
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014
1211

PAPER

ParaLite: A Parallel Database System for Data-Intensive Workflows

Ting CHEN†a), Member and Kenjiro TAURA†, Nonmember

SUMMARY To better support data-intensive workflows which are typ-
ically built out of various independently developed executables, this paper
proposes extensions to parallel database systems called User-Defined eXe-
cutables (UDX) and collective queries. UDX facilitates the description of
workflows by enabling seamless integrations of external executables into
SQL statements without any efforts to write programs confirming to strict
specifications of databases. A collective query is an SQL query whose re-
sults are distributed to multiple clients and then processed by them in paral-
lel, using arbitrary UDX. It provides efficient parallelization of executables
through the data transfer optimization algorithms that distribute query re-
sults to multiple clients, taking both communication cost and computational
loads into account. We implement this concept in a system called ParaLite,
a parallel database system based on a popular lightweight database SQLite.
Our experiments show that ParaLite has several times higher performance
over Hive for typical SQL tasks and has 10x speedup compared to a com-
mercial DBMS for executables. In addition, this paper studies a real-world
text processing workflow and builds it on top of ParaLite, Hadoop, Hive
and general files. Our experiences indicate that ParaLite outperforms other
systems in both productivity and performance for the workflow.
key words: data-intensive workflow, parallel database system, user-
defined executable, collective query

1. Introduction

Workflows [1] have become one of the most important tools
for data-intensive applications since they facilitate the com-
position of individual executable, making it easier for do-
main experts to focus on their researches rather than com-
putation management. A workflow is generally a DAG with
a set of independently developed jobs and their dependen-
cies. Each job is a typical existing binary or executable and
communicates with another job in the workflow. For exam-
ple, workflows for natural language processing (NLP) appli-
cation typically consist of data scrapers, sentence splitters,
part-of-speech taggers, named entity recognizers, parsers,
data indexers, and so on. Many of them (e.g., parsers [2],
[3]) are third-party components that received a large amount
of development efforts from the domain community and are
usually developed in a variety of languages. Since a job
is typically an existing executable, data transfers between
jobs are generally handled by the workflow system. Usually,
data are stored in files and implicitly transferred through a
shared file system or explicitly moved by a staging subsys-
tem. Such file-based workflows are often very complex with
many jobs due to the low-level description. To schedule a

Manuscript received September 9, 2013.
Manuscript revised December 19, 2013.
†The authors are with Information and Communication Engi-

neering, The University of Tokyo, Tokyo, 113–0033 Japan.
a) E-mail: chenting@eidos.ic.i.u-tokyo.ac.jp

DOI: 10.1587/transinf.E97.D.1211

job to computing resources for parallel execution, the input
of the job is generally split into multiple small files, thus,
leading to a large number of intermediate files. In addition,
as data are stored in files, it is tedious to select a subset of
data due to the difficulties in creating index on data. Nowa-
days, many systems are proposed to execute workflows, in-
cluding GXP Make [4], Swift [5] and Taverna [6].

With a common goal of making large scale data pro-
cessing simple and easy, MapReduce model [7] has attracted
wide interests from both industry and academia due to its
simple programming model and good scalability across hun-
dreds of nodes. After the emergence of MapReduce and its
open-source incarnation Hadoop [8] in particular, more and
more efforts are made to enable or utilize them in scien-
tific workflows. Researchers either create workflows with
MapReduce features or integrate Hadoop into workflows to
get better performance for the execution of jobs. However,
MapReduce in general requires users to develop two func-
tions map and reduce; Hadoop requires them to be written
in Java conforming the class library framework, at least by
default. This low-level description increases difficulties for
users to develop their applications. Hence, some MapRe-
duce systems are extended to support high-level language
(e.g. SQL-like queries) [9], [10]. In addition, as data are
stored in the distributed file system (HDFS in Hadoop), it
is difficult to index data too.

While there is a critical need for workflow systems to
manage scientific applications and data, and database tech-
nologies are well-suited to deal with some specific aspects
of workflow management, a nature idea is to build work-
flows on top of parallel database systems [11]. Workflow
systems each of which utilizes database technology to some
extent, such as GridDB [12], Zoo [13] and Kepler [14], have
been proposed to provide functionality such as simplifying
the description of a workflow with SQL queries, improving
the performance of the execution and facilitating the man-
agement of data. Firstly, with expressive SQL, database
systems can simplify the description of workflows. For in-
stance, SQL queries with a proper support of user-defined
functions and reductions can express many data process-
ing tasks much more elegantly and easily than MapReduce.
Secondly, database systems facilitate the management of
data naturally. Finally, databases are efficient for process-
ing relational data in ways expressible in SQL due to data
indexing and sophisticated query optimization [15], [16].

While parallel database systems facilitate the descrip-
tion of workflows in terms of expressing jobs with SQL

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

1212
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

queries and providing efficient management of data, they
generally have some limitations. As a workflow is typically
built out of various individually developed executables, in-
tegrating such executables into SQL statements is very cru-
cial. Most databases execute external modules in the form
of user-defined functions or stored procedures. Thus, pro-
grammers who want to invoke such executables as part of
SQL statements have to write and compile them with respect
to the strict specifications of databases, and are usually con-
strained by the languages they can use (e.g. C/C++/Java). It
is obviously unreasonable for scientists to rewrite their ap-
plications with a large number of such executables to allow
them to be run by a database. Another general limitation of
parallel database systems is that they do not optimize data
transfers between data nodes and parallel clients that pro-
cess large query results. A significant work exists in mini-
mizing IO costs and data transfers inside the execution of an
SQL query [11], but query results are all returned to a single
client who issued the query. When big results are returned
to a single client and then distributed to external programs
for parallel execution, the single client can easily become a
bottleneck.

With consideration of the advantages of databases, our
goal is to develop workflows on top of a database system
ParaLite, with which jobs are expressed in SQL queries and
all intermediate data are stored as relational tables. Par-
aLite is a shared-nothing parallel database system which
provides an coordination layer to connect multiple single-
node databases and parallelizes queries across them. To sup-
port workflows better, ParaLite provides seamless integra-
tions of external executables (UDX, short for User-Defined
Executable) into SQL statements and proposes a concept of
collective query for the efficient parallel execution of UDX
through co-allocation of parallel compute clients and data
sources the two driving design principles. In our previous
study, we introduced the detail of ParaLite and its workflow-
oriented features [17]. In the present paper we extend the
previous study by comparing ParaLite with a commercial
database systems for both typical SQL tasks and executa-
bles. We also develop a real-world text processing workflow
on top of ParaLite, Hive, Hadoop and general files and dis-
cuss their strength/weaknesses both in terms of programma-
bility and performance for the workflow. In summary, the
major contributions of our work are as follows:

• We provide User-defined Executable (UDX) to make
it straightforward to integrate arbitrary executables
within a SQL query. UDX considerably lowers users’
efforts to describe jobs in workflows as it allows the
user to define the executable with the input/output for-
mat directly in a query without writing any program.
• We propose a concept of collective query for the effi-

cient parallel execution of UDXes, a single SQL query
issued by multiple clients who collectively receive the
results of the query and process them in parallel us-
ing UDXes. Collective queries enable the co-allocation
of computing clients and data sources (data nodes in

databases) with consideration of data locality and load
balance across all clients.
• Our experiments show that ParaLite has several times

higher performance over Hive [9] for typical SQL tasks
and has 10x speedup comparing to a conventional
DBMS for executables. In addition, ParaLite can
achieve close-to-ideal speedup with the increase of
computing clients.
• We study a real-world text processing workflow and

develop it on top of ParaLite, Hadoop, Hive and gen-
eral files. Our experiences and experimental results re-
veal some interesting trade-offs: (1) High-level query
languages (SQL of ParaLite and HiveQL of Hive) are
helpful for expressing data selection, aggregation and
calculation by typical executables; (2) To reuse existing
NLP tools, it is important to be able to track the associ-
ation between a document and its annotation attached
by the tool, for which the expressiveness of SQL is
particularly useful; (3) Each system has similar perfor-
mance in the execution of overall workflows because
essentially performing executables takes most of the
time, but small differences could reveal some potential
trade-offs that each system entails for workflows.

