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PAPER

Quality Analysis of Discretization Methods for Estimation of
Distribution Algorithms

Chao-Hong CHEN†a), Nonmember and Ying-ping CHEN†b), Member

SUMMARY Estimation of distribution algorithms (EDAs), since they
were introduced, have been successfully used to solve discrete optimization
problems and hence proven to be an effective methodology for discrete op-
timization. To enhance the applicability of EDAs, researchers started to in-
tegrate EDAs with discretization methods such that the EDAs designed for
discrete variables can be made capable of solving continuous optimization
problems. In order to further our understandings of the collaboration be-
tween EDAs and discretization methods, in this paper, we propose a quality
measure of discretization methods for EDAs. We then utilize the proposed
quality measure to analyze three discretization methods: fixed-width his-
togram (FWH), fixed-height histogram (FHH), and greedy random split
(GRS). Analytical measurements are obtained for FHH and FWH, and
sampling measurements are conducted for FHH, FWH, and GRS. Further-
more, we integrate Bayesian optimization algorithm (BOA), a represen-
tative EDA, with the three discretization methods to conduct experiments
and to observe the performance difference. A good agreement is reached
between the discretization quality measurements and the numerical opti-
mization results. The empirical results show that the proposed quality mea-
sure can be considered as an indicator of the suitability for a discretization
method to work with EDAs.
key words: quality analysis, discretization distortion, fixed-width his-
togram, fixed-height histogram, greedy random split, estimation of distri-
bution algorithm, Bayesian optimization algorithm

1. Introduction

Genetic algorithms (GAs) [11], [15] are methodologies in-
spired by Darwinian evolution and widely applied to real-
world problems. In genetic algorithms, good individuals
are selected from the current population to generate the next
population by using recombination and mutation operators,
mimicking the biological genetic operations. According to
the theory of design decomposition [12], the key compo-
nents to the GA success include identifying, reproducing,
and exchanging the structure of the solutions. Recombina-
tion, one of the main GA operator, mixes the promising sub-
solutions, called building blocks (BBs), and creates the solu-
tions. Because the recombination operator mixes promising
sub-solutions and creates new solutions, genetic algorithms
work well on the problems which can be implicitly or ex-
plicitly decomposed into sub-problems.

In order to appropriately mix genes, the evolutionary
algorithms based on utilizing probabilistic models were pro-
posed and developed [19], [26]. In these schemes, instead of
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using regular recombination and mutation operators, the off-
spring population is created according to the estimated prob-
abilistic model of the selected individuals of the current pop-
ulation. The probabilistic model is expected to reflect the
problem structure, and better performance can be achieved
via exploring the relationship between genes. These evolu-
tionary algorithms are called estimation of distribution algo-
rithms (EDAs). In EDAs, decision variables are often coded
with discrete codes, such as binary codes. To enhance the
applicability of EDAs over continuous domains, direct at-
tempts to modify the type of decision variables have been
made, including continuous population-based incremental
learning with Gaussian distribution [31], real-coded variant
of population-based incremental learning with interval up-
dating [32], Bayesian evolutionary algorithms for continu-
ous function optimization [33], real-coded extended com-
pact genetic algorithm based on mixtures of models [18],
and the real-coded Bayesian optimization algorithm [1].

Instead of modifying the infrastructure of the algo-
rithm, such as the type of decision variables or the global
program flow, as a more general, component-wise ap-
proach, discretization methods are employed to cooperate
with EDAs [6], [7], [28], [35]. Discretization methods en-
able EDAs designed for discrete variables to solve contin-
uous optimization problems without the need of altering al-
gorithmic structures. For further information about these
two approaches which enable EDAs to handle continuous
variables, the reader may refer to [4], [5], [16]. In order
to further our understandings of the collaboration between
EDAs and discretization methods, as the first step, we wish
to quantify the discretization quality and identify the suit-
ability of discretization methods to work with EDAs. Partic-
ularly, in this paper, we firstly propose a quality measure of
discretization methods and then utilize the proposed qual-
ity measure to analyze three discretization methods, fixed-
width histogram (FWH), fixed-height histogram (FHH), and
greedy random split (GRS). To observe the performance dif-
ference of these discretization methods in action, we in-
tegrate Bayesian optimization algorithm (BOA) [27] with
the three methods to conduct numerical experiments. A
good agreement between the measurements of discretiza-
tion quality and the numerical results on test functions is
obtained. Such an outcome indicates that the proposed qual-
ity measure indeed reflects the suitability for a discretization
method to work with EDAs.

In the next section, we give a background of this study,
including the introduction of EDAs and the three aforemen-
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tioned discretization methods. Section 3 proposes the qual-
ity measure of discretization methods and analyzes the three
methods by using the proposed measure. The numerical ex-
periments of the three methods integrated with BOA on test
functions are presented and discussed in Sect. 4, followed
by the summary and conclusions in Sect. 5.

2. Background

In this section, we will give an overview of estimation of
distribution algorithms. Then, three discretization methods,
fixed-width histogram, fixed-height histogram, and greedy
random split, are described.

