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PAPER

Detecting Trace of Seam Carving for Forensic Analysis

Seung-Jin RYU†, Nonmember, Hae-Yeoun LEE††, Member, and Heung-Kyu LEE†a), Nonmember

SUMMARY Seam carving, which preserves semantically important
image content during resizing process, has been actively researched in re-
cent years. This paper proposes a novel forensic technique to detect the
trace of seam carving. We exploit the energy bias and noise level of images
under analysis to reliably unveil the evidence of seam carving. Further-
more, we design a detector investigating the relationship among neighbor-
ing pixels to estimate the inserted seams. Experimental results from a large
set of test images indicates the superior performance of the proposed meth-
ods for both seam carving and seam insertion.
key words: image forensics, content-aware image resizing, seam carving,
seam insertion

1. Introduction

The advances of imaging devices and computer software
make the acquisition of high-quality digital images a natural
form of human perception. At the same time, the very nature
of digital images, which can be manipulated easily, brings
into question many of the positive aspects associated with
digital images. A constantly growing number of uncovered
manipulations [1] is certainly only the tip of the iceberg.

Digital image forensics is the field of detecting mod-
ifications made to digital images. During the last decade,
passive-blind [2] techniques have been developed to restore
the lost trustworthiness of digital images. Generally, they
require neither any access to the imaging device (a passive
way) nor the knowledge about their inputs or intermediate
results (a blind way) [3]. One of the key assumptions in
passive-blind image forensics is that manipulating an image
leaves inherent artifacts in the resulting image. Therefore,
such artifacts may indicate a manipulation while examining
the statistical properties of an image under investigation. For
instance, many research works have revealed these inherent
artifacts against manipulation: resampling [4]–[10], partial
manipulation [11], [12], double quantization [13], [14], con-
trast enhancement [15], or sharpening [16].

Among the numerous post-processing techniques, re-
sizing is one of the most frequently used. To detect the
resizing artifacts, several detectors exploiting the periodic-
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ity of interpolation through a resized image have been re-
searched [4]–[10]. However, these detectors assume that the
entire image is altered by a periodic resampling procedure.
Hence, if part of the image is intentionally carved out or
stretched while keeping the important content, by a manner
of content-aware image resizing called seam carving [17],
these detectors fail to detect the artifacts of resizing. Never-
theless, to the best of our knowledge, forensic detectors for
the seam carving process have rarely been proposed. There-
fore, in this paper, we propose a novel forensic detector by
revealing the appropriate properties of the seam carving.

The rest of the paper is structured as follows. We first
review prior works to reveal the trace of resizing in Sect. 2.
Afterwards, the overview of a seam carving process is intro-
duced in Sect. 3. Based on the analysis of the seam carving
process, we propose appropriate features to detect the seam
carved images in Sect. 4. Subsequently in Sect. 5, a seam in-
sertion detector is proposed by tracking the trace of inserted
seams in an image under investigation. Sect. 6 presents em-
pirical evidence from a massive test setup before Sect. 7 con-
cludes the paper.

