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One-Class Naı̈ve Bayesian Classifier for Toll Fraud Detection

Pilsung KANG†a), Member

SUMMARY In this paper, a one-class Naı̈ve Bayesian classifier (One-
NB) for detecting toll frauds in a VoIP service is proposed. Since toll
frauds occur irregularly and their patterns are too diverse to be general-
ized as one class, conventional binary-class classification is not effective
for toll fraud detection. In addition, conventional novelty detection algo-
rithms have struggled with optimizing their parameters to achieve a stable
detection performance. In order to resolve the above limitations, the orig-
inal Naı̈ve Bayesian classifier is modified to handle the novelty detection
problem. In addition, a genetic algorithm (GA) is employed to increase
efficiency by selecting significant variables. In order to verify the perfor-
mance of One-NB, comparative experiments using five well-known nov-
elty detectors and three binary classifiers are conducted over real call data
records (CDRs) provided by a Korean VoIP service company. The experi-
mental results show that One-NB detects toll frauds more accurately than
other novelty detectors and binary classifiers when the toll frauds rates are
relatively low. In addition, The performance of One-NB is found to be
more stable than the benchmark methods since no parameter optimization
is required for One-NB.
key words: one-class Naı̈ve Bayesian classifier, toll fraud detection, ge-
netic algorithm, novelty detection

1. Introduction

Voice-over-IP (VoIP) is defined as a class of products
that allow advanced communication services over data net-
works [1]. Recently, VoIP technology has been rapidly
adopted by both consumers and enterprises because it can
provide lower costs through equipment consolidation and
help create new business models by offering greater flexibil-
ity and more features than traditional telephony services [2],
[3]. However, VoIP technology is more vulnerable to poten-
tial misuses, such as denial of service or service abuse, due
to the high-level complexity of its architecture, protocols,
and implementation [3].

Among the potential misuses, toll fraud attack, which
refers to unauthorized access and use of a VoIP network,
is the most serious problem for the VoIP service provider
because it utilizes the organization bandwidth and incurs a
heavy cost [4]. According to a world-wide survey conducted
by the Communications Fraud Control Association (CFCA),
estimated losses due to fraud range from US$ 54.4 to 60
billion [4], and more than half of these losses are associated
with toll fraud attacks. Conventional remedies for toll fraud
attacks include firewall configurations and port protections.
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Although a set of pre-defined anti-fraud systems are being
implemented, in practice they cannot detect all types of toll
frauds. Therefore, it becomes crucial to identify the fraud
as early as possible, even if this is done only after a call has
been completed, for the sake of billing evidence or adding
monitoring rules.

Until now, most anti-toll fraud systems have been heav-
ily dependent on hardware or network protocol-level tech-
nologies, based on a set of pre-defined defensive rules gen-
erated by domain expert engineers. However, little at-
tention has been paid to machine learning-based software-
level approaches. In [5], generating a set of significant
rules on the basis of an inductive rule mining algorithm for
cellular phones achieved detection accuracy between 80%
and 90% according to various alarm mechanisms. In [6],
three machine learning-based algorithms were employed,
i.e., C4.5, Naı̈ve Bayesian classifier, and support vector ma-
chine (SVM) to detect abnormal traffics in a VoIP system
operated in China. In [7], Latent Dirichlet Allocation (LDA)
was utilized for user profiling to distinguish fraudulent from
normal behaviors.

Although all the above studies achieved favorable de-
tection performances, there are some important issues that
need to be addressed. First, binary classification scheme
has been commonly adopted for fraud detection; its perfor-
mance can be guaranteed if and only if sufficient examples
are provided for both normal and fraud calls. In general,
however, not only do normal calls far outnumber fraud calls,
but also the characteristics of the fraud calls are too diver-
sified to be generalized as an identical class. Therefore, it
is more practically appropriate to build the fraud detection
model based on novelty detection scheme where only nor-
mal calls are used to describe the target class. However,
most of the conventional novelty detection algorithms, as
well as binary classification algorithms, have their own pa-
rameters to be optimized. The existence of parameters may
cause the performance instability because different parame-
ters can be selected under different experimental settings.