2.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) [19], [20],
[23], [26] solve problems by building probabilistic mod-
els on promising solutions and generating offspring of the
next generation from the model. EDAs replace the regu-
lar genetic operators, such as crossover and mutation, with
the construction and sampling of probabilistic models. In
EDAs, at each generation, the selection operator selects
good individuals from the current population, and a prob-
abilistic model is constructed based on these selected indi-
viduals. Then, a new population is generated by sampling
the built model. An EDA scheme can be algorithmically
outlined as

1. Initialize a population randomly.
2. Apply the selection operator on the population.
3. Build a probabilistic model from the selected individu-

als.
4. Generate a new population by sampling the model.
5. Stop if the termination criterion is satisfied.
6. Return to step 2.

According to [26], EDAs can be broadly catego-
rized into three types. (1) No interaction: Each vari-
able is modeled independently. These algorithms include
the population-based incremental learning (PBIL) [2], the
compact genetic algorithm (cGA) [14], and the univari-
ate marginal distribution algorithm [23]. (2) Pairwise in-
teraction: For these algorithms, pairwise interactions be-
tween variables are assumed, such as mutual-information-
maximizing input clustering (MIMIC) [9], Baluja’s depen-
dency tree approach [3], and the bivariate marginal dis-
tribution algorithm (BMDA) [29]. (3) Multivariate in-
teraction: These algorithms adopt models that can ex-
plore multivariate interactions, such as the extended com-
pact genetic algorithm (ECGA) [13], the Bayesian opti-
mization algorithm (BOA) [25], the estimation of Bayesian
network algorithm (EBNA) [10], the factorized distribu-
tion algorithm (FDA) [22], the learning version of FDA
(LFDA) [21] and the incremental Bayesian optimization
algorithm (iBOA) [30]. With learning the dependencies
among variables, the algorithms in this category can achieve
better performance in certain sets of problems.

2.2 Discretization Methods

Discretization methods can be utilized to transform opti-
mization problems from the continuous domain into the dis-
crete domain and to provide an interface between problems
and solvers in different domains. After being discretized,
solution individuals in the continuous domain are encoded
with certain discrete codes, such as binary strings or inte-
ger vectors. Then, EDAs originally designed for handling
discrete decision variables can optimize transformed con-
tinuous problems. In this study, we consider only the dis-
cretization methods which divide the search space into in-
tervals. The probability of search points in each interval are
assumed to be uniformly distributed. A scheme to integrate
discretization into EDAs can be outlined as

1. Initialize a population randomly.
2. Conduct discretization to encode the population.
3. Apply the selection operator on the population.
4. Build a probabilistic model from the selected individu-

als.
5. Generate a new population by sampling the model.
6. Sample the coded intervals to create the continuous

offspring.
7. Stop if the termination criterion is satisfied.
8. Return to step 2.

In the remainder of this section, we will introduce two
elementary discretization methods, fixed-width histogram
(FWH) and fixed-height histogram (FHH) [17], [35], and a
simple randomized discretization method, greedy random
split (GRS).

2.2.1 Fixed-Width Histogram

In fixed-width histogram, each dimension is divided into
several equal-width intervals, which are usually called bins.
Each bin is assigned a discrete code or an integer. Each real-
valued individual is coded with the code or integer assigned
to the bin. If the search space for a dimension is [L,U), a
k-bin FWH will divide this interval into k bins with equal-
width, (U − L)/k, and the range of the ith bin is[

L +
(i − 1)(U − L)

k
, L +

i(U − L)
k

)
,

for i = 1, . . . , k. Figure 1 shows three different variables
discretized by a 5-bin FWH. The fixed width of each bin is
40.

2.2.2 Fixed-Height Histogram

Fixed-height histogram is similar to FWH, but instead of
fixing the bin size, the “height” of each bin is fixed, i.e.,
each bin contains the same number of search points. If the
points are concentrated in some regions, there will be more
bins in these regions to equalize the number of search points.
Figure 2 shows three different variables discretized by a 5-
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Fig. 3 Pseudo code for greedy random split.

(a) Population #1: 5-bin FWH.

(b) Population #2: 5-bin FWH.

(c) Population #3: 5-bin FWH.

Fig. 1 Three variables discretized by a 5-bin FWH.

(a) Population #1: 5-bin FHH.

(b) Population #2: 5-bin FHH.

(c) Population #3: 5-bin FHH.

Fig. 2 Three variables discretized by a 5-bin FHH.

bin FHH. The fixed height of each bin is 2.

2.2.3 Greedy Random Split

Greedy random split (GRS) is a simple randomized dis-
cretization method, of which the main idea is to always ran-
domly split the interval which contains most samples. To
implement GRS, we use a heap [8] to store intervals and us-
ing the number of individual which is in that interval as key.
Thus, we can obtain the interval which contains most sam-
ples quickly and then split that interval into two at random.
We continue the split step until the demanded number of in-

tervals is reached. The pseudo code of GRS is shown in
Fig. 3.