2. Review of the Major Resizing Detectors

In this section, forensic detectors for either content inde-
pendent or content-aware image resizing are briefly intro-
duced. As mentioned in Sect. 1, image resizing is one of the
most common forms of image manipulation. Since the tra-
ditional resizing process, which does not consider the con-
tent of the image, inherently incorporates resampling pro-
cess, several detectors exploiting the periodicity of inter-
polation through a resampled image have been researched.
Gallagher first uncovered periodicity in the second deriva-
tive signal of interpolated images [4]. The detector deter-
mined if the images had undergone resizing and the rate
of interpolation. Mahdian and Saic analytically extended
Gallaher’s method [5]. They proved that the variance of the
n-th order derivative of an interpolated signal has a peri-
odicity equal to the sampling rate of the original signal if
the given signal satisfies the stationary signal requirements.
Aside from analyzing the n-th order derivative of the inter-
polated image, Popescu and Farid identified the correlation
among neighboring pixels by a local linear predictor that
adopts the expectation/maximization (EM) algorithm [6]. In
[7], Kirchner analytically derived the relation between the
derivative-based detector and Popescu’s detector. From the
analysis, he proposed an improved resampling detector. He
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also showed the specific periodicities that can be detected
in a series of tailored row and column predictors instead
of relying on a single predictor [8]. Feng et al. extracted
19-features from the normalized energy density of second
derivative images in the frequency domain, and then the fea-
ture vectors were applied to train and test a support vec-
tor machine (SVM) of resizing process [9]. To determine
whether an investigated image is upscaled or downscaled,
Pfennig and Kirchner combined Feng et al.’s approach with
Popescu’s linear predictor [10]. However, to the best of our
knowledge, all the detectors still have difficulties in detect-
ing the trace of content-aware image resizing, which inten-
tionally carves out or stretches the part of the image without
periodic resampling process.

A kind of content-aware image resizing, known as
seam carving [17], keeps the important content of the im-
age during the resizing process. Unfortunately, only several
detectors for seam carving process were proposed. To detect
the trace of seam carving, Lu and Wu attached side informa-
tion called forensic hash to the image [18]. However, falsi-
fiers can easily remove the forensic hash since it is attached
on the header of an image file. Fillion and Sharma extracted
many statistical features from seam carved images to de-
tect the seam carving process [19]. Similarly, Sarkar et al.
uncovered seam carving artifacts by extracting Markov pro-
cess features [20]. Although these methods perform well,
they should be improved by reflecting the important proper-
ties of the seam carving process. Therefore, the following
sections introduces the details of seam carving process, and
then the proposed method that considers the properties of
the manipulation improved from the previous work [21] is
presented.

3. Seam Carving Process Overview

Content-aware image resizing indicates that the important
region of interest (ROI) is not affected (or minimally af-
fected) by an image resizing process. Avidan and Shamir
proposed a novel image retargeting method called seam
carving [17]. A seam is an 8-connected path of pixels cross-
ing the image from top to bottom, or from left to right.
Therefore, a vertical seam for an n × m image I is defined
as Eq. (1) where i and x(i) represent row coordinates and the
corresponding column coordinates, respectively. A horizon-
tal seam is also defined similarly.

sV = {(x(i), i)}ni=1 , s.t.∀i, |x(i) − x(i − 1)| � 1. (1)

By successively removing unnoticeable seams which have
as low energy as possible, or inserting additional seams right
next to the selected unnoticeable seams, the important image
content can be preserved during the resizing process. For
this reason, the energy of each pixel is first measured by
energy function e.

e(I) =
∣∣∣∣∣ ∂∂x I
∣∣∣∣∣ +
∣∣∣∣∣ ∂∂y I
∣∣∣∣∣ . (2)

From the energy function e, the energy of a vertical seam

(a) (b)

(c) (d)

Fig. 1 Content-aware image resizing by seam carving: (a) an original
image, (b) the original image with selected seams, (c) a seam carved image,
and (d) a seam inserted image.

E(s) is as follows:

E(s) =
∑n

i=1
e(x(i), i), s.t.∀i, |x(i) − x(i − 1)| � 1. (3)

Then, a vertical seam with the lowest energy path s∗ =
min E(s) is found by dynamic programming with the recur-
rence relation M:

M(i, j) = e(i, j)+

min(M(i−1, j−1), M(i, j−1), M(i+1, j−1)). (4)

After constructing a cumulative minimum energy matrix M
for all possible seams, the lowest energy seam s∗ is found
by backtracking from the minimum value of the last row in
M. By iteratively eliminating the selected seam, which has
the lowest energy, we can reduce the size of a given image
without destroying significant image contents.