The rest of this paper is organized as follows. Sec-
tion 2 presents related works. In Sect. 3, we present our ma-
jor work ParaLite, a shared-nothing parallel database system
and the details of the integration of executables into SQL
statements and the parallelization of them. Section 4 gives
the evaluation of ParaLite to verify the scalability and per-
formance of the system. In Sect. 5, we show our efforts on
a real-world text-processing workflow. Finally, we give our
concluding remarks in Sect. 6.

2. Related Work

2.1 Integrating Databases and Workflows

Many researches have been done in the field of managing
workflows with databases. Some solutions for workflows
focus on the control flow among processes such as active
databases [18], relational transducers [19] and enhanced dat-
alog [20]. As scientific jobs are typical long-running and
resource-intensive, it is essential to efficiently manage the
data-flow. Furthermore, it is necessary to have sophisticated
tools to query and visualize the data. Zoo [13], a desktop
experiment management environment built on top of Horse
OODBMS, is developed for this purpose. GridDB [12]
models the inputs and outputs of programs as relational ta-
bles. It allows users to define programs and the dependen-
cies between their inputs and outputs with a functional data
modeling language (FDM). The execution of programs in
the workflow is triggered by the change of the input ta-
bles such as insertion of tuples. [21] is another work re-
lated to the execution of scientific programs. The work
demonstrated the advantages of modern DBMSs such as
data indexing, query parallelization and efficient joins by the

CHEN and TAURA: PARALITE: A PARALLEL DATABASE SYSTEM FOR DATA-INTENSIVE WORKFLOWS
1213

cluster-finding example from the Sloan Digital Sky Survey.
It obtained several times better performance with a database
(Microsoft’s SQL Server [22]) than previous approach. The
work involves invoking program modules from SQL state-
ments which is usually in the form of User-defined Func-
tions (UDF) or stored procedures. Therefore, the developers
have to conform to the database specifications while cod-
ing and compiling them and are usually constrained by lan-
guages (C, C++ and Java). Our work solves this problem by
introducing the idea of User-defined Executable which pro-
vides straightforward integration of programs without con-
forming to database specifications.

2.2 Integration of External Executable

To allow integration of data processing methods into query
execution plans, relational database systems support user-
defined functions (UDF) [23], [24] which are longstanding
database features for database extensibility. There are sig-
nificant research focusing on efficiently using UDFs within
database queries in terms of both optimization and execu-
tion, such as [25], [26]. However, most of their work in the
context of single-node database systems rather than shared-
nothing parallel databases.

There are some works related to the parallelization
of user-defined aggregates, table operators [27] and scalar
functions [28]. By specifying local and global finalize func-
tions, conventional user-defined aggregates can be executed
in parallel [28]. Furthermore, [27] proposes user-defined
table operators which use relations as both input and out-
put. The idea of a user-defined table function is supported
in most commercial databases. To enable parallelism and
tell the system the usable of the operator, user-defined table
operators require the user to specify a partitioning method,
which is inconvenient for the user. In addition, they lack
flexibility in input/output formats, development language
and reusability of code [28], [29].

On the other hand, MapReduce framework with its
most popular implementation Hadoop [8] provides the user
procedural API (Map and Reduce functions) to customize
their own processing logic. However, it requires program-
ming in relatively low-level languages (most commonly
C++ or Java) even for very straightforward tasks that would
be trivial in SQL. Integrating third-party binaries and ad-
hoc scripts need similar efforts just to wrap them. In ad-
dition, Hadoop programs are often slower than equivalent
SQL queries because the former lack data indexing and re-
quire multiple MapReduce jobs each accessing files for in-
termediate results.

Therefore, many hybrids of relational databases
and MapReduce have been proposed. On one hand,
SQL/MapReduce [30], a part of Aster nCluster Database,
proposes an approach to polymorphic user-defined func-
tions providing users with a procedural API (row and par-
tition methods like map and reduce methods in Hadoop)
through which they can implement a UDF in the language
of their choice. These user-defined methods are parallelized

by MapReduce. However, the user still needs to write pro-
grams conforming to database APIs and thus cannot directly
use existing file-based applications. On the other hand,
SQL-like declarative languages are supported by MapRe-
duce frameworks with optimizations to some extent, such
as Hive [9], Scope [31], HadoopDB [32] and Tenzing [33].
While these languages significantly improve the productiv-
ity of MapReduce programs, they generally have some lim-
itations for the support of workflows. Firstly, they are not
productive for most of NLP workflows. For example, Hive
does not provide the functionality of tracking the association
between a document and a result from NLP tools and can-
not support executables which take the input data from files.
Secondly, as almost all these systems run the executable us-
ing Hadoop, they cannot take advantage of database tech-
nologies, such as good data partitioning and query optimiza-
tion. Finally, all data are stored in distributed file system,
bringing difficulties in creating indexes on them.

3. ParaLite

3.1 Architecture of ParaLite

ParaLite is a shared-nothing parallel database system based
on a popular single-node database SQLite [34]. The basic
idea of ParaLite is to provide a coordination layer to glue
many SQLite instances together, and parallelize an SQL
query across them. The architecture of our system is shown
in Fig. 1. It uses classic master/worker pattern to orga-
nize resources. ParaLite is designed to be a serverless and
zero-configuration system, so no process is running before
a query is executed. ParaLite has multiple clients which
present an SQL interface to users and allows a group of
queries to be submitted at the same time. The master is re-
sponsible for transforming received queries into the logical
plan (a DAG of operators) which is the key structure to con-
nect each logical component, creating processes for opera-
tors on data nodes and scheduling and dispatching jobs to
corresponding processes. Data are transferred among data
nodes and computing clients, thus the master works only for
the controlling decisions and is not a bottleneck for any data
transfer. Each process on a data node receives data from an-
other, handles them using its own processing logic (e.g. join,

Fig. 1 Architecture of ParaLite.

1214
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Fig. 2 A logical plan for TPC-H Query 3.

sort and aggregate) and sends the output data to the next pro-
cess. The root operator in the logical plan returns results to
the clients.

3.2 Query Model

A query is expressed by a DAG (query plan) of relational
operators each of which forwards data tuples to the next.
For example, the query plan of Query 3 of TPC-H bench-
mark [35] is shown in Fig. 2. As ParaLite stores data in
SQLite database, it uses SQL query to access data. To take
advantage of database technologies of SQLite, e.g. index-
ing and query optimization, we push as much operations as
possible into the query to the underlying SQLite. So the
leaf nodes of the plan are sub-query operators which read
relations using corresponding predicates and produce a row-
and-column subset of the relational table. Operators J3 and
J4 join two relations. The output from J3 is then aggregated
and sorted. Specially, some operators can be integrated into
a single query if no repartitioning operations are necessary
for them. For example, if relations Customer and Orders are
both hash-partitioned across data nodes by the join attribute,
J4, S6 and S7 can be integrated into a single query.