In order to overcome the limitations listed above, we
propose a one-class Naı̈ve Bayesian classifier (One-NB) for
toll fraud detection. Unlike binary classification, One-NB
is based on the novelty detection scheme so that it is not
mandatory to generalize the frauds as only one class dur-
ing the model construction. Furthermore, since there is no
parameters to be optimized, One-NB can result in a stable
performance because it always gives the identical prediction
outcomes for the same test data.
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2. One-Class Naı̈ve Bayesian Classifier

In this paper, we set a more realistic scenario than that used
in previous studies, in which fraud rates are uncertain but
variable over different periods. If the fraud rate in one period
is relatively high, an accurate binary classification model
can be built. If the fraud rate is low in another period, on
the other hand, it is sometime even impossible to train the
binary classification algorithm. In order to secure robust-
ness to uncertain fraud rates over different periods, novelty
detection algorithms, also known as one-class classification
algorithms, are more appropriate.

The Naı̈ve Bayesian classifier was originally proposed
for multi-class classification. When predicting the member-
ship likelihood to the class Ci based on a set of explanatory
variables x1, x2, . . . , xd, Bayes’ rule [8] can be written as

P(Ci|x1, x2, . . . , xd) =
P(x1, x2, . . . , xd |Ci) × P(Ci)

P(x1, x2, . . . , xd)
. (1)

In the Naı̈ve Bayesian classifier [9], it is assumed that the ex-
planatory variables are statistically independent, and there-
fore Eq. (1) can be rewritten as

P(Ci|x1, x2, . . . , xd) =
P(x1|Ci) × P(x2|Ci) × · · · × P(xd |Ci) × P(Ci)

P(x1, x2, . . . , xd)
. (2)

In toll fraud detection models, the fraud likelihood of a new
call during a certain monitoring period should be computed
by the Naı̈ve Bayesian classifier:

Likelihood = P(fraud|x1, x2, . . . , xd, period = t + 1).

(3)

Assuming that the overall call patterns in two consecutive
periods are consistent, we can rewrite Eq. (3) according to
Bayes’ rule:

P(fraud|x1, x2, . . . , xd, period = t + 1) (4)

∝ P(fraud|x1, x2, . . . , xd, period = t)

=
P(x1, . . . , xd |fraud, period = t)×P(fraud|period = t)

P(x1, . . . , xd |period = t)
.

Since P(fraud|period = t) is identical during the test period,
the One-NB computes the fraud likelihood in time period
t + 1 as

Likelihood ∝ P(x1, . . . , xd |fraud, period = t)
P(x1, . . . , xd |period = t)

.

=

d∏

k=1

P(xk |fraud, period = t)
P(xk |period = t)

. (5)

3. Experiments

In this study, toll fraud detection models were built as fol-
lows. First, actual raw CDRs were collected by a major Ko-
rean VoIP service provider with the labeled fraudulent calls

Table 1 The number of calls and fraud rate in each week.

Period Total Normal Frauds Fraud rate
Week 1 9,648 5,178 4,470 46.33%
Week 2 12,201 6,156 6,045 49.55%
Week 3 7,099 5,933 1,166 16.42%
Week 4 6,983 6,671 312 4.47%

Table 2 The explanatory variables used in this paper.