Enlarging an image is easily accomplished by extend-
ing the seam carving process. Instead of eliminating the se-
lected vertical seam s∗, seam insertion process replaces pix-
els sx(i),i in the s∗ with sl

x(i),i and sr
x(i),i, which are computed

by averaging the sx(i),i with their left and right neighbors.
Horizontal seams can be inserted in the similar way.

sl
x(i),i = round

( sx(i)−1,i + sx(i),i

2

)
,

sr
x(i),i = round

( sx(i),i + sx(i)+1,i

2

)
.

(5)

Figure 1 shows examples of seam carving and seam
insertion. Even though we cut and put 30% of the image
through vertical seams, the important content of the image
was not changed significantly.

4. Seam Carving Detection

By its very definition, seam carving process keeps an im-
portant image content by successively removing low en-
ergy seams. As a result, the energy distribution of seam
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(a)

(b)

Fig. 2 The proposed detection procedure of (a) seam carving, and (b) seam insertion.

Table 1 Four features based on the average energy. The energy of a
given image are computed by differentiating the image for both column
and row directions.

Feature Description

average column energy 1
m×n

m∑
i=1

n∑
j=1

∣∣∣ ∂
∂x I(i, j)

∣∣∣
average row energy 1

m×n

m∑
i=1

n∑
j=1

∣∣∣∣ ∂∂y I(i, j)
∣∣∣∣

average energy 1
m×n

m∑
i=1

n∑
j=1

(∣∣∣ ∂
∂x I(i, j)

∣∣∣ + ∣∣∣∣ ∂∂y I(i, j)
∣∣∣∣)

average energy difference 1
m×n

m∑
i=1

n∑
j=1

(∣∣∣∣∣∣∣ ∂∂x I(i, j)
∣∣∣ − ∣∣∣∣ ∂∂y I(i, j)

∣∣∣∣∣∣∣∣)

carved images is relatively higher than that of non-carved
images [19]. Therefore, a set of features, which measures
the energy bias of the image, is extracted to represent the
characteristics of the seam carving process. We additionally
analyze the energy of each seam. Furthermore, we adopt
statistical noise measures. Seam carved images have much
noise than non-carved images with high probability because
the seam carving process mostly removes flat regions. As a
consequence, three kinds of features extracted from statisti-
cally independent domains support to improve the detection
performance of the seam carving process.

Afterwards, the feature vectors from the seam-carved
and the non-carved images are applied to train and test Sup-
port Vector Machine (SVM) classifier [22]. Figure 2 (a) de-
picts a proposed detector for the seam carving process. In
the following sub-sections, we first explain three kind of fea-
ture vectors by which local processing artifacts are unveiled,
and then the SVM classifier is briefly described.

4.1 Feature Extraction from Energy Distribution

4.1.1 Energy Features

When the seams of an image are carved out, the average
pixel energy for the image increases. Therefore, we mea-
sure the pixel energy by four statistical features as depicted
in Table 1. Specifically, both the row and column direction
average energy of each pixel are calculated from the inves-
tigated image since the seam carving process subsequently
removes either row or column direction pixels. After that,
the average energy feature including both the row and col-

umn direction energy is computed. Moreover, we compute
the difference between column and row direction energy. As
mentioned above, seam carving process occurs through ei-
ther column or row direction. Therefore, the subtraction be-
tween two directions reveals significant difference compar-
ing to the subtraction from the non carved image.

4.1.2 Seam Features

After extracting features from the suspicious images, we
measure the energy of each seam in the image. When an
image is seam carved, the energy of remaining seams be-
comes higher than that of a non-carved image with high
probability. From the above observation, we compute ten
additional features in Table 2 using Eq. (4) for both row and
column direction. After constructing a cumulative minimum
energy matrix M for all possible seams (for column and
row directions), we compute five statistics values called min,
max, mean, standard deviation, and the difference between
maximum and minimum values for both directions. Simi-
lar with the energy features, we expect significant difference
between seam energy values from seam carved images and
those from non-carved images.