3. Quality of Discretization Methods

In this section, we propose a quality measure of discretiza-
tion methods and use the proposed measure to analyze the
quality of fixed-width histogram, fixed-height histogram,
and greedy random split. To the best of our limited knowl-
edge, there is no other similar measure for quantitatively
evaluating the quality of discretization methods working
with EDAs. Hence, this study can be considered as a start
of this line of research, which is definitely worth pursuing.

3.1 Quantitative Evaluation

Because EDAs build probabilistic models based on the se-
lected individuals and discretization methods transform con-
tinuous individuals into discrete ones, if a discretization
method introduces a lot of distortion into the original pop-
ulation, the probabilistic model built on such a distorted
population must be inappropriate for the purpose of model
building, and the performance of the whole integrated op-
timization framework should be greatly reduced. Accord-
ing to this point of view, we propose the use of distor-
tion distance between the original population and the dis-
cretized population to quantitatively evaluate the quality of
discretization methods. The distortion distance is formu-
lated as∫ U

L
|p(x) − p∗(x)| dx , (1)

where L and U are the lower bound and the upper bound
of a search interval, p∗(x) is the probability density function
of the original population distribution, and p(x) is the prob-
ability density function of the population distribution dis-
cretized by the discretization method to be evaluated. The
range of distortion distance calculated with Eq. (1) is inter-
val [0, 2]. Distortion distance 0 means the two population
distributions are identical, and distortion distance 2 means
the two population distributions are disjoint.

We use the defined distortion distance to measure the
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distortion caused by discretization. Smaller distortion dis-
tance means less distortion is introduced to the population.
Thus, the resultant (discrete) population should be more
similar to the original (continuous) one. According to the
scheme of integrating discretization methods into EDAs, if
the input for an EDA, i.e., the discrete population, is similar
to the original, continuous one, the EDA should be able to
accomplish its task. Otherwise, the employed EDA might
not be able to handle the problem due to the distortion intro-
duced by discretization. Hence, Eq. (1) is utilized to quanti-
tatively measure the quality of discretization methods.

3.2 Quality Analysis of Fixed-Width Histogram

With the proposed quality measure, we firstly analyze the
discretization quality of fixed-width histogram in this sec-
tion. We will analytically derive the quality of FWH and
confirm the derived quality measurement with numerical ex-
periments. Let N(0, σ2) be Gaussian distribution with vari-
ance σ2, ϕ0,σ2 (x) be the probability density function, and
Φ0,σ2 (x) be the cumulative distribution function. For sim-
plicity, we normalize N(0, σ2) into interval [−10.0, 10.0) to
obtain a new distribution N′(0, σ2). The new probability
density function is

ϕ′0,σ2 (x) =
ϕ0,σ2 (x)

Φ0,σ2 (10.0) − Φ0,σ2 (−10.0)
,

and the new cumulative distribution function is

Φ′0,σ2 (x) =
Φ0,σ2 (x)

Φ0,σ2 (10.0) − Φ0,σ2 (−10.0)
.

We will use the distribution N′(0, σ2) to model the
original, continuous population distribution and examine the
quality of discretization methods. The different values of the
standard deviation σ, as shown in Fig. 4, are used to model
the level of population convergence. Large values of σ are
considered as the initial population distribution, in which the
individuals are uniformly generated, and small values of σ
are considered as the distribution of the population which
converges, in which almost all the individuals are close to
each other.

Fig. 4 The probability density function ϕ′
0,σ2 (x) with σ = 10, 5, and 1.

3.2.1 Analytical Quality Measurement

Firstly, we begin with obtaining the analytical distortion dis-
tance of FWH with bin size K, which is assumed to be
even without loss of generality, when a population modeled
with N′(0, σ2) is discretized by FWH. After discretization,
the population distribution created by FWH has K inter-
vals, I1, I2, · · · , IK . The interval corresponds to the ith bin
is Ii = [li, ui), where

li = −10.0 +
20.0 × (i − 1)

K
,

and

ui = −10.0 +
20.0 × i

K
.

Since the probability is uniform within each interval, the
density of the ith bin is di, where

di =
Φ′

0,σ2 (ui) − Φ′0,σ2 (li)

ui − li

=
Φ′

0,σ2 (ui) − Φ′0,σ2 (li)
20.0

K

=
K(Φ′

0,σ2 (ui) − Φ′0,σ2 (li))

20.0
.

Because N′(0, σ2) is symmetric and K is even, we know
that in each interval ϕ′

0,σ2 (x) is monotonically increasing (or
decreasing if i > K/2.) Hence, the distortion distance can
be obtained as

K∑
i=1

(∣∣∣∣(mi − li)di − (Φ′0,σ2 (mi) − Φ′0,σ2 (li))
∣∣∣∣

+
∣∣∣∣(ui − mi)di − (Φ′0,σ2 (hi) − Φ′0,σ2 (mi))

∣∣∣∣) , (2)

where mi = ϕ
′−1
0,σ2 (di). Since there are two solutions of

ϕ′−1
0,σ2 (di), we always take the one in [li, ui).