Each operator is either a pipeline operator, which can
process each tuple independently without the knowledge of
all tuples, or a blocking operator which must receive all tu-
ples before emitting the result, e.g, an aggregation operator
and a sorting operator. Each operator is split into multiple
logical tasks and assigned to a set of processors. The num-
ber of tasks is determined by the number of partitions for the
input tuples of the operator and is usually much larger than
the number of assigned processors. If an operator’s succes-
sor is a pipeline operator, it forwards the output tuples of
each task to the its successor as soon as the task is finished.
The target processor is chosen based on its processing ca-
pacity in terms of estimated runtime. For an operator whose
successor is a blocking operator, it holds all output data on
memory until it reaches a threshold, at which point it writes
them into an intermediate file. Tasks of a blocking opera-
tor is scheduled to processors using a greedy algorithm to
balance the load across all processors. Once a processor be-
comes idle, a task is allocated to the processor.

3.3 Integration of Executable

As the intended applications for ParaLite are workflows typ-

ically built out of various independently developed executa-
bles and scripts, ParaLite extends SQL to support arbitrary
executable called User-Defined Executable (UDX).

3.3.1 Syntax of UDX

A ParaLite UDX is an executable file which can be written
in any language. This is very flexible because a user does
not need to develop a program respecting to rigid format-
ting rules such as <key, value> input/output format or write
code according to pre-defined procedural methods. User can
use arbitrary format of input and output and any program-
ming language to implement their functions. The only con-
dition is just to make sure the program is executable. This
has been very useful for data-intensive science computations
such as a linear algebra package for solving linear equations
and a natural language processing library. In these applica-
tions, most functions are developed by domain experts and
then reused by others on diverse workflows. ParaLite pro-
grams allow such functions to be reused without changing
any code.

The syntax of UDX shown below is similar to that of
traditional User-Defined Function. Firstly, the name of an
UDX could be a random string e.g X in the example. Sec-
ondly, an UDX can work on and produce arbitrary columns.
It extends AS syntax a little bit so that multiple columns
are allowed to be the output of a UDX by using “AS (col1,
col2,...)”. Finally, the definition of an UDX provides flexi-
ble input/output format with a set of options such as, input,
input row delimiter, output and out row delimiter. The op-
tions related to input allow the system to correctly extract
and organize data for the executable while output-related
options tell the system how to parse the output of the ex-
ecutable and store them in a relational table. Specially, in-
put and output options can specify that the input/output for
the executable comes/goes from/to the standard input/output
or files. This ability is especially useful for file-based pro-
grams commonly existed in NLP applications. In addition,
to avoid create and compile an UDX before the query is ex-
ecuted, ParaLite allows users to define it within the query
using WITH clause. It starts from a command line followed
by data format options mentioned above.

select col1, X(col2) as new_col2
from T
where <predicate1, predicate2, ...>
with X = "command_line"

3.3.2 Examples

In this section, we take some examples to elaborate the us-
age of UDX. First of all, let’s define the schema for a table
DOCUMENT:

paper id | title | author | year | text
• Grep Task

Grep task is considered as a typical MapReduce task

CHEN and TAURA: PARALITE: A PARALLEL DATABASE SYSTEM FOR DATA-INTENSIVE WORKFLOWS
1215

which scans through a large set of records looking for
a three-character pattern. This task can be easily per-
formed by a query with shell scrip command ”grep” as
a UDX:

select F(text) from DOCUMENT
with F = "grep XYZ"

All data of column text retrieved from table
DOCUMENT is processed by the UDX grep XYZ and the
filtered data are returned.
• Word Count Task

Word count task is also a typical MapReduce task [7]
to count the number of occurrences of words in a large
collection of documents. This task processes a doc-
ument table in which a single row is a single docu-
ment with its descriptions and generates a word table
in which a single row is a word with its occurrences.
While this task could be easily expressed by MapRe-
duce researcher with a Map and a Reduce job, there is
no easy way to perform it in database community un-
less the big text could be split into words. With UDX,
it is straightforward to integrate text splitter into gen-
eral group by SQL task to calculate the count for each
word.

select word, count(*) from (
select F(text) as word from DOCUMENT
with F="awk ’for(i=1;i<=NF;i++) print $i’"
)
group by word

Column text is a long article split into independent
words by an awk command in the nested SQL. The oc-
currences for each word is simply counted by grouping
words from the output of the nested query. The com-
mand awk reads data from standard input and writes
results to standard output.
• Sentence Split Task

The sentence split task is to split a big text into sen-
tences and it is normally the first step of almost all
text-processing applications. It involves a third-party
binary geniass [36] developed by domain researchers
which reads a text from file, splits it into sentences by
inserting line breaks between sentences within a para-
graph and empty lines before the sentence from another
paragraph, and finally outputs the sentences to a file.

select paper_id, F(text) as sentence
from DOCUMENT
with F = "geniass"

input ’src_file’ output ’dest_file’
output_row_delimiter EMPTY_LINE

In the query above, the user needs to specify the input
and output for the executable to be a file. This is differ-
ent from the word count task in which the executable
reads/writes data from/to the standard input/output.
Furthermore, if the option output record delimiter is
empty line, it means that all results between two empty
lines belong to a single record. Each result record has

two columns of paper id and sentence. The second
column contains multiple sentences separated by line
breaks.
• Web Log Analysis Task

This task first generates a collection of HTML docu-
ments which are crawled from web pages. There are
random links to other pages in each document. Then
this task computes the inlink count for each document
which is often used as a component of PageRank calcu-
lations. The schema of the HTML document is: Pages
(url | content).
The SQL query for this task is similar with that for the
word count task. In the nested query, the executable
url finder reads the contents of each page, searches for
all the URLs that appear in the contents and outputs the
result pairs of URL and its value. As a result, the nested
query produces a temporary table with two columns
(to url and value). Note that we extend the syntax
of SQL to support arbitrary output columns. The user
needs to tell the system the separator between different
columns by specifying the option output col delimiter
to be TAB (it could be any strings). Then the outer
query just simply aggregates all to url and calculates
their values respectively.

select to_url, sum(value) from (
select F(content) as (to_url, value) from
Pages with F = "url_finder"
output_col_delimiter TAB

)
group by to_url

3.4 Parallel Execution of UDX

3.4.1 Concept of Collective Query

A parallel database system provides the same functional-
ity as a centralized DBMS with the ability of transparently
distributing data across nodes and parallelizing queries. It
typically consists of a single master node and multiple data
nodes. A master is responsible for receiving a query from
a client, converting the query to a parallel execution plan,
scheduling the plan to worker nodes, and assembling the
individual “pieces” of the final results up into a single re-
sult set to the client. As such, the master node hides the
distributed nature of the system and presents users a single
system image. Data nodes provide the data storage and the
query processing backbone of the appliance.

Let’s assume that a user wants to apply a parallel pro-
cessing on the data accessed from a parallel database such
as loading the data into another system (e.g. MapReduce
system) or performing a further analysis which cannot be
expressed within a SQL query. As the left part of Fig. 3
shows, a traditional approach is that a user issues a query,
gets all result data from the database system and then dis-
tributes them to multiple clients who perform the further
processing on the result data in parallel. Obviously, the sin-
gle query issuer can easily become a bottleneck. Moreover,

1216
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Fig. 3 Data transfer in conventional parallel DBMS.

as the approach prohibits us to take the advantage of co-
allocating computing clients with data in the database, data
transfer probably brings much unnecessary overhead to the
overall execution. For example, if the computing clients are
located on the same physical data nodes, it is straightfor-
ward and efficient that each client gets data locally from the
corresponding data node, instead of integrating data from
data nodes first and then distributing them to the same nodes
again.