Variable Name Class Description
CALLER ID Nominal Caller’s phone number
AREA CODE Nominal Receiver’s country code
COMM CODE Nominal Service product code
RATE GROUP Nominal Charge rate class
DURATION Numeric Call time + waiting time
CHARGE Numeric Total amount of money being charged
BILL YN Binary The result of billing request
CALLTYPE Nominal Call type classified by the server
CHARGECLASS Nominal Type of charge class
CALLINGLOCNUM Nominal Local number of the receiver
PREFIX Nominal Receiver’s regional and country code
SSW DURATION Numeric Actual call time
DISCONNREASON Nominal Code for disconnection
FAILCODE Nominal Code for call failure

identified by expert engineers. Then, six novelty detection
algorithms including One-NB were trained based on one
week’s data. In order to improve the detection performance,
genetic algorithm was employed to determine significant
variables. Finally, their toll fraud detection performances
were compared using the data collected from the following
week. Further, three well-known binary classification algo-
rithms with GA variable selection were also tested to verify
the detection performance of One-NB.

3.1 Data Preparation & Variable Selection

A group of customers who had been consistently monitored
by the VoIP service provider because of their historically
frequent toll fraud attempts were selected in this experi-
ment. Table 1 summarizes the number of total/normal/fraud
calls made by the customers in June 2012. During the first
two weeks, toll frauds were frequently attempted so that the
fraud rate rose to as high as 50% of the total calls, whereas it
decreased to less than 5% in the final week. Under this con-
dition, more reliable experimental results can be obtained
because we could compare the performance of One-NB with
other novelty detectors and binary classifiers over different
fraud rates.

The explanatory variables used in the experiment are
shown in Table 2. Among 25 attributes in the raw CDRs,
only 14 variables are taken into consideration after eliminat-
ing irrelevant or redundant variables. Since most of the re-
maining variables are nominal with a large number of cases,
each case in a variable is transformed to a numeric value
using Eq. (5) when computing the fraud likelihood. In or-
der to improve the detection performance and model effi-
ciency, genetic algorithm (GA) is employed to select sig-
nificant variables. GA finds a set of pseudo-optimal input
variables based on an evolutionary search method as fol-
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lows. An initial population consisting of sufficient chromo-
somes is created, where each gene in a chromosome indi-
cates whether the corresponding input variable is activated
during the training. Then, novelty detectors or binary clas-
sifiers are trained using the activated variables in each chro-
mosome. Chromosomes with higher detection ability sur-
vive and generate a new population through crossover and
mutation. This procedure is repeated until an optimal set of
variables can be obtained. In the experiment, the number of
populations in each generation is set to 50, whereas the total
number of generations is set to 100. The crossover rate and
mutation rate are set to 0.5, and 0.05, respectively. Finally,
the fitness function is set to the F1 measure as explained in
the following section.

3.2 Benchmark Methods & Performance Measure

In order to verify the performance of One-NB, five well-
known novelty detection algorithms and three binary clas-
sification algorithms are employed as benchmark methods.
As benchmark novelty detectors, Gaussian density estimator
(Gauss) [10], a mixture of Gaussians (MoG) [11], K-Means
clustering (KMC) [12], The Parzen window density estima-
tor (Parzen) [13], and k-nearest neighbor (k-NN) are used.
Gauss assumes that the normal data are generated from an
underlying Gaussian distribution. When the training CDRs
are provided, Gauss estimates their mean and covariance,
and the likelihood of a new call belonging to the normal
CDRs is computed based on the estimated parameters: the
higher the score, the lower fraudulence level of the new call.
Since Gauss requires a strong assumption of unimodality,
it is often violated in practice. By relaxing the unimodal-
ity assumption of Gauss, MoG allows the training data to
have more than one modals with different parameters, each
of which still follows the Gaussian distribution. KMC even
relaxes the Gaussian assumption on each cluster in the MoG.
Thus, KMC finds the K clusters that maximize the homo-
geneity among the instances in the same cluster and the het-
erogeneity among different clusters. Parzen is an extreme
version of MoG in that the number of clusters equals the
number of training instances. k-NN computes the novelty
score of a new call based on the similarity between the test
call and its k nearest neighbors [14]. The premise behind
the k-NN is that if an instance is an outlier, it should be lo-
cated far from other normal instances so that the distance to
its nearest neighbors is larger than that of other normal in-
stances. Among a number of variations in k-NN, the average
distance is adopted as a novelty score in this study.