The distortion distance of FWH with 8, 16, and 32 bins
are shown in Fig. 5. The x-axis represents the standard de-

Fig. 5 The distortion distance of FWH obtained analytically. The x-axis
is the value of standard deviation, and the y-axis is the distortion distance.
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viation varied from 10.0 to 0.1 to model the level of popu-
lation convergence. From Fig. 5, we can observe that large
bin sizes lead to small distortion distances, i.e., less distor-
tion. Such a result agrees with our intuition. When the dis-
tribution is almost uniform, the resultant population distri-
bution created by FWH has a very small distortion distance
from the original population distribution. However, when
the population converges, i.e., σ → 0, the distortion dis-
tance of FWH becomes very large.

3.2.2 Empirical Quality Measurement

After deriving the analytical quality measurement of FWH,
we use a series of numerical experiments to calculate the
empirical quality measurements. The goal to obtain both the
analytical and empirical quality measurements is two-fold:
(1) We would like to confirm the results with approaches of
totally different natures, because sometimes analytical re-
sults might not be computationally obtained. In order to
ensure that the analytical quality measurement derived in
this study can be practically realized, numerical sampling
procedures should be employed to check if similar quality
measurements can be calculated. (2) For advanced, com-
plicated discretization methods, analytical quality measure-
ments might not be easy to derive. In such cases, numer-
ical sampling procedures can always be employed to cal-
culate empirical quality measurements. After being con-
firmed in the cases of elementary discretization methods, the
proposed quality measure may therefore be empirically ob-
tained for advanced, complicated discretization methods.

Figure 6 shows the empirical quality measurements and
compares the empirical results to the analytical results. In
the series of experiments, different numbers of samples are
generated from the distribution N′(0, σ2), which models the
population distribution, and taken as the input population
of FWH. Numerical sampling procedures are used to calcu-
late the distortion distance between N′(0, σ2) and the dis-
tribution of the resultant population created by FWH. We
examine the situations involving 1000, 10000, and 100000
samples with bin sizes 8, 16, and 32. The standard deviation
is varied from 10.0 to 0.1 with a step of 0.1. For each ex-
perimental setting, we perform 50 independently runs and
record the mean of calculated distortion distances. As we
can observe in Figs. 6 (a) (8 bins), 6 (b) (16 bins), and 6 (c)
(32 bins), if the number of samples is sufficiently large, the
empirical and analytical results are in a very good agree-
ment.

3.3 Quality Analysis of Fixed-Height Histogram

In this section, the discretization quality of fixed-height his-
togram is analytically derived and empirically obtained as
FWH was in the previous section.

3.3.1 Analytical Quality Measurement

Firstly, we will derive an equation of distortion distance of

(a) 8 bins

(b) 16 bins

(c) 32 bins

Fig. 6 The empirical quality measurements obtained with 1000, 10000,
and 100000 samples and the analytical quality measurement of FWH.

FHH with bin size K, which is assumed to be even without
loss of generality. After discretization, the population dis-
tribution created by FHH has K intervals I1, I2, · · · , IK . The
interval that corresponds to the ith bin is Ii = [li, ui), where

li = Φ
′−1
0,σ2

(
i − 1

K

)
, ui = Φ

′−1
0,σ2

( i
K

)
.

Since the probability is uniform within each interval, the
density of the ith bin is di, where

di =
Φ′

0,σ2 (ui) − Φ′0,σ2 (li)

ui − li
=

i
K − i−1

K

ui − li
=

1
K(ui − li)

.

Because N′(0, σ2) is symmetric and K is even, in each in-
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Fig. 7 The distortion distance of FHH obtained analytically. The x-axis
is the value of standard deviation, and the y-axis is the distortion distance.

terval ϕ′
0,σ2 (x) is monotonically increasing (or decreasing if

i > K/2). Hence, the distortion distance can be computed as

K∑
i=1

(∣∣∣∣(mi − li)di − (Φ′0,σ2 (mi) − Φ′0,σ2 (li))
∣∣∣∣

+
∣∣∣∣(ui − mi)di − (Φ′0,σ2 (hi) − Φ′0,σ2 (mi))

∣∣∣∣) , (3)

where mi = ϕ
′−1
0,σ2 (di), and we also take mi as the one in

[li, ui).
The distortion distance of FHH with bin size 8, 16,

and 32 are shown in Fig. 7. The x-axis represents the stan-
dard deviation, modeling the level of population conver-
gence, from 10 to 0.1. Similar to the analytical result derived
for FWH, large bin sizes lead to small distortion distances.
However, unlike the result for FWH, when the standard de-
viation goes close to zero (i.e., the population converges),
the distortion distance of FHH grows relatively slowly.

3.3.2 Empirical Quality Measurement

Empirical quality measurements are also obtained for FHH
to confirm the consistence of the analytical and sampling
approaches. As described in Sect. 3.2.2, the standard devia-
tion is varied from 10.0 to 0.1, and the number of samples
are 1000, 10000, and 100000. For each experimental set-
ting, 50 independent runs are performed, and the mean of
calculated distortion distances is recorded. The results are
shown in Figs. 8 (a) (8 bins), 8 (b) (16 bins), and 8 (c) (32
bins), respectively. If the number of samples is sufficiently
large, the empirical and analytical results are also in a very
good agreement as we observed on FWH.