Therefore, to solve this problem, we propose the con-
cept of collective query to take advantage of co-allocation
of parallel compute clients and data sources. A collective
query is a single query issued by many clients who collec-
tively receive the results of the query. As the right part of
Fig. 3 shows, a set of clients issue the same query to the
database system. They just notify the system to get a part of
data and don’t care about what exact data they will obtain.
The system performs the query received from the clients and
distributes the result to them. As the system knows the des-
tinations of the result in advance, it allows the data transfer
directly from the data nodes to the clients without passing
through the master. In this case, data are not required to be
integrated first and distributed later. The best situation is that
when a computing client is running on each data node and
data are already balanced among them, no data are trans-
ferred between nodes at all and each client gets data locally
from the data node the client is running on. Note that Fig. 3
does not show the architectures of both systems but only
indicates how data are transferred from data nodes to com-
puting clients. In both approaches, there is a master node
who is responsible for coordinating the behavior of all data
nodes and computing clients.

ParaLite uses the concept of collective query for the
parallelization of executables. The query issued by multiple
clients contains one or more UDX(es). The results of the
query are distributed to the clients and then processed by
them in parallel, using the executables defined in the query.

3.4.2 Data Distribution

The key issue for collective query is to efficiently distribute
data to clients from data nodes. The result data are always
stored in multiple nodes, thus, a more general problem set-

ting should be that given data on N data nodes and m clients,
to determine which data should go to which client. In data
intensive applications, a client may perform a significant
amount of computation, therefore, ParaLite should consider
not only communication cost but also computation cost.

ParaLite implements two-phased DLLB (Data Local-
ity with taking Load Balance into consideration) algorithm
to solve the problem. The first phase in the algorithm is to
generate tasks on each data node by splitting data into small
blocks. Each block size is denoted by bsize. A block is the
smallest unit that is transferred to a computing client at a
time and a process of the executable is spawned for a block
of data. Invoking a process on a block of data rather than
a single tuple reduces the start-up overhead a lot for most
NLP programs. From our experiments which are not shown
in this paper due to space limitation, the block size heavily
affects the overall performance. Large block size brings dif-
ficulty in rigorously balancing the load of all clients while
small block size increases the start-up overhead. ParaLite
does not optimize it automatically but leaves the decision to
users. Users can specify the block size based on features of
the executable and their experience.

Once splitting is complete and execution has begun, we
enter the load-balancing phase. When a client i on the node
A becomes idle, a task (block) must be transferred to it from
some data node. Our goal is to balance load across all clients
but with the smallest data transfer cost. Thus, the target data
node T should be:

(1) node A, if A is a data node, or,
(2) node B, who has the maximum expected comple-

tion time:
ECT is an expected completion time as measure of the

load of a node. ECT of a data node J relies on the total
data and clients it holds and can be calculated as (assuming
c clients are running on it):

ECTJ = lsizeJ/

c∑
i=1

si + maxc
i=1(bsize/si − stimei)

lsizeJ: the size of left (unassigned) data on data node J
si: the speed of client i
stimei: the time for client i starting to process a task
The speed of each client is initiated as a random num-

ber. The ECT should be infinite if a data node has no client
on it. Once a client completes a task, it sends an ACK mes-
sage to the master to notify about its IDLE status and report
its processing speed which is used for the next scheduling.
Since it is difficult to provide an exact measure of real-time
speed for a client, ParaLite always estimates it by the last
speed of a client. On the other hand, after the master re-
ceives a ACK message from a client, it updates its speed
and data information of related data node whose data are
processed by this client. Once a client becomes idle, the
master firstly calculates the ECT of all data nodes and de-
cides a target data node based on the formula above. The
computational complexity for deciding a target data node is
O(n) where n is the number of client. It costs 10−6 seconds

CHEN and TAURA: PARALITE: A PARALLEL DATABASE SYSTEM FOR DATA-INTENSIVE WORKFLOWS
1217

if there is only one client based on some experiments we
conducted.

Once the target T is chosen for an idle client i, it must
decide whether data (one block) is needed to be transferred
to the idle client or not. DLLB employs the following equa-
tion to calculate the number of blocks:

n =

{
0 if T = B and ECTT (cur) < Com(1) + ECTi(1)
1 otherwise

Data are transferred to the idle client only when the transfer
provides a gain in the completion time, that is, the sum of
the task transfer time (Com(1)) and the estimated comple-
tion time of the task on the idle client (ECTi(1)) should be
smaller than the estimated completion time of all tasks on
the target node (ECTT (cur)).

The DLLB algorithm is flexible for data scheduling. It
first takes data locality as a main consideration and always
tries to perform calculation on local data. But if the cal-
culation is CPU-intensive and data transfer can get a gain
to the calculation, data are transferred to a remote client to
be calculated. At most one block is transferred at a time,
which lets the master node have better control on data. Fine-
grained data scheduling adds extra overhead of making de-
cision to the master node, but the cost of making decisions is
negligible even the data unit to be transferred is 1 compared
with the cost of data transferring and calculation.

3.5 UDX Compared to UDF

Compared with ordinary User-Defined Function (UDF) in
conventional parallel database systems, our implementation
of User-Defined Executable (UDX) has the following ad-
vantages:

• UDX doesn’t require the user to write any program and
register to the database before it is executed. To define
UDF in conventional databases, the user has to write
a specific program conforming to strict database spec-
ifications. This is very troublesome in workflows as
typically only executables are provided. In this case,
for each executable, a program that encapsulates the in-
voking of the executable is required. Furthermore, pro-
grams are usually constrained with the language they
can use as most database systems only support UDF
written in C/C++ or Java.
• The UDX implementation does not invoke the exe-

cutable on every single tuple while the implementation
of UDF does. As typical NLP programs have high
start-up overhead, invoking such programs on every
single tuple would heavily degrade the overall perfor-
mance.
• The execution of an UDX is not bound to database

nodes and it can be distributed to arbitrary clients for
larger scale execution and computational load balanc-
ing. This loose coupling with database nodes is also
very useful in the case of that data are stored in a set of
nodes while the related executable is installed in other

sets of nodes for some reasons, e.g. the licenses. On
the other hand, an UDF can only be parallelized across
data nodes pre-configured before the database server
starts.
• UDX parallelization is efficient as it optimizes data

transfer between data nodes and computing clients.
Most commercial database systems take a naive strat-
egy to parallelize UDF which assigns a whole partition
of data to a local processor without consideration of its
load. Moreover, the implementation of the UDX allows
flexible control on the parallelism degree by increasing
or reducing the number of computing clients.

4. Evaluation

We conducted all experiments in a 32-node cluster. Each
node uses 2.40 GHz Intel Xeon processor with 8 cores run-
ning 64-bit Debian 6.0 with 24GB RAM and 500G SATA
hard disk. According to hdparm, the hard disks deliver
86MB/sec for buffered reads.

4.1 Compared Systems

We compare ParaLite with a commercial parallel database
system DBMS-X from a major relational database company
and a popular MapReduce system Hive.

DBMS-X: We installed the newest release of DBMS-
X, a parallel row-oriented SQL DBMS. The official TPC-
H benchmark conducted by the DBMS-X vendor used a
slightly older version of the system. We specified our pa-
rameters for our installation the same with that in the of-
ficial TPC-H benchmark. Specially, we did not enable the
replication features in DBMS-X because all queries in the
benchmark are read-only and enabling replication features
makes it more complex for the installation process. We in-
stalled this version on each node.

Hive and Hadoop: For experiments in this paper, we
used Hive version 0.8.1 and Hadoop version 1.0.3, run-
ning on Java 1.6.0. We configured both systems according
to the suggestions offered by members of Hive’s develop-
ment team in their report on running TPC-H on Hive [37].
To reflect our hardware capacity, we configured the sys-
tem to run eight Map instances and eight Reduce instances
concurrently on each node. We also allowed JVM to be
reused by all tasks instead of starting a new process for each
Map/Reduce task. To make the comparison fair, we stored
all input and output data in HDFS with the settings of one
replica per block and without compression.