As benchmark binary classifiers, logistic regression
(LR) [13], artificial neural networks (ANN) [9], and support
vector machine (SVM) [15] are selected. LR is a de facto
algorithm for binary classification. It is a simple linear clas-
sifier that is trained by maximizing the log-odds ratios of
the two classes. ANN is one of the most widely adopted
non-linear classification algorithm. It mimics the human
brain’s information processing by constructing a structure of
networks that connect input variable and outcomes where a

Table 3 Parameter search space for each novelty detection algorithm.

Algorithm Parameter Candidates
Gauss None -
MoG Number of Modals [2, 3, 4, · · ·, 10, 15, 20, 25, 30]
KMC Number of clusters [2, 3, 4, · · ·, 10, 15, 20, 25, 30]
Parzen Kernel width [0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10]
k-NN Number of neighbors [2, 3, 4, · · ·, 10, 15, 20, 25, 30]

One-NB None -
LR None -

ANN Number of hidden nods [1, 2, 3, · · ·, 10, 15, 20, 25, 30]
Kernel type RBF-kernel

SVM Kernel width [2−5, 2−4, · · ·, 24, 25]
Cost [0.1, 1, 2, · · ·, 10, 20, 30, 50, 100]

number of hidden layers or nodes are placed between them.
SVM is a state-of-the art classifier that is based on the struc-
tured risk minimization SRM) principle and is able to pro-
vide the global optimum under a given parameter setting.

Since most of the algorithms have their own model pa-
rameters to be optimized as shown in Table 3, we used 10-
fold cross validation with the training data set to select the
best parameters and used them for model training and eval-
uation. Since the training data sets are randomly divided
during 10-fold cross validation, different parameters can be
selected as a result of different sampling. In order to inves-
tigate the performance stability, this procedure, i.e., param-
eter selection based on 10-fold cross validation and test the
detector with the selected parameters, is repeated 30 times
and the average and standard deviation of the detection per-
formance are recorded.

The F1-measure is adopted as a performance measure.
Four outcomes can result from detection models under a cer-
tain threshold: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). Recall is calculated
as the correctly detected frauds over the total number of ac-
tual frauds and computed as TP/(TP+FN), whereas preci-
sion is calculated as the correctly detected frauds over the
total number of calls identified as fraud by the model and
computed as TP/(TP+FP). The F1-measure is the harmonic
mean of recall and precision:

F1-measure =
2 × Recall × Precision

Recall + Precision
. (6)

Since the F1-measure is dependent on the threshold setting,
we vary the threshold from the top 5% novelty scores to the
top 50% in increments of 5% in the case of novelty detection
algorithms.

3.3 Experimental Results

Figure 1 (a) shows the F1-measure of One-NB for the three
test periods for various threshold settings. Since all the nov-
elty detectors present similar trends with One-NB, the rel-
ative F1 performance of the other five novelty detectors in
each period is presented in Fig. 1 (b), (c), and (d). It was ob-
served that the peak of the F1-measure was reported at the
threshold that is closest to the actual toll fraud rate in the
test period; the F1-measure was highest when the top 50%
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Table 4 The performance of each novelty detector in each week (Values preceding ± is the average
of 30 repetitions whereas values following ± is the standard deviation of each measure.).