3.4 Quality Analysis of Greedy Random Split

After evaluating the discretization quality of FWH and
FHH, we will analyze the discretization quality of greedy
random split. The original population distribution is still
modeled with N′(0, σ2) which is defined and described in
Sect. 3.2. Because of the complexity of deriving the analyt-
ical quality measurement for GRS and the confirmed con-

(a) 8 bins

(b) 16 bins

(c) 32 bins

Fig. 8 The empirical quality measurements obtained with 1000, 10000,
and 100000 samples and the analytical quality measurement of FHH.

sistence of the analytical and empirical results, we only ob-
tain the empirical quality measurements with similar experi-
ments used in Sects. 3.2.2 and 3.3.2. The standard deviation
is varied from 10 to 0.1, the number of samples are 1000,
10000, and 100000, and each experiment is repeated inde-
pendently for 50 runs. The empirical quality measures for
8, 16, and 32 bins are shown in Fig. 9.

3.5 Discretization Quality Comparison: FWH, FHH, and
GRS

According to the quality measurements obtained in previous
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(a) 8 bins

(b) 16 bins

(c) 32 bins

Fig. 9 The empirical quality measurements obtained with 1000, 10000,
and 100000 samples of GRS.

sections, we compare the discretization quality of the three
discretization methods: FWH, FHH, and GRS. For simplic-
ity and easiness to observe, we adopt the analytical quality
measurements for FWH and FHH and the empirical quality
measurements obtained with 100000 samples for GRS. The
quality comparison is shown in Fig. 10. More specifically,
Figs. 10 (a), 10 (b), and 10 (c) show the distortion distance
of FWH, FHH, and GRS with bin sizes 8, 16, and 32, re-
spectively.

In Fig. 10, we can observe that when the standard devi-
ation is large, the distortion distance of FWH is the smallest
for the three tested bin sizes, but when the standard devi-

(a) 8 bins

(b) 16 bins

(c) 32 bins

Fig. 10 The discretization quality comparison of FWH, FHH, and GRS.

ation decreases (i.e., the population converges,) the distor-
tion distance of FWH becomes the largest in the three meth-
ods. For small bin sizes, FHH has the smallest distortion
when the standard deviation is small, and when the bin size
increased GRS became better than FHH. This comparison
suggests that for 8 bins FHH provides the best quality, for
16 bins GRS is slightly better than FHH, and for 32 bins
GRS provides the best quality. We will take one step fur-
ther to examine the three methods working with two differ-
ent EDAs on benchmark functions in Sect. 4 to reveal the
relationship between the proposed quality measure, i.e., the
distortion distance, and the performance of EDAs integrated
with these discretization methods.
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4. Working with EDAs

In this section, we respectively integrate the three investi-
gated discretization methods, FWH, FHH, and GRS with
BOA, a representative EDA. We will conduct numerical
experiments on test functions to check if the performance
benchmarks match the quality measurements. The influence
of the adopted discretization methods and the relationship
between the proposed quality measure and the performance
of different integrations will also be discussed.

4.1 BOA Integrated with Discretization

Bayesian optimization algorithm (BOA) is proposed by
[25]. In BOA, a Bayesian network is built from the selected
individuals and used to generate offspring. In this study, we
use BOA with decision graphs [24], [27]. For more details
on BOA, please refer to [25], [27]. BOA can be algorithmi-
cally outlined as

1. t ← 0, randomly generate initial population P(0)
2. Select a set of promising individuals S (t) from P(t)
3. Construct network B with a chosen metric and con-

straints
4. Generate a set of new individuals O(t) according to the

joint distribution encoded by B
5. Create a new population P(t + 1) by replacing some

individuals from P(t) with O(t), t ← t + 1
6. If the termination criterion is not met, go to step 2

After integrated with discretization, the flow becomes

1. t ← 0, randomly generate initial population P(0)
2. Conduct discretization to encode each variable of

the population.
3. Select a set of promising individuals S (t) from P(t)
4. Construct network B with a chosen metric and con-

straints
5. Generate a set of new individuals O(t) according to the

joint distribution encoded by B
6. Sample the coded intervals to generate the real-

valued individuals in O(t).
7. Create a new population P(t + 1) by replacing some

individuals from P(t) with O(t), t ← t + 1
8. If the termination criterion is not met, go to step 2

4.2 Numerical Experiments

We adopt the CEC 2005 benchmark functions [34] to ob-
serve the performance difference of BOA integrated with
the three discretization methods. The benchmark suite is de-
scribed briefly in Appendix. For more details, please refer
to the original document [34]. The number of dimensions
of the benchmark functions is set to 10 to examine FWH,
FHH, and GRS with bin sizes 8, 16, and 32, i.e., the dis-
cretized problems are 30, 40, and 50 bits.

The parameters of BOA are given in the following.

