction Filter HPF r0,r1,r2,r3 will be released
by assembly converter tool to replace the original assembly
code of HPF _Execute function.

Figure 9 shows the original C code of HPF_Execute

tion information which is defined in the configuration file,
the data of argument pSrc, pDst, size and iData will be hold
by register 10, r1, r2 and r3 consecutively. To indicate that a
function is declared as an instruction extension, the function
name must begin with prefix XINST_. Figure 10 (a) line 1
shows that XINST_HPF _Execute function is declared in the
C source code. Compiled by ARMCC, it generates several
lines of ARM assembly codes as shown in Fig. 10 (b). When
the assembly converter tool is employed, it scans these ARM
assembly codes and checks whether the declared function is
an instruction extension or not. If so, the ARM assembly
codes will be replaced by a single instruction Filter HPF
r0,r1,r2,r3 as shown in Fig. 10 (c).

Two types of instruction extensions are issues of in-
terest. One is a coarse-grained multi-cycle and the other is
a fine-grained single-cycle instruction. The former exten-
sions or the extension to add hardware accelerators are main
targets for our proposed approach. Instruction Filter is an
example of multiple-cycle-execution instruction. However,
the latter fine-grained instruction extensions may consume
the more execution time and the more hardware resources.
They require more cycles than the reduction of instruction
cycles to branch to the extended instruction for the function
call. In addition, they require an additional set of registers
to hold the data of argument and to store the data of a return
value for a new extended instruction.

6. Experiment Results

Some experiments were carried out to evaluate the perfor-
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mance of DAA architecture developed by our approach.
6.1 Method Comparison

Table 5 shows the comparison among three ASIP design
methods, LISA[10], GCC extension[11] and Derivative
ASIP. As shown in the table, Derivative ASIP approach has
three main benefits. First, it inherits the advantage of hard-
ware implementation from LISA design method. Second,
it has more practical and easier way to provide compiler
toolchain. Third, it maintains the quality of assembly code
as well-optimized as its base compiler.

6.2 Compiler Performance

In this experiment, we compared the performance of several
compilers. NIOS II EDS v8.1, LCC V2009.1.1, GCC 4.6.0
and ARMCC RVDS 4.0 were used to compile fingerprint
authentication [12] as the target application. DAA compiler
was obtained by retargeting ARMCC to DAA architecture
with assembly converter tool. Usually, the compiler perfor-
mance is indicated by the number of cycles and the code
size in bytes. The smaller execution cycle and code size the
better compiler performance.

Figure 11 shows the execution cycle of BLS-
InitWorkspace, BLS_CreateTemplate, BLS_Extraction and
BLS_Matching functions when the compiler was set without
optimization (-O0). Figure 12 shows the total of execution
cycle and the size of program code when the compiler opti-
mization was varied from -O0 to -O3. These results clearly
show that ARMCC generates more efficient code and con-

Table 5  Approach Comparison: (a) LISA, (b) GCC Extension,
(c) Derivative ASIP.

Feature @ ®m (
Hardware implementation Yes No  Yes
Easy compiler creation No Yes Yes
Well-optimized code No No Yes

BLS_CreateTemplate (cycles)
59777

BLS_InitWorkspace (cycles)

819635 51363

602584
—

385672

NIOS GCC

LCC ARMCC DAA NIOS GcC LCC ARMCC DAA

BLS_Extraction (cycles)

183797755
171899191 — 164056510
P

BLS Matching (cycles)

222079176
185405707 179063064

89311943
6!

80948712
62:

NIOS GCC

LCC ARMCC DAA NIOS GCC

LCC ARMCC DAA

Fig.11  Execution cycle comparison with compiler optimization -O0.
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sumes less cycle than NIOS [13], LCC and GCC compilers.
In case the compiler optimization is set to -O0, the ARMCC
efficiency is double than the others. Since DAA compiler in-
herits the benefit of ARMCC performance, by default DAA
will have the same efficiency as ARMCC. Employing MC
and Filter instruction extensions, DAA improves its perfor-
mance by 22.5% better cycle and 140 bytes less code size
than ARMCC.

6.3 Instruction Extension Improvement

DAA processor was designed with two instruction exten-
sions to improves the execution time of PreprocessFilter and
Extraction functions as explained in Sect.4. Table 6 shows
the number of execution cycles before and after employing
instruction extensions. It can be seen that with two instruc-
tion extensions it reduces the execution cycle of Preprocess-
Filter and Extraction functions up to 31.07% and 22.09%
respectively.

6.4 Hardware Optimization

This experiment was done to show how much hardware op-
timization can be achieved by our approach in term of area
and power consumption. To estimate the area and power
consumption of DAA processor, the RTL file generated by
LISA processor generator tool was synthesized by using
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Fig.12  Compiler performance with various optimization levels.

Table 6  Instruction extension improvement.
Function Before* After* Improvement
PreprocessFilter 28217042 21529037 31.07%
Extraction 89311943 69576334 22.09%

*unit in cycle
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Table 7  Area and power comparison.
Item ARMY DAA
Area  0.613mm’  0.555 mm’
Power 9.5 mW 9.2 mW

Synopsys Design Compiler. Table 7 shows that synthesized
with TSMC 90 nm technology at 200 MHz, DAA results
in a little bit smaller area and less power consumption than
ARMD. This result means that with our approach we can im-
prove the processor performance for certain target applica-
tion without losing its area and power consumption through
architecture optimization.

7. Conclusion

A new approach of ASIP design with Derivative ASIP has
been introduced. A practical way for retargeting compiler
for the Derivative ASIP architecture using assembly con-
verter tool has also been proposed. Derivative ARM ASIP
proved that with our proposed approach a high quality of
assembly code and a better performance of processor ar-
chitecture could be achieve without losing area and power
consumption.
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