Period Measure Variables Gauss MoG KMC Parzen k-NN One-NB

Week 2

Recall
All 0.9492 0.9371±0.0241 0.9117±0.0362 0.9105±0.0209 0.9317±0.0177 0.9515
GA 0.9811 0.9613±0.0214 0.9579±0.0301 0.9613±0.0219 0.9578±0.0326 0.9734

Precision
All 0.9405 0.9007±0.0514 0.9104±0.0415 0.9130±0.0332 0.9217±0.0287 0.9428
GA 0.9721 0.9525±0.0275 0.9407±0.0317 0.9532±0.0141 0.9547±0.0187 0.9644

F1
All 0.9448 0.9128±0.0351 0.9108±0.0357 0.9112±0.0217 0.9306±0.0207 0.9471
GA 0.9766 0.9586±0.0256 0.9501±0.0179 0.9580±0.0206 0.9550±0.0281 0.9689

Week 3

Recall
All 0.6364 0.6185±0.0405 0.6108±0.0540 0.6558±0.0207 0.6627±0.0141 0.7168
GA 0.8302 0.8210±0.0314 0.8028±0.0485 0.8174±0.0258 0.8078±0.0218 0.8508

Precision
All 0.6967 0.6784±0.0442 0.6526±0.0335 0.7220±0.0208 0.7189±0.0258 0.7407
GA 0.9089 0.9185±0.0350 0.9058±0.0288 0.9057±0.0278 0.8979±0.0117 0.9315

F1
All 0.6652 0.6534±0.0388 0.6310±0.0447 0.6980±0.0236 0.6933±0.0186 0.7286
GA 0.8678 0.8660±0.0410 0.8540±0.0207 0.8558±0.0267 0.8490±0.0174 0.8893

Week 4

Recall
All 0.6276 0.6014±0.0474 0.6108±0.0524 0.5453±0.0117 0.6348±0.0165 0.6469
GA 0.7596 0.7530±0.0354 0.7427±0.0337 0.7508±0.0259 0.7818±0.0127 0.8013

Precision
All 0.5504 0.4986±0.0554 0.5158±0.0544 0.4785±0.0216 0.5673±0.0225 0.5875
GA 0.6791 0.6671±0.0374 0.6604±0.0405 0.6698±0.0258 0.6907±0.0155 0.7163

F1
All 0.5865 0.5450±0.0521 0.5449±0.0538 0.5053±0.0198 0.5993±0.0208 0.6158
GA 0.7171 0.7108±0.0366 0.7025±0.0385 0.7028±0.0227 0.7327±0.0138 0.7564

(a) F1 One-NB with different
thresholds

(b) Week 2

(c) Week 3 (d) Week 4

Fig. 1 The F1-measures (y-axis) with the top N% (x-axis) novelty scores
as thresholds for each novelty detection algorithm.

novelty score was set to the threshold in week 2, in which
the actual fraud rate was 49.55%. Similarly, the F1-measure
was highest with the thresholds of the top 15% and 5% nov-
elty scores for week 2 and week 3 where the actual fraud
rates were 16.42% and 4.47%, respectively. Another obser-
vation is that toll fraud detection problem becomes more dif-
ficult when the actual fraud rate decreases. When toll fraud
attempts were prevalent, as in week 2, most of them could
be identified correctly, and false alarms and misses rarely
occurred. When toll frauds were infrequently attempted,
on the other hand, which is a more realistic situation, the
highest F1-measures reported were between 0.7 and 0.9, de-
pending on the test period and novelty detector. It is worth
noting that since billions of calls are made in a week using
the equipment of the VoIP service company, only a 1% in-
crease in the F1-measure can significantly help the business

Table 5 The number of variables selected by GA.

Detector Week 2 Week 3 Week 4 Average
Gauss 4 3 4 3.67
MoG 6 4 4 5.67
KMC 4 7 6 5.67
Parzen 6 3 6 5.00
k-NN 6 4 4 4.67