4.1.3 Noise Features

The seam carving process also affects the noise level of the
manipulated images because the processing generally re-
moves flat regions. From this observation, we measure four
statistical noise features. To remove noise from the investi-
gated image I, the image is filtered by Wiener filter with 5×5
window referred to as F. Finally, the noise N of the image is
computed as follows.

N = I − F(I) (6)

From the computed noise, we measure mean, standard de-
viation, skewness, and kurtosis of the noise as depicted in
Table 3. As a result, total 18 features are extracted.

4.2 Support Vector Machine Classifier

From the 18 features obtained by measuring the energy dis-
tribution, our purpose is to determine whether the image
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Table 2 10 features based on the vertical and horizontal seam energy by Eq. (4).

Feature Description Feature Description

verticalseammax maxm
i=1 M(i, n) horizontalseammax maxn

i=1 M(m, i)

verticalseammin minm
i=1 M(i, n) horizontalseammin minn

i=1 M(m, i)

verticalseammean
1
m

∑m
i=1 M(i, n) horizontalseammean

1
n

∑n
i=1 M(m, i)

verticalseamstd

√
1
m

∑m
i=1 (verticalseammean − M(i, n))2 horizontalseamstd

√
1
n

∑n
i=1 (horisontalseammean − M(m, i))2

verticalseamdiff verticalseammax − verticalseammin horizontalseamdiff horizontalseammax − horizontalseammin

Table 3 Four features based on the noise level. The noise of a given
image is computed by Wiener filter with 5 × 5 window.

Feature Description

mean 1
m×n

m∑
i=1

n∑
j=1

N(i, j)

standard deviation

√
1

m×n

m∑
i=1

n∑
j=1

(N(i, j) − Nmean)2

skewness 1
m×n

m∑
i=1

n∑
j=1

(
N(i, j)−Nmean

Nstd

)3
kurtosis 1

m×n

m∑
i=1

n∑
j=1

(
N(i, j)−Nmean

Nstd

)4

under investigation is seam-carved or not. To this end, we
adopt the support vector machine (SVM) classifier which is
a supervised learning method commonly used for classifica-
tion [22]. In the training phase, the images for either class
(seam-carved or non-carved) are represented by the feature
vectors. The classifier then attempts to find an optimal lin-
ear decision surface called the maximum margin hyperplane
by maximizing the geometric margin between the closest
instances on either side. To further improve classification
accuracy, the feature vectors are non-linearly projected into
higher dimensional feature space by Radial Basis Function
(RBF) kernel. After training the SVM classifier, a feature
vector extracted from the image under investigation is clas-
sified into one of either side: seam-carved or non-carved.

5. Seam Insertion Detection

This section explains the proposed detector for seam in-
sertion. As shown in Eq. (5), the seam insertion process
introduces specific correlation among neighboring pixels
through the selected seams. Using this correlation, Sarkar
et al. proposed a localization method for inserted seams [20].
Without considering rounding, Eq. (7) can be derived from
Eq. (5) if the examined pixels were generated by the seam
insertion.

sl
x(i),i − sr

x(i),i =
sx(i)−1,i + sx(i),i

2
− sx(i),i + sx(i)+1,i

2

=
sx(i)−1,i − sx(i)+1,i

2
. (7)

Therefore, sdi f f in Eq. (8) should be 0 or 1 due to the round-
ing effect.

sdi f f =
∣∣∣∣(sx(i)−1,i − sx(i)+1,i

) − 2
(
sl

x(i),i − sr
x(i),i

)∣∣∣∣
= 0, or 1. (8)

By calculating the sdi f f for every four horizontally sequen-
tial pixels in the image I, a binary map for the candidate
location of the seam insertion D is generated as below:

D(i, j) =

{
1, i f sdi f f = 0, or 1
0, otherwise.

(9)

We further notice that an estimated pixel ŝx(i),i can be
derived from Eq. (5) if the examined pixels were generated
by the seam insertion.