Population size = 400, offspring percentage = 50, tourna-
ment size = 8, maximum function evaluations = 30000, and
30 independent runs for each function. The results of BOA
are given in Table 1 for each bin size.

In the table, the results of the discretization method that
achieves the best performance in each benchmark function
are bold-faced, and t-tests are conducted on these results.
The results of the other two discretization methods are tested
against the best one and are marked by × if outperformed by
the best one with a confidence level at least 95%.

4.3 Discussion

According to the experimental results presented in Table 1.
BOA with FHH has the best performance when 8 bins are
used to encode each variable (outperforming the other two
methods on 13 out of 25 functions.) When the bin size in-
creases, the performance of BOA with GRS becomes better
compared to the other two methods (outperforming the other
two methods on 16 out of 25 functions with 16 bins and on
18 out of 25 functions with 32 bins.)

From Fig. 10 and the discussion in Sect. 3.5, we know
that FHH provides the best discretization quality when 8
bins are used. When bin size increases, GRS provides bet-
ter discretization quality compared to the other two meth-
ods. The numerical results of BOA well agree with our
discretization quality measure. Given the observed results,
we may conclude that there exists a connection between
the quality of discretization methods and the performance
of EDAs integrated with discretization as well as that the
proposed quality measure can reveal such a property and
quantitatively assess the discretization methods.

5. Summary and Conclusions

In this paper, we proposed a quality measure of discretiza-
tion methods. Then, we utilized the proposed quality mea-
sure to analyze fixed-width histogram (FWH), fixed-height
histogram (FHH), and greedy random split (GRS). Analyt-
ical measurements were derived for FWH and FHH, and
empirical measurements were obtained for FWH, FHH, and
GRS. We compared the three methods with three settings (8,
16, and 32 bins).

In order to study the connection between the quality
measure and the performance of EDAs integrated with dis-
cretization, we integrated BOA with FWH, FHH, and GRS,
respectively, to conduct numerical experiments on test func-
tions. A good agreement between the discretization quality
measurements and the numerical optimization results was
obtained. As a consequence, this study suggests that there
exists a connection between the quality of discretization
and the performance of EDAs integrated with discretiza-
tion as well as that the proposed quality measure provides
a quantitative assessment on the suitability for a discretiza-
tion method to work with EDAs.

The future work along this line includes the use of
the proposed quality measure to analyze more discretiza-
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Table 1 The numerical results of BOA integrated with FWH, FHH, and GRS (8 bins, 16 bins, and 32 bins).

FWH FHH GRS
8 bins mean var. mean var. mean var.

F1 4.140e+01× 4.892e+04 −4.458e+02 4.596e+01 −4.362e+02× 1.910e+01
F2 1.485e+03× 9.210e+05 −2.422e+02× 1.543e+04 −4.183e+02 1.305e+02
F3 2.725e+06× 3.489e+12 2.736e+06× 4.570e+12 1.166e+06 3.287e+11
F4 1.865e+03× 1.147e+06 −1.218e+02× 3.208e+04 −4.104e+02 1.798e+02
F5 2.947e+03× 9.372e+05 1.703e+02× 1.090e+05 −1.686e+02 4.880e+02
F6 4.128e+06× 2.390e+13 4.602e+03 2.143e+07 7.852e+03× 1.454e+07
F7 1.289e+03× 8.658e+03 1.087e+03 4.984e−03 1.089e+03× 1.177e−01
F8 −1.196e+02 1.007e−02 −1.196e+02 9.066e−03 −1.196e+02 6.391e−03
F9 −3.040e+02× 1.950e+01 −3.252e+02 2.201e+00 −3.170e+02× 5.651e+00
F10 −2.987e+02× 2.529e+01 −3.190e+02 3.191e+01 −2.993e+02× 3.682e+01
F11 9.699e+01× 7.193e−01 9.488e+01 9.979e−01 9.498e+01 2.452e+00
F12 4.486e+03× 1.267e+07 1.704e+03× 1.727e+06 4.667e+02 6.729e+05
F13 −1.191e+02× 5.076e+01 −1.289e+02 2.119e−01 −1.265e+02× 3.273e−01
F14 −2.967e+02 4.775e−02 −2.968e+02 7.395e−02 −2.965e+02× 8.050e−02
F15 5.964e+02 1.626e+04 5.669e+02 6.629e+03 5.734e+02 1.097e+04
F16 2.955e+02× 1.758e+02 2.354e+02 1.012e+02 2.857e+02× 1.474e+02
F17 3.167e+02× 1.511e+02 2.548e+02 3.633e+02 3.078e+02× 1.581e+02
F18 9.843e+02× 4.197e+03 8.653e+02× 9.932e+03 5.707e+02 5.147e+04
F19 9.705e+02× 3.764e+03 8.559e+02× 1.261e+04 5.870e+02 5.180e+04
F20 9.591e+02× 3.809e+03 8.944e+02× 7.990e+03 6.176e+02 5.929e+04
F21 1.430e+03× 2.030e+04 1.295e+03× 7.666e+04 1.168e+03 6.297e+04
F22 1.223e+03× 1.778e+03 1.170e+03 1.596e+03 1.158e+03 7.604e+02
F23 1.460e+03× 1.746e+04 1.274e+03× 9.992e+04 1.150e+03 5.733e+04
F24 1.007e+03× 4.140e+04 5.124e+02× 1.564e+03 4.726e+02 1.032e+01
F25 2.071e+03× 1.385e+02 2.021e+03 1.229e+01 2.026e+03× 5.425e+00