4.2 Data Preparing and Loading

The TPC-H benchmark data were generated in parallel on
every node using the dbgen program provided by TPC.
We used the appropriate parameters to produce a consistent
dataset across the cluster.

DBMS-X: We followed the suggestions from DBMS-
X vendor to create the tables and indices, and to distribute

1218
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

data across the cluster. All tables were hash-partitioned
across the nodes by their primary keys while PartSupp and
LineItem relations were hash-partitioned on only the first
column of their primary keys. In addition to creating in-
dex on the primary key for each table, the Supplier and
Customer relations were indexed on their nation keys re-
spectively, and the Nation table was indexed on its region
column. Finally, the LineItem and Orders relations were
organized by the month of the date columns for a partial
ordering by date on each node of the cluster. The loading
process worked as follows: data were first partitioned across
the cluster and then the partitioned data were loaded on each
node in bulk. The time for loading TPC-H data (with scaling
factor of 100) to 16 nodes is about 3 hours and 21 minutes.

Hive and Hadoop: We first loaded the source data into
HDFS using the Hadoop command-line utility. The utility
was run in parallel on all nodes and copied unaltered data
files into HDFS under a separate directory for each table.
Each file was automatically broken into 128MB blocks and
stored on a local DataNode. Then we executed Hive DDL
scripts provided by the Hive development team special for
TPC-H benchmark to put relational mapping on the files.
Since the metadata creation cost is negligible, the entire data
preparing time is considered as loading data into HDFS and
it took only 7 minutes for the TPC-H data.

ParaLite: In ParaLite, all tables are hash-partitioned
across the cluster and indexed on the same key with that
in DBMS-X respectively. But ParaLite cannot organize the
LineItem and Orders relations by the month of their date
columns. The main process of loading data is almost the
same with DBMS-X. It first parses each record and sends
it to the correct partition. Then each node loads received
records to the SQLite database locally in parallel. The whole
process took about 2 hours and 23 minutes for the same
TPC-H data.

4.3 Weak Scalability

We perform the TPC-H Query 3 as shown in Fig. 2. As
the two relations Orders and LineItem are partitioned on
the join key, the join operation on them is pushed into a
SQL query to be executed by SQLite directly in ParaLite.
On the other hand, Hive needs another single MapReduce
job to join these two relations. As a result, Hive requires 4
MapReduce jobs to express this query in total.

In the experiments, we increased the nodes from 10 to
30 with about 10GB on each node. The results are shown in
Fig. 4 as we expected: (1) Both systems scale well with the
increase of data nodes; (2) ParaLite is about 4 times faster
than Hive. As we explain before, firstly, join and aggre-
gation are faster in ParaLite due to data partitioning. Then
writing all intermediate data to durable storage in Hive de-
grades the overall performance. In addition, the start-up
overhead of Hadoop cannot be ignored since there are 4
MapReduce jobs in total and each one takes about 15 sec-
onds until the first Map task begins.

Fig. 4 The performance of TPC-H Query 3.

Fig. 5 TPC-H performance of several approaches.

4.4 Completion Time for TPC-H Query

We run TPC-H queries from Query 1 to 20 with scaling fac-
tor 100 in a cluster of 16 nodes. For DBMS-X and Hive
we executed the queries as suggested in the official TPC-
H reports by the vendors. Since the syntax of HiveQL is
just a subset of SQL, for may queries, the original TPC-H
queries were rewritten into a series of simple queries. For
ParaLite, several queries are also rewritten into a series of
simple queries as Hive does and Query 7, 11 cannot run suc-
cessfully because currently ParaLite does not support oper-
ations like left join and nested query in where clause.

Figure 5 shows the benchmarking results for all three
systems. First, it is not surprising that DBMS-X and Par-
aLite significantly outperform Hive for almost all queries.
The main reason for the superior performance of DBMS-
X’s and ParaLite is the ability to take advantages of parti-
tioning and indexing. Without this ability, Hive performs a
full data scan for every selection and most of the joins in
Hive require to repartition and shuffle all records across the
cluster. However, ParaLite is slower than Hive for Query
18. ParaLite and Hive rewrite this query into several sim-
pler ones. ParaLite stores the output of each query to the
database, which takes much more time than storing them to
HDFS in Hive.

Second, compared to DBMS-X, the performance of
ParaLite is competitive. ParaLite loses for some queries

CHEN and TAURA: PARALITE: A PARALLEL DATABASE SYSTEM FOR DATA-INTENSIVE WORKFLOWS
1219

and slightly wins for other queries. The main reason for
the inferior performance is the lack of organization of data.
DBMS-X organizes the LineItem and Orders relations by
the month of their date columns for a partial ordering by
date. DBMS-X gains much from the organization of data
for many queries such as Query 2, 15. Another reason is
that for some rewritten queries, ParaLite is required to store
intermediate data from each step to database as mentioned
above while DBMS-X does not need to materialize any of
them.

4.5 Performance for Executable Execution

Providing the straightforward and efficient integration of ex-
ternal executables into query plans is a major feature of Par-
aLite for workflows. In this section, we run several queries
with the integration of both heavy (Enju) and lightweight
(simple tokenizer.pl) executables.

Enju [2] is a fast, accurate, and deep parser for English
text and widely used in natural language processing (NLP)
applications. It is a cpu-intensive program with very high
start-up overhead. It firstly needs to load dictionary before
processing sentences which takes about 8 seconds.

ParaLite expresses the task simply by a query with a
UDX definition as follows.

select sid, F(sentence) as enju_result
from Abstract
with F = "Enju" output_row_delimiter EMPTY_LINE

DBMS-X performs the task with an UDF in the query be-
low. In the experiments, we implement the function F in a
java program which receives each sentence, starts the Enju
process and returns the result tuple.

select sid, F(sentence) as enju_result
from Abstract

Hive provides the syntax to integrate any executable
into the HiveQL straightforwardly. It runs the executable as
a MapReduce job. However, it cannot map the sentence ID
to the enju result for the sentence. So we encapsulate the ex-
ecutable in another program to fulfill the mapping. The pro-
gram reads records with two columns, feds only sentences to
the enju program and maps the output of enju of a sentence
to its ID.

from (
from Abstract map sid, sentence

using ’enju_wrap’ as SID, enju
) map_output
select map_output.sid, map_output.enju

The executable simple tokenizer.pl is also a NLP tool
to tokenize the words in sentences. It reads sentences from
standard input and returns the sentences with tokenzied
words. Similar with Enju, this executable is expressed by
ParaLite, DBMS-X and Hive in the same way. For example,
ParaLite performs it using the following query:

Fig. 6 Completion time of the heavy executable.

SELECT sid, S(sentence) as tk_sentence
FROM Abstract
with S = "perl simple_tokenizer.pl"

We tested the completion time of the two executables
with both balanced and unbalanced data across a 16-node
cluster.

For the execution of Enju, 1.6MB data are distributed
across the cluster. Each node has 0.1MB data when the data
are evenly distributed while each of 8 nodes holds 0.15MB
and each of the other nodes has only 0.05MB data when
data are not evenly distributed. The results are shown in
Fig. 6. Firstly, ParaLite is slightly faster than Hive but about
10 times faster than DBMS-X in both situations. The main
reason for the inferior performance of DBMS-X is the high
start-up overhead of enju. DBMS-X takes about 8 seconds
to initiate a enju process for each sentence while ParaLite
takes the 8 seconds for a bulk of data (50KB in our experi-
ments). Secondly, ParaLite has similar performance no mat-
ter whether data are evenly distributed or not, so does Hive.
However, there exists big differences between the comple-
tion time of both cases for DBMS-X because it uses static
data scheduling policy for the parallelization of executables.
Once data are partitioned, DBMS-X assigns a processor for
a partition of data. When the assigned data is finished, the
processor does not get the data from another partition. Par-
aLite and Hive take dynamic data scheduling policies in
which once a processor becomes idle, data from other parti-
tions are dispatched to it.