ŝx(i),i =
(
sl

x(i),i + sr
x(i),i

)
− 2 · (sx(i)−1,i + sx(i)+1,i

)
. (10)

Since sl
x(i),i and sr

x(i),i are calculated by averaging sx(i),i with
their neighbors, we can derive the relation between the ŝx(i),i

and their neighbors as follows:

sl
corr =

∣∣∣(sx(i)−1,i + ŝx(i),i
) − 2 · sl

x(i),i

∣∣∣ = 0, or 1

sr
corr =

∣∣∣(ŝx(i),i + sx(i)+1,i
) − 2 · sr

x(i),i

∣∣∣ = 0, or 1.
(11)

From Eq. (11), an additional map C for the candidate loca-
tion of the seam insertion is also generated.

C(i, j) =

{
1, i f

(
sl

corr = 0, or 1
)
∧ (sr

corr = 0, or 1
)

0, otherwise.

(12)

By taking AND operation between two maps, P = C ∧ D,
we generate a candidate map P. For a color image, we com-
pute P for each plane, and then apply AND operation among
them to generate the only candidate map PRGB. Finally, the
decision for whether the image is enlarged by seam insertion
or not is made by PRGB. Specifically, if a vertical seam is in-
serted, there might exist a path with ‘1’ from top to bottom.
Hence, we compute the length of the longest path reaching
to bottom end by dynamic programming with following re-
currence relation L:

L(i, j) = PRGB(i, j)+

max(L(i−1, j−1), L(i, j−1), L(i+1, j−1)). (13)

If seams are inserted, the maximum value of the last row will
be similar with the height n of the image. On the contrary,
if seams are not inserted, the maximum value of the last row
will be significantly lower than n caused by the absence of
connected path. Thus, we decide the existence of the seam
insertion procedure by Eq. (14) with a threshold weighting
factor t.
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(a) (b)

(c) (d)

(e)

Fig. 3 Detection of inserted seams: (a) an enlarged image by seam inser-
tion, (b) an original image, (c) detected seams from (a), (d) detected seams
from (b), and (e) inserted seams into (a).

m
max

i=1
(L(i, n)) � t × n. (14)

If at least one value satisfying Eq. (14) exists, we consider
the examined image as a seam inserted image. Figure 2 (b)
depicts the whole procedure of the proposed seam inser-
tion detector. Simultaneously, Fig. 3 depicts detected seams
by the proposed detector for both unchanged and seam in-
serted images. The result from our detector is displayed
in Fig. 3 (c) and Fig. 3 (d). We cannot find any seams in
Fig. 3 (d) since Fig. 3 (d) is not manipulated by the seam in-
sertion. On the contrary, Fig. 3 (c) coincides to a great extent
with the ground truth map shown in Fig. 3 (e).

6. Experimental Results

This section reports results from an extensive series of
content-aware image resizing detection experiments. The
setup includes our method as detailed in Sect. 4 and Sect. 5
as well as two alternative detectors proposed by Sarkar
et. al. [20] and Fillion and Sharma [19], respectively. With
the detectors, 1,338 images from the UCID image set were
used [23] to detect the artifacts of the resizing. More specif-
ically, the images were reduced by seam carving from 10%
to 50% in steps of 10%. As a result, 6,690 carved images
were generated. Also, the images were enlarged in a similar
manner by seam insertion from 10% to 50% in steps of 10%.
Additionally, 1% enlarged images were generated to test the
robustness of the seam insertion detectors. Thus, 8,028 im-
ages with inserted seams were generated. As a consequence,

Table 4 Detection results of 30% seam carving.

Test[%]
30% non-carved

Train
30% 82.51 17.49

non-carved 10.61 89.39

1,338 original images, 6,690 seam carved images, and 8,028
seam inserted images were used in the experiments.