One-NB 2 4 4 3.33

increase its revenue.
Table 4 shows the recall, precision, and F1-measure

for all the novelty detectors in each test period when the
threshold was set to the top 50%, 15%, and 5% for weeks
2, 3 and 4, respectively. In the Variables column, All means
that the novelty detectors are trained on the basis of all vari-
ables whereas GA mean that they are trained on the basis
of the selected variables by GA. It is observed that the vari-
ables selected by GA improved the detection performance
of all novelty detectors and the performance improvement is
more noticeable when the fraud rates are low. As mentioned
above, the F1-measure was close to 1 in week 2. Among
the novelty detectors, Gauss achieved a higher F1-measure
(0.9766) than the others. In weeks 3 and 4, on the other
hand, One-NB resulted in the highest Recall, Precision, and
F1-Measure on average. In addition, One-NB resulted in the
same performance since it does not have any model param-
eter, but other novelty detectors, except Gauss, even signifi-
cant variations across the repetitions. It is worth noting that
the performance of One-NB became noteworthy as the ac-
tual fraud rate decreased. It is of practical use that, for the
entire customer base, the actual fraud rate should be lower
than that of week 4. Consequently, One-NB would be more
effective than other novelty detectors when deployed to gen-
eral customers.

Table 5 summarizes the number of variables selected
by GA for each novelty detector. One-NB used only be-
tween two (week 2) and four (week 3 and 4) variables,
which resulted in it using the fewest variables on average,
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Table 6 The performance comparison of One-NB with binary classifi-
cation algorithms.

Period Measure LR ANN SVM One-NB
Recall 0.9902 0.9714±0.0237 0.9929±0.0074 0.9734

Week 2 Precision 0.9795 0.9600±0.0281 0.9809±0.0068 0.9644
F1 0.9842 0.9624±0.0255 0.9868±0.0069 0.9811

Recall 0.8701 0.8526±0.0504 0.8740±0.0124 0.8508
Week 3 Precision 0.7551 0.7636±0.0456 0.7617±0.0148 0.9315

F1 0.8045 0.8188±0.0488 0.8200±0.0136 0.8893
Recall 0.6442 0.6731±0.1047 0.6795±0.0258 0.8013

Week 4 Precision 0.7028 0.7192±0.1148 0.7260±0.0301 0.7163
F1 0.6712 0.6950±0.1085 0.7026±0.0285 0.7564

3.33, followed Gauss with 3.67. If the fraud detection per-
formance is comparable, models with fewer variables are
easier to manage, and thus the efficiency can be improved.

The performance comparison of One-NB with the
benchmark binary classification algorithms are summarized
in Table 6. As we expected, binary classification algorithms
achieved higher detection performance than One-NB when
there are sufficient fraud calls in the training data set (Week
2). However, when the fraud rate decreases, their perfor-
mance also decreased so that F1 measure of those classi-
fiers are lower than that of One-NB in Week 2 and Week
3. To make matters worse, ANN reports relatively high per-
formance fluctuations as the fraud rate decreases. Since it
usually suffers from the over-fitting problem, insufficient in-
formation on the minority class, i.e., fraud calls, might have
led ANN to inappropriate classification boundary.

In summary, the proposed One-NB for toll fraud detec-
tion was found to be highly effective, especially when the
fraud rate was low compared to both other novelty detec-
tion algorithms and binary classification algorithms. In ad-
dition, it can provide a more stable performance compared
to benchmark algorithms because there is no parameter to
be optimized.

4. Conclusion & Discussion

In this paper, the One-NB is proposed in order to detect toll
frauds in a VoIP service. In One-NB, historical fraud oc-
currence was utilized to compute the fraud likelihood of the
Bayes’ rule, assuming that the input variables are statisti-
cally independent. The experimental results on a real data
set confirmed that One-NB resulted in the highest but stable
F1-measure when the fraud rates were relatively low, and
these performances were achieved with the minimum set of
input variables as compared to the benchmark methods.

Some further research directions are as follows. First,
since the actual CDRs were collected only for a group of
monitored customers, their fraud rate was much higher than
the average fraud rate of the entire customers. Thus, One-

NB should be tested for different customer groups to verify
its general performance. Second, the test period was fixed to
one week in the experiment; it would be more practical if the
test period was adjusted dynamically to reflect the current
toll fraud occurrence situation.
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