For the lightweight executable, 32GB data are dis-
tributed across the cluster. Each node has 2GB data when
the data are evenly distributed while each of 8 nodes holds
3GB and each of the other nodes has only 1GB data when
data are not evenly distributed. Figure 7 shows the comple-
tion time with the two types of data distribution. The re-
sults are similar with that for the heavy executable. ParaLite
and Hive are 25 times faster than DBMS-X. Even if sim-
ple tokenizer.pl does not have high start-up overhead, the
time for a large number of processes creation is consider-
able. Similar with the heavy executable execution, DBMS-
X has worse performance when data are not evenly dis-
tributed due to the lack of efficient data scheduling policy.

1220
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Fig. 7 Completion time of the lightweight executable.

4.6 Evaluation of Data-Distribution Algorithm

In this section, we evaluate our DLLB (Data Locality with
taking Load Balance into consideration) algorithm for the
data distribution in both normal and abnormal situations.
We run 30 computing clients with one client on each node.

In the normal situation that no machine is artificially
loaded, the load balance for the cluster over time for both
executables are shown in (a) of Fig. 8 and (b) of Fig. 8. The
Y-axis is the fraction of whole data that each client receives
including its local data and data received from other data
nodes. If the system is perfectly load balanced, all clients
should receive equal size of data. The system works exactly
as we expected while performing the lightweight executable
and the 30 clients hover around 0.033 of the whole load.
A small deviation from our expectation exists for the exe-
cution of the heavy executable. From our observation, the
abilities of all clients to perform the heavy executable are
not perfectly equal. Some clients are several seconds faster
than others for a block of data, leading faster clients get-
ting more data. However, the lines tending to be straight
indicate that they get data at the same speed. Most of data
are executed locally and only 463KB and 500MB data are
transferred through network for heavy and lightweight exe-
cutables respectively.

In the abnormal situation, we adopted a system stress-
ing utility called CPU Burn-in [38] to artificially load a
given machine. CPU Burn-in spawns a number of pro-
cesses to consume system resources. At t = 800, we start
CPU Burn-in on client18. The results for the heavy and
lightweight executables are shown in (c) and (d) of Fig. 8 re-
spectively. Before we push the stress on the client, the load
is balanced as in the normal situation. After the client is arti-
ficially loaded, its received data decreases and other clients
compensate for the over-loaded client’s loss quickly. The
data transferred through network is 1025KB for the heavy
executable and 1.6GB for the lightweight one.

4.7 Scalability of Executable

We test the scalability of ParaLite when the executable is
performed with the increase of computing clients. The data

(a) Normal situation
(enju)

(b) Normal situation
(simple tokenizer.pl)

(c) Artificial situation
(enju)

(d) Artificial situation
(simple tokenizer.pl)

Fig. 8 loads of 30 clients for both executables.

Fig. 9 Speedup for the heavy executable.

Fig. 10 Speedup for the lightweight executable.

distribution for all executable related experiments in the rest
of this section is set as follows. For the heavy executable,
30MB data are distributed across a 30-node cluster. Each
node has 1MB data when the data are evenly distributed
while each of 15 nodes holds 2MB data when data are not
evenly distributed. For the lightweight executable, 120GB
data are distributed across the same cluster. Each node has
4GB data when the data are evenly distributed while each
of 15 nodes holds 8GB data when data are not evenly dis-
tributed. The number of clients varied from 8 to 240 for both
executables.

As Fig. 9 and Fig. 10 show, the speedup is close to the

CHEN and TAURA: PARALITE: A PARALLEL DATABASE SYSTEM FOR DATA-INTENSIVE WORKFLOWS
1221

ideal (linear) one. The reasons for the small deviation are:
(1) the time for accessing data from the database is not de-
creased with the increase of clients; (2) when data are un-
evenly distributed, data transfer is increased when the clients
are located in the nodes who don’t have data.

5. Real-World Text Processing Workflow

Next, we introduce a real-world text-processing workflow in
the field of natural language processing – Event Recognition
(ER) [39], [40]. We build ER on top of ParaLite, Hadoop
(specifically Hadoop Streaming [41]), Hive and general files
and discuss their strengths/weaknesses in terms of both pro-
ductivity and performance for the workflow. Since all these
systems do not provide any language to describe the com-
plex dependencies of jobs, we generally perform each single
job using them and leave the creation of the whole workflow
to a known workflow engine called GXP Make [2]. GXP
Make uses make to describe the workflow and provides the
parallelization of tasks across clusters. So in the following
sections, we ignore the descriptions of dependencies among
jobs and only focus on the expressiveness of each job based
on different systems.

5.1 Description

The goal of Event Recognition workflow is to recog-
nize complex bio-molecular relations (bio-events) among
biomedical entities (i.e. proteins and genes) that appear in
biomedical literature. Recognition of such events including
an expression of a certain gene, a phosphorylation of a pro-
tein, and a regulation of certain reactions are important to
understand biomedical phenomena. The process to extract
the events from an English sentence is show in Fig. 11.

The workflow of ER is shown in Fig. 12. The input of
the workflow is the MEDLINE database [42] which contains
over 19 million references to journal articles in life sciences
with a concentration on biomedicine. The event recognition
application consists of 4 steps with 6 jobs: (1) extract ab-
stract of each article from the source xml files; (2) split the
abstract into sentences with their unique identification using
a NLP tool geniass; (3) to each sentence, apply three tools:

Fig. 11 Extracted events from an English sentence.

• Enju Parser: a HPSG parser which can effectively ana-
lyze syntactic/semantic structures of English sentences.
• Named Entity Recognizer: recognition for bio-medical

entities such as gene and protein.
• Dependency Parser: a dependency parser for biomedi-

cal text.

(4) combine the results from the three tools and extract bio-
medical events. It is a typical real NLP workflow, which ap-
plies several existing tools to each document/sentence and
combines results from them to perform a higher-level rea-
soning. A recurring problem in such workflows is that each
tool reads texts as a single stream and does not have a no-
tion of document boundaries. The output from such a tool
is similarly a single stream that does not leave anything be-
tween document boundaries. Thus, it is the responsibility of
workflow developers to track the association between a doc-
ument and a result from each tool and correctly combines
them.

Hadoop: Each job in the workflow could be expressed
by one or several Map-Reduce jobs. Specifically, the ex-
ecutable geniass used in step (2) is a file-based program
which reads input data from file, so a wrapper which re-
ceives data from standard input and stores them into a file is
necessary. Tools used in the steps (3) and (4) consist of sev-
eral executables and some of them work on the joined data
from other two previous executables. Hadoop performs join
operation separately before the executable is executed and
uses several scripts for these executables. For example, the
final eventDetector job which joins data from the previous
three tools on the sentence ID to detect complex relations
between entities is expressed by two MR jobs. The first one
only performs the join operation using both Map and Re-
duce functions and outputs records each of which consists
of a sentence ID followed by the sentence and the three re-
sult of this sentence. Then the next MR job specifies the ex-
ecutable as a mapper which reads output from the previous
job and emits the final results. Moreover, since the input
of each executable has multiple lines per record, we have
to either customize our own InputFormat and InputReader

Fig. 12 Workflow of event-recognition application.