6.1 Seam Carving Detection Results

First, we classified whether images under investigation were
seam carved or not. For this purpose, we trained LIB-
SVM classifier with Radial Basis Function (RBF) kernel of
r = 0.125 and C = 3 [22]. The feature vector, which in-
cludes 18 statistics values explained in Sect. 4, was extracted
from every seam-carved and non-carved images. Then, the
half of feature vectors trained the SVM classifier. Finally,
the remaining feature vectors were applied to test the perfor-
mance of the detector. Table 4 depicts the confusion matrix
of 30% seam carving and non-carved images by the pro-
posed 18 features. To observe the detection performance
under various environments, we varied the degree of seam
carving from 10% to 50% in steps of 10%. Moreover, the
classifier was trained and tested with mixed set of seam-
carved images, which include 268 randomly chosen images
from 10% to 50% of seam carving, respectively. With the
manipulated images, we tested the discrimination power of
feature vectors as depicted in Table 5. It is worth to note
that features based on seam property reveals best perfor-
mance among the proposed features. However, from the re-
sult, we conclude that adopting every set of features demon-
strates the best performance. Moreover, the performance
of the proposed method as well as two alternative detectors
was measured. Table 6 presents the detection performance
of three detectors with different environments. Taking all
tested images into account, the proposed method appears to
be the most accurate approaches. Fillion and Sharma [19]
proposed lots of features based on the energy histogram and
higher order image statistics based on wavelet transforma-
tion. However, their features rarely unveil the property of
each seam. Sarkar et al. [20], who consider seam carving
as the change of inter-pixel correlation, adopt Shi-324 fea-
tures. These features are also hard to measure the property
of each seam. This is the reason why the performance of
the proposed method is better than the others. The results
also support that the proposed method is appropriate to de-
tect the seam carving procedure unless the carved region is
too small.

6.2 Seam Insertion Detection Results

The performance of the proposed method against seam in-
sertion process was tested in this section. We not only es-
timated the inserted location of seams in a given image but
also decided whether the image was forged or not. For this
purpose, we computed a candidate map PRGB for each im-



RYU et al.: DETECTING TRACE OF SEAM CARVING FOR FORENSIC ANALYSIS
1309

Table 5 Seam carving detection results, represented by accuracy, false positive rate (FPR), and false
negative rate (FNR) values, by three feature vectors; Breakdown by feature vector and the amount of
seam carving.

Accuracy [%] False Positive Rate (FPR) [%] False Negative Rate (FNR) [%]

Reduction Energy Seam Noise All Energy Seam Noise All Energy Seam Noise All

10% 52.69 68.36 53.44 71.60 47.98 24.96 31.54 19.43 46.64 38.27 61.58 37.37
20% 57.10 76.31 58.07 79.67 42.15 15.25 31.24 14.05 43.65 32.14 52.62 26.61
30% 62.18 82.66 62.10 85.95 31.99 11.36 31.24 10.61 43.65 23.32 44.54 17.49
40% 66.29 87.07 66.07 90.73 25.86 10.16 27.95 7.47 41.55 15.70 39.91 11.06
50% 71.15 90.88 69.81 93.57 22.12 8.37 23.47 4.78 35.58 9.87 36.92 8.07

mix (10% – 50%) 63.78 86.33 65.05 88.95 32.88 9.12 39.46 5.83 39.55 18.21 30.45 16.27

Table 6 Seam carving detection results, represented by accuracy, false positive rate (FPR), and false
negative rate (FNR) values, by three seam carving detectors; Breakdown by detector and the amount of
seam carving.

Accuracy [%] False Positive Rate (FPR) [%] False Negative Rate (FNR) [%]

Reduction Proposed Sarkar et. al. Fillion and
Sharma

Proposed Sarkar et. al. Fillion and
Sharma

Proposed Sarkar et. al. Fillion and
Sharma

10% 71.60 59.27 59.94 19.43 41.85 37.07 37.37 39.61 43.05
20% 79.67 66.07 63.75 14.05 36.77 35.87 26.61 31.09 36.62
30% 85.95 73.24 67.64 10.61 27.35 33.63 17.49 26.16 31.09
40% 90.73 79.97 69.96 7.47 21.82 31.99 11.06 18.24 28.10
50% 93.57 84.23 71.90 4.78 17.04 29.90 8.07 14.50 26.31

mix (10% – 50%) 88.95 71.63 61.11 5.83 11.96 17.04 16.27 44.78 60.75

(a) (b) (c)