16 bins
F1 8.019e+01× 7.939e+04 −4.499e+02× 3.626e−02 −4.500e+02 1.112e−05
F2 1.224e+03× 9.021e+05 −3.830e+02× 1.343e+03 −4.496e+02 1.868e−01
F3 4.177e+06× 2.336e+13 2.069e+06× 2.852e+12 6.703e+05 2.986e+11
F4 1.942e+03× 1.084e+06 −2.801e+02× 2.904e+04 −4.489e+02 9.053e−01
F5 3.161e+03× 8.525e+05 3.454e+01× 7.977e+04 −3.083e+02 2.096e−01
F6 8.723e+06× 6.594e+13 9.012e+02× 3.075e+05 4.894e+02 2.558e+04
F7 1.271e+03× 3.864e+03 1.087e+03× 3.152e−03 1.087e+03 5.584e−07
F8 −1.196e+02 7.127e−03 −1.195e+02 8.666e−03 −1.196e+02 9.111e−03
F9 −3.105e+02× 1.776e+01 −3.282e+02 1.598e+00 −3.266e+02× 1.062e+00
F10 −3.023e+02× 2.533e+01 −3.224e+02 1.001e+01 −3.227e+02 3.511e+01
F11 9.753e+01× 4.680e−01 9.428e+01 1.221e+00 9.375e+01 2.300e+00
F12 5.210e+03× 7.609e+06 7.779e+02× 8.125e+05 2.978e+02 1.117e+06
F13 −1.156e+02× 1.092e+02 −1.293e+02 3.590e−02 −1.291e+02× 1.127e−01
F14 −2.968e+02× 7.884e−02 −2.969e+02 1.296e−01 −2.969e+02 9.851e−02
F15 5.303e+02× 1.684e+04 4.645e+02 2.013e+04 5.034e+02 8.692e+03
F16 2.805e+02× 3.667e+02 2.270e+02 5.781e+01 2.275e+02 1.745e+02
F17 3.017e+02× 2.422e+02 2.367e+02× 1.620e+02 2.304e+02 1.435e+02
F18 9.909e+02× 4.028e+03 8.209e+02 1.495e+04 8.073e+02 3.783e+04
F19 9.526e+02× 6.789e+03 8.285e+02× 6.825e+03 7.367e+02 4.554e+04
F20 9.829e+02× 2.609e+03 8.555e+02× 1.024e+04 7.691e+02 3.898e+04
F21 1.446e+03× 1.365e+04 1.164e+03 6.878e+04 1.212e+03 4.275e+04
F22 1.227e+03× 1.828e+03 1.137e+03 5.229e+02 1.140e+03 5.760e+02
F23 1.522e+03× 4.424e+03 1.290e+03 9.517e+04 1.374e+03 5.098e+04
F24 1.042e+03× 4.046e+04 4.604e+02× 1.257e−01 4.600e+02 1.334e−05
F25 2.067e+03× 1.867e+02 2.022e+03× 3.219e+01 2.018e+03 2.588e+01