1222
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

classes and pack them along with the streaming jar or write
a small wrapper to convert the complex record into a single-
line one. In this paper, we take the latter method. In sum-
mary, 12 extra programmers (wrappers) are required.

Hive: Hive expresses each job with one or several
equivalent queries. Different from Hadoop, Hive is able
to chain several executables or express them together with
a join operation within a single query. For example, the
eventDetector is expressed by the following query:

insert overwrite table event_so
select out.SID, out.event from (
map abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene
using ’event-detector’ as (SID, event)
from abst
join enju_so on (abst.SID = enju_so.SID)
join ksdep_so on (abst.SID = ksdep_so.SID)
join gene_so on (abst.SID = gene_so.SID)) out

However, to deal with file-based executable geniass,
we still need a wrapper to produce the input file with data
from standard input. Since data is piped between executa-
bles and each one can handle the output data from the pre-
vious one, we don’t need to write any wrapper to deal with
the complicated format of data. In this case, 10 wrappers are
required in total.

ParaLite: ParaLite expresses each job by a similar
query as Hive. Still taking eventDetector as an example,
it is expressed by the following query

create table event_so as
select F(abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene)
as (SID, event)

from abst, enju_so, ksdep_so, gene_so
where abst.SID = enju_so.SID

and abst.SID = ksdep_so.SID
and abst.SID = gene_so.SID

with F="event-detector"
output_row_delimiter EMPTY_LINE

ParaLite can support file-based UDX, so no wrapper
is required for this workflow and we only need to specify
the input option for the executable. As a result, ParaLite
only needs 5 wrappers to deal with considerable complex of
input and output data.

File: To enable the parallel execution of executables,
the input file is firstly split into thousands of small files and
several executables are applied to each single file. Specially,
for all the merge jobs, we take a in-order processing method,
that is, all data are stored in the same order on the sentence
ID. To fulfill this requirement, we define the name of each
result file before the execution of the workflow.

Discussion: The workflow of Event Recognition gen-
erates both data access patterns of pipeline and reduce.
Since Hadoop Streaming cannot support multiple mappers
or reducers in a single HS job, the executables have to be
expressed by several separate HS jobs, leading to a), more
steps in the workflow, b), more efforts to deal with the com-
plicated format of input data, c), longer execution time due

Table 1 Comparison of productivity of systems for ER.

Hadoop Hive ParaLite File
of intermediate files No No No 50000

of wrapper 12 10 5 10

to storing the output of each executable in files. Hadoop
Streaming and file-based method are not sufficient to present
join job. Hive and ParaLite are able to use queries to ex-
press the workflow elegantly. However, some extra efforts
are necessary when the workflow is performed by Hive and
Hadoop because they cannot track the association of the in-
put sentence and the output from the NLP tools as we men-
tioned in the beginning of this section.

For example, let’s say we have an executable X that
reads sentences and outputs annotated sentences. In the
workflow using such a tool as a component, we like to find
(document id, annotated sentence) from (document id, the
original sentence). In Hive and Hadoop, it is necessary to
write an extra program which extracts sentences fed to the
tool, receives the results and maps the annotated sentence to
the original one. This is because that MapReduce program-
ming model leaves all the computation inside of the mapper
and reducer and it cannot handle complex logical process-
ing outside. Specifically, the model reads data from HDFS,
feeds them to a mapper, shuffles and sorts the output of the
mapper and finally gives to a reducer. So it doesn’t have
any mechanism to do some complex processing to the out-
put of mapper of reducer. Hence we need to write ten such
wrappers in total. On the other hand, ParaLite, or SQL for
that matter, naturally supports such an association through
a simple query of the form ”select sentence id,X(sentence)
from ...”, as long as the output of the last executable in the
chain has a fixed string, such as an empty line in most cases,
between records boundaries. The summary for the efforts
made by each system is shown in Table 1.

5.2 Execution

The experiments are conducted in a 30-node cluster which is
introduced in Sect. 4. ER workflow reads 30 GB data from
MEDLINE database and extracts 1 GB abstracts of articles
from the source xml files. For file-based workflow, we split
the input into 10000 small ones according to the most time-
consuming job Enju Parser.

Figure 13 shows that ParaLite outperforms other sys-
tems from 8% to 30%. Since ParaLite is able to track the as-
sociation of the input and output records, most executables
work on the input data directly without parsing while each
executable in Hadoop- and Hive-based workflows requires
to parse the input data to map the input to the according
output. Another reason is that ParaLite has better perfor-
mance in join operation, especially for the eventDetector
job. The input four tables of eventDetector are 1 GB sen-
tences, 55 GB enju results, 11 GB gdep results and 150
MB ner results. ParaLite partitions all these data on the key
SID, so when the join operation is performed, it pushes the
original join SQL query directly to the SQLite database on

CHEN and TAURA: PARALITE: A PARALLEL DATABASE SYSTEM FOR DATA-INTENSIVE WORKFLOWS
1223

Fig. 13 The execution time of event-recog workflow.

each data node and it only takes about 25 seconds. Hadoop
performs this join operation using about 8 minutes and Hive
takes about 4 minutes.

To get the best performance, we tune some parameters
for each job to adjust the degree of jobs parallelization ac-
cording to their compute density. Job enju is very compu-
tationally intensive and eventDetector is not as heavy as
enju and it has high start-up overhead, so we set more par-
allel tasks for enju and less for eventDetector. It is easy
to do the parameter tuning in ParaLite which allows you to
specify the size of block for each query and Hadoop which
allows you to set the number of mappers and reducers in the
script for each job. However, it is not easy with Hive to tune
this parameter. We have to modify the parameter of number
of mappers in the configuration file and restart the Hadoop
cluster every time when we want to change it. What is the
worse is that this kind of parameter tuning is impossible in
file-based workflow. This is the reason that the execution
time of event-detector job in the workflow with files is
much larger than that in the workflow with other systems.
As mentioned in the beginning of this section, we split the
input file into 10000 small ones based on the execution of
enju job. Hence we have 10000 small sub-jobs to be pro-
cessed in parallel for each step. The number of sub-jobs is
much larger than that in other systems and each has high
start-up overhead (about 20 seconds), as a result, the total
execution time is increased. Once the input files is split,
users have to parallelize each job according to the number
of sub-files unless internal parallelization and merge is per-
formed independently.

6. Conclusion

This paper proposes ParaLite – a shared-nothing parallel
database system for data-intensive workflows. With Par-
aLite, jobs in a workflow are expressed with SQL queries
and all intermediate data are stored as relational tables. As
workflows are typically built out of various executables, Par-
aLite provides seamless integrations of external executables
(UDX, short for User-Defined Executable) into SQL state-
ments and proposes a concept of collective query for the
efficient parallel execution of UDX. With UDX, users do
not need to write any programs that conform to the strict

specifications of databases. The implementation of collec-
tive query makes ParaLite 10x speed up comparing to UDF
implementation in the conventional database.

In addition, we studied a real-world text-processing
workflow in the field of natural language processing, and
built it on top of ParaLite, Hadoop, Hive and general files.
Our development experience revealed that high-level query
languages such as SQL of ParaLite and HiveQL of Hive are
helpful for expressing data selection, aggregation and cal-
culation by typical executables. The expressiveness of SQL
in ParaLite is particularly useful since it provides natural
supports of file-based NLP executables and reusing existing
NLP tools by tracking the association between a document
and its annotation attached by the tool. The experimental
results show that essentially each system has similar per-
formance in the execution of the whole workflows because
performing executables takes most time. However, the small
differences still revealed some potential superiority of Par-
aLite due to data partitioning and query optimization.

References

[1] E. Deelman, D. Gannon, M.S. Shields, and I. Taylor, “Workflows
and e-science: An overview of workflow system features and capa-
bilities,” Future Generation Comp. Syst., vol.25, no.5, pp.528–540,
2009.