Fig. 4 Detection results of seam insertion with 1,338 UCID image set: (a) a ROC curve from original
images and 1% seam inserted images, (b) a ROC curve from 1,338 original images and 1,340 images’
set constructed with 268 randomly chosen images from 10% to 50% seam insertion, respectively, and
(c) ROC curves by different amount of inserted seams.

age in the experimental set. Specifically, 8,028 maps to esti-
mate the location of seam insertion were generated. As de-
picted in Fig. 3, we could notice that the proposed method
is appropriate to localize the manipulated region. By us-
ing these maps, we further computed the recurrence rela-
tion L in Eq. (13), and then drew several ROC curves by t in
Eq. (14). Figure 4 reports the corresponding ROC curves.
Even if seams were rarely inserted (about 1%), the pro-
posed method was able to detect the trace of the insertion
as shown in Fig. 4 (a). Figure 4 (b) shows the overall ca-
pability of detecting inserted seams from 10% to 50%. At
the same time, Fig. 4 (c) exhibits the detailed performance
of the proposed method with the different extent of the in-
serted seams. These experimental results support that the
proposed method is enough to decide whether a given im-

age is forged or not with low false positive error. Table 8
summarizes the performance of the proposed method by a
different weighting factor t. From this table, we decided t as
0.95 which satisfied both high accuracy and low false pos-
itive rate (FPR) error. With the selected weighting factor
t, we compared the proposed method with other detectors.
Table 7 depicts the detection accuracy of seam insertion by
three different detectors. The proposed method generally
yielded best performance except for insertion of 40% and
50%. Even though Sarkar et. al.’s detector gave slight better
performance with highly enlarged images, the overall per-
formance of the proposed method outperformed prior arts.
It is also worth noting that all but proposed method failed
to reliably detect small amount of seam insertion (1%) as
reported in Table 7.
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Table 7 Seam insertion detection results, represented by accuracy, false positive rate (FPR), and false
negative rate (FNR) values, by three seam insertion detectors; Breakdown by detector and the amount
of seam insertion.

Accuracy [%] False Positive Rate (FPR) [%] False Negative Rate (FNR) [%]

Insertion Proposed Sarkar et. al. Fillion and
Sharma

Proposed Sarkar et. al. Fillion and
Sharma

Proposed Sarkar et. al. Fillion and
Sharma

1% 97.76 55.98 56.73 4.48 47.09 39.91 0.00 40.96 46.64
10% 97.76 89.24 61.51 4.48 10.31 48.73 0.00 11.21 28.25
20% 97.76 95.96 66.89 4.48 4.19 41.70 0.00 3.89 24.51
30% 97.76 97.31 74.36 4.48 1.94 32.14 0.00 3.44 19.13
40% 97.65 98.36 78.70 4.48 1.35 25.86 0.22 1.94 16.74
50% 97.13 98.43 82.88 4.48 1.05 20.18 1.27 2.09 14.05

mix (10% – 50%) 97.61 90.89 66.18 4.48 2.39 19.43 0.30 15.82 48.21

Table 8 Detection results of seam insertion by different weighting factor
t from 0.8 to 1. The amount of inserted seams are varied from 1% to 50%.
‘mix’ refers to mixed set of 1340 images, which is constructed with 268
randomly chosen images from 10% to 50% seam insertion. False Positive
Rate (FPR) of unmanipulated images is also represented.

t FPR 1% 10% 20% 30% 40% 50% mix
1 1.72 92.90 91.85 87.07 81.02 77.28 73.32 82.11