32 bints
F1 1.437e+02× 1.143e+05 −4.500e+02× 2.132e−03 −4.500e+02 0.000e+00
F2 1.512e+03× 1.025e+06 −3.769e+02× 5.531e+03 −4.457e+02 1.749e+01
F3 4.558e+06× 1.089e+13 2.043e+06× 3.584e+12 1.062e+06 1.069e+12
F4 2.019e+03× 1.811e+06 −2.882e+02× 2.384e+04 −4.070e+02 3.421e+03
F5 3.101e+03× 9.279e+05 2.204e+02× 1.098e+05 −1.946e+02 5.986e+04
F6 1.579e+07× 5.365e+14 1.270e+03× 1.668e+06 4.919e+02 5.131e+04
F7 1.287e+03× 5.079e+03 1.087e+03× 5.063e−03 1.087e+03 1.387e−09
F8 −1.196e+02 7.520e−03 −1.195e+02 8.492e−03 −1.195e+02 5.271e−03
F9 −3.143e+02× 1.365e+01 −3.291e+02 7.497e−01 −3.280e+02× 1.708e+00
F10 −3.033e+02× 2.456e+01 −3.223e+02× 1.052e+01 −3.236e+02 4.463e+00
F11 9.749e+01× 8.084e−01 9.488e+01 1.940e+00 9.479e+01 3.229e+00
F12 7.516e+03× 1.152e+07 9.071e+02× 1.617e+06 1.183e+02 4.071e+05
F13 −1.198e+02× 5.411e+01 −1.293e+02 5.409e−02 −1.293e+02 8.581e−02
F14 −2.968e+02× 1.357e−01 −2.970e+02 1.495e−01 −2.969e+02 1.730e−01
F15 5.269e+02× 2.018e+04 4.309e+02 2.868e+04 4.045e+02 2.800e+04
F16 2.881e+02× 5.819e+02 2.290e+02 6.953e+01 2.291e+02 7.620e+01
F17 2.962e+02× 5.607e+02 2.385e+02 1.436e+02 2.412e+02 9.208e+02
F18 9.971e+02× 2.531e+03 8.659e+02 9.969e+03 8.531e+02 2.179e+04
F19 9.952e+02× 1.715e+03 8.490e+02 6.753e+03 8.432e+02 1.334e+04
F20 9.981e+02× 3.040e+03 8.373e+02 1.465e+04 8.289e+02 1.847e+04
F21 1.487e+03× 1.727e+04 1.147e+03 6.684e+04 1.088e+03 5.931e+04
F22 1.224e+03× 2.484e+03 1.139e+03 8.854e+02 1.137e+03 3.026e+02
F23 1.573e+03× 1.202e+04 1.227e+03 9.622e+04 1.427e+03× 3.688e+04
F24 1.069e+03× 2.939e+04 4.602e+02× 6.249e−02 4.600e+02 0.000e+00
F25 2.065e+03× 1.249e+02 2.026e+03× 4.610e+01 2.022e+03 1.869e+01
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tion methods. Since it has been verified in this study that
based on the proposed quality measure, the analytical mea-
surement and the empirical measurement are consistent,
for complicated discretization methods, numerical sampling
techniques can be adopted to evaluate the discretization
quality. Moreover, how to set the bin size should also be
carefully studied, since a larger bin size means a larger dis-
cretized problem for EDAs. A large bin size, e.g., close to
the population size, may greatly influence the algorithmic
performance. The resultant probabilistic model will most
likely overfit, and hence, a proper ratio should be maintained
between the adopted bin size and the population size. Fi-
nally, the connection between the discretization quality and
the optimization performance should be further investigated.
Essential insights and important understandings of the EDA
working principles might be revealed.
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Appendix: CEC 2005 Real-Parameter Optimization
Benchmark Suite

The benchmark consists of 5 unimodal functions, 9 multi-
modal functions, and 11 composition functions. Because
the last 13 functions are composed by the first 12 functions,
we briefly describe the first 12 functions. For more details,
including all the predefined values, please refer to the orig-
inal document [34]. In the following definition, D denotes
the number of dimension. x = [x1, x2, . . . , xD] is the in-
put, a D-dimensional vector. N(0, 1) is a random sample
from the normal distribution with mean 0 and variance 1
to create noise. Mi is a predefined linear transform matrix.
oi = [o1, o2, . . . , oD] is a predefined shift vector, and f biasi

is a predefined bias.

F1(x) =
D∑

i=1

z2
i + f bias1, z = x − o1 (A· 1)

F2(x) =
D∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i∑

j=1

z j

⎞⎟⎟⎟⎟⎟⎟⎠
2

+ f bias2, z = x − o2 (A· 2)

F3(x) =
D∑

i=1

(106)
i−1
D−1 z2

i + f bias3, z = x − o3 (A· 3)

F4(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
D∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i∑

j=1

z j

⎞⎟⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠ × (1 + 0.4|N(0, 1)|)

+ f bias4 ,

z = x − o4

(A· 4)

F5(x) = max{Aix − Bi} + f bias5 ,

A, a D × D matrix, and B, a D × 1 vector,
are predefined.

(A· 5)

F6(x) =
D−1∑
i=1

(100(z2
i − zi+1)2 + (zi − 1)2)

+ f bias6 ,

z = x − o6 + 1

(A· 6)

F7(x) =
D∑

i=1

z2
i

4000
−

D∏
i=1

cos

(
zi√

i

)
+ 1 + f bias7 ,

z = (x − o7) × M7

(A· 7)

F8(x) = −20 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−0.2

√√√
1
D

D∑
i=1

z2
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− exp

⎛⎜⎜⎜⎜⎜⎝ 1
D

D∑
i=1

cos(2πzi)

⎞⎟⎟⎟⎟⎟⎠
+ 20 + e + f bias8 , z = (x − o8) × M8

(A· 8)

F9(x) =
D∑

i=1

(z2
i − 10 cos(2πzi) + 10) + f bias9 ,

z = x − o9

(A· 9)

F10(x) =
D∑

i=1

(z2
i −10 cos(2πzi)+10)+ f bias10 ,

z = (x − o10) × M10

(A· 10)

F11(x) =
D∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
kmax∑
k=0

(ak cos(2πbk(zi + 0.5)))

⎞⎟⎟⎟⎟⎟⎟⎠
− D

kmax∑
k=0

(ak cos(2πbk · 0.5)) + f bias11,

z = (x − o11) × M11, a = 0.5, b = 3, kmax = 20

(A· 11)

F12(x) =
D∑

i=1

(Ai − Bi(x))2 + f bias12,

z = x − o12 ,

A and B are predefined D × D matrixes

(A· 12)
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