[2] “Enju.” http://www-tsujii.is.s.u-tokyo.ac.jp/enju, 2011.
[3] “Cabocha yet another japanese dependency structure.”

http://code.google.com/p/cabocha.
[4] K. Taura, T. Matsuzaki, M. Miwa, Y. Kamoshida, D. Yokoyama, N.

Dun, T. Shibata, C.S. Jun, and J. Tsujii, “Design and implementation
of gxp make – a workflow system based on make,” eScience, 2010.

[5] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I.
Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable, loosely
coupled parallel computation,” IEEE International Workshop on
Service Computing, pp.199–206, 2007.

[6] T.M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Green-
wood, T. Carver, K. Glover, M.R. Pocock, A. Wipat, and P. Li, “Tav-
erna: A tool for the composition and enactment of bioinformatics
workflows,” Bioinformatics, vol.20, no.17, pp.3405–3054, 2004.

[7] J. Dean and S. Ghemawat, “Mapreduce:simplified data processing
on large clusters,” OSDI’04, pp.137–150, 2004.

[8] “Hadoop.” http://hadoop.apache.org/.
[9] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,

H. Liu, P. Wyckoff, and R. Murthy, “Hive - A warehousing solu-
tion over a map-reduce framework,” VLDB Endow, pp.1626–1629,
2009.

[10] A.F. Gates, O. Natkovich, S. Chopra, P. Kamath, S.M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, “Build-
ing a high-level dataflow system on top of map-reduce: The pig ex-
perience,” VLDB, pp.1414–1425, 2009.

[11] D. DeWitt and J. Gray, “Parallel database systems: The future
of high-performance database systems,” Commun., vol.35, no.6,
pp.85–98, 1992.

[12] D.T. Liu and M.J. Franklin, “The design of griddb: A data-centric
overlay for the scientific grid,” VLDB, pp.600–611, 2004.

[13] Y.E. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti, “Zoo :
A desktop experiment management environment,” VLDB, pp.274–
285, 1996.

[14] D. Barseghian, I. Altintas, M.B. Jones, D. Crawl, N. Potter, J. Gal-
lagher, P. Cornillon, M. Schildhauer, E.T. Borer, E.W. Seabloom,
and P.R. Hosseini, “Workflows and extensions to the kepler scien-
tific workflow system to support environmental sensor data access

1224
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

and analysis,” Ecological Informatics, pp.42–50, 2010.
[15] A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Mad-

den, and M. Stonebraker, “A comparison of approaches to large-
scale data analysis,” SIGMOD, pp.165–178, 2009.

[16] M. Stonebraker, D. Abadi, D.J. DeWitt, and S. Madden, “Mapre-
duce and parallel dbmss: Friends or foes?,” Commun., vol.53, no.1,
pp.64–71, 2010.

[17] T. Chen and K. Taura, “Paralite: Supporting collective queries in
database system to parallelize user-defined executable,” CCGRID,
pp.474–481, 2012.

[18] U. Dayal, E.N. Hanson, and J. Widom, “Active database systems,”
Modern Database Systems, pp.434–456, 1995.

[19] S. Abiteboul, V. Vianu, B.S. Fordham, and Y. Yesha, “Relational
transducers for electronic commerce,” J. Comput. Syst. Sci., vol.61,
no.2, pp.236–269, 2000.

[20] A.J. Bonner, “Workflow, transactions, and datalog,” Proceedings of
the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp.294–305, 1999.

[21] M.A. Nieto-Santisteban, J. Gray, A.S. Szalay, J. Annis, A.R. Thakar,
and W. O’Mullane, “When database systems meet the grid,” CIDR,
pp.154–161, 2005.

[22] http://www.microsoft.com/en-us/sqlserver/default.aspx.
[23] M. Stonebraker, J. Anton, and E.N. Hanson, “Extending a database

system with procedures,” ACM Trans. Database Syst., vol.12, no.3,
pp.350–376, 1987.

[24] M. Stonebraker and G. Kemnitz, “The postgres next generation
database management system,” Commun. ACM, vol.34, no.10,
pp.78–92, 1991.

[25] S. Chaudhuri and K. Shim, “Optimization of queries with user-
defined predicates,” ACM Trans. Database Syst., vol.24, pp.177–
228, 1999.

[26] J.M. Hellerstein and M. Stonebraker, “Predicate migration: Opti-
mizing queries with expensive predicates,” Proc. SIGMOD Conf.,
pp.267–276, 1993.

[27] M. Corporation, “Table-valued user-defined functions,” tech. rep.,
Microsoft, 2009.

[28] M. Jaedicke and B. Mitschang, “On parallel processing of aggre-
gate and scalar functions in object-relational dbms,” Proc. SIGMOD
Conf., pp.379–389, 1998.

[29] M. Jaedicke and B. Mitschang, “User-defined table operators: En-
hancing extensibility for ordbms,” VLDB, pp.494–505, 1999.

[30] E. Friedman, P. Pawlowski, and J. Cieslewicz, “Sql/mapreduce: A
practical approach to self-describing, polymorphic, and paralleliz-
able user-defined functions,” VLDB Endow., pp.1402–1413, 2009.

[31] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “Scope: Easy and efficient parallel processing of mas-
sive data sets,” PVLDB, vol.1, no.2, pp.1265–1276, 2008.

[32] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “Hadoopdb: An architectural hybrid of mapreduce and
dbms technologies for analytical workloads,” VLDB, vol.2, no.1,
pp.922–933, 2009.

[33] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda, V. Ly-
chagina, Y. Kwon, and M. Wong, “Tenzing a sql implementation on
the mapreduce framework,” PVLDB, vol.4, no.12, pp.1318–1327,
2011.

[34] “SQLite.” http://www.sqlite.org/.
[35] “TPC-H.” http://www.tpc.org/tpch.
[36] “Genia sentence splitter.”

https://github.com/TsujiiLaboratory/geniass.
[37] “Running tpc-h queries on hive. web page.”

https://issues.apache.org/jira/browse/HIVE-600, 2009.
[38] “CPU Burn-in.” http://users.bigpond.net.au/CPUburn/.
[39] M. Miwa, R. Satre, J.D. Kim, and J. Tsujii, “Event extraction with

complex event classification using rich features,” JBCB, pp.131–
146, 2010.

[40] Bjorne, F. Ginter, S. Pyysalo, J. Tsujii, and T. Salakoski, “Complex
event extraction at pubmed scale,” Bioinformatics, vol.26, no.12,

pp.382–390, 2010.
[41] “Hadoop streaming.” http://hadoop.apache.org/common/docs/

r0.15.2/streaming.html.
[42] D. FA, “Searching medline via pubmed,” Clin Lab Sci, 2008.

Ting Chen born in 1986. She received
the B.S. degree in Computer Science from Bei-
jing Language and Culture University in 2007
and received the M.S. degree in Computer Sci-
ence from Beihang University in 2010. Since
2010, she has been a Ph.D. candidate in In-
formation Science and Technology from the
University of Tokyo, Japan. Her current re-
search interests reside in data-intensive com-
puting and parallel database system. E-mail:
chenting@eidos.ic.i.u-tokyo.ac.jp

Kenjiro Taura born in 1969. He is a
associate professor at Department of Informa-
tion and Communication Engineering, Univer-
sity of Tokyo. He received his B.S., M.S., and
DSc degrees from University of Tokyo in 1992,
1994, and 1997. His major research interests
include parallel/distributed computing and pro-
gramming languages. He is a member of ACM
and IEEE. E-mail: tau@eidos.ic.i.u-tokyo.ac.jp