0.99 2.69 99.03 99.33 97.49 94.32 91.55 87.52 94.04
0.95 4.48 100 100 100 100 99.78 98.73 99.70
0.9 5.98 100 100 100 100 100 99.93 99.99
0.85 8.30 100 100 100 100 100 100 100
0.8 11.14 100 100 100 100 100 100 100

7. Conclusion

The passive-blind forensic examination of visually convinc-
ing image manipulations faces a complex interplay of a va-
riety of different processing steps. The empirical nature of
digital images as well as their high dimensionality makes
this problem analytically intractable in practice. This calls
for the analysis of smaller sub-problems, where viable im-
age models may at least exist [24]. In this paper, we have
focused on the detection of content-aware image resizing by
the seam carving process. To detect the trace of seam carv-
ing, we extracted the feature vector that measures the energy
bias of a suspicious image. Afterwards, a pre-trained SVM
classifier automatically determined whether the given image
was manipulated. In case of seam insertion, we analyzed the
relation among neighboring pixels, and then localized in-
serted seams. Experimental results based on the large set of
images confirm the superior performance and the robustness
of the presented approach under a variety of settings. As to
the limitations, we note that most detectors are inherently
incapable of localizing reduced regions by the seam carving
process. The robustness against intentional distortions, such
as compression, additive white Gaussian noise, or blurring
will be considered as well.

Acknowledgments

This work was partially supported by Defense Acquisition
Program Administration and Agency for Defense Develop-
ment under the contract (UD060048AD).

References

[1] H. Farid, “Photo tampering throughout history,” 2011.
[2] T.T. Ng, S.F. Chang, C.Y. Lin, and Q. Sun, “Passive-blind image

forensics,” Multimedia Security Technologies for Digital Rights,
ed. W. Zeng, H. Yu, and C.Y. Lin, ch. 15, Academic Press, 2006.

[3] H.T. Sencar and N. Memon, eds., Digital Image Forensics: There is
More to a Picture than Meets the Eye, Springer, 2013.

[4] A.C. Gallagher, “Detection of linear and cubic interpolation in jpeg
compressed images,” Proc. 2nd Canadian conference on Computer
and Robot Vision, Washington, DC, USA, pp.65–72, 2005.

[5] B. Mahdian and S. Saic, “Blind authentication using periodic prop-
erties of interpolation,” IEEE Trans. Information Forensics and Se-
curity, vol.3, no.3, pp.529–538, Sept. 2008.

[6] A.C. Popescu and H. Farid, “Exposing digital forgeries by detecting
traces of re-sampling,” IEEE Trans. Signal Process., vol.53, no.2,
pp.758–767, 2005.

[7] M. Kirchner, “Fast and reliable resampling detection by spectral
analysis of fixed linear predictor residue,” Proc. 10th ACM work-
shop on Multimedia and security, MM&Sec ’08, pp.11–20, New
York, NY, USA, 2008.

[8] M. Kirchner, “Linear row and column predictors for the analysis of
resized images,” MM&Sec’10, Proc. 2010 ACM SIGMM Multime-
dia & Security Workshop, pp.13–18, 2010.

[9] X. Feng, I.J. Cox, and G. Doerr, “An energy-based method for the
forensic detection of re-sampled images,” Proc. 2011 IEEE Interna-
tional Conference on Multimedia and Expo, ICME ’11, Washington,
DC, USA, pp.1–6, 2011.

[10] S. Pfennig and M. Kirchner, “Spectral methods to determine the ex-
act scaling factor of resampled digital images,” Communications
Control and Signal Processing (ISCCSP), 2012 5th International
Symposium on, pp.1–6, May 2012.

[11] X. Pan and S. Lyu, “Region duplication detection using image fea-
ture matching,” IEEE Trans. Information Forensics and Security,
vol.5, no.4, pp.857–867, 2010.

[12] S.J. Ryu, M.J. Lee, and H.K. Lee, “Detection of copy-rotate-move
forgery using Zernike moments,” Information Hiding, ed. R. Böhme,
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