
1468
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014

PAPER Special Section on Advances in Modeling for Real-world Speech Information Processing and its Application

Structured Adaptive Regularization of Weight Vectors for a Robust
Grapheme-to-Phoneme Conversion Model

Keigo KUBO†a), Student Member, Sakriani SAKTI†, Member, Graham NEUBIG†, Nonmember, Tomoki TODA†,
and Satoshi NAKAMURA†, Members

SUMMARY Grapheme-to-phoneme (g2p) conversion, used to estimate
the pronunciations of out-of-vocabulary (OOV) words, is a highly impor-
tant part of recognition systems, as well as text-to-speech systems. The
current state-of-the-art approach in g2p conversion is structured learning
based on the Margin Infused Relaxed Algorithm (MIRA), which is an on-
line discriminative training method for multiclass classification. However,
it is known that the aggressive weight update method of MIRA is prone
to overfitting, even if the current example is an outlier or noisy. Adaptive
Regularization of Weight Vectors (AROW) has been proposed to resolve
this problem for binary classification. In addition, AROW’s update rule is
simpler and more efficient than that of MIRA, allowing for more efficient
training. Although AROW has these advantages, it has not been applied to
g2p conversion yet. In this paper, we first apply AROW on g2p conversion
task which is structured learning problem. In an evaluation that employed a
dataset generated from the collective knowledge on the Web, our proposed
approach achieves a 6.8% error reduction rate compared to MIRA in terms
of phoneme error rate. Also the learning time of our proposed approach
was shorter than that of MIRA in almost datasets.
key words: g2p conversion, out-of-vocabulary word, online discriminative
training, structured learning, AROW

1. Introduction

Advances in speech recognition technology have made it
possible to attempt large-scale, open-domain, data-driven
approaches. Out-of-vocabulary (OOV) words are the bottle-
neck in such speech recognition systems, and the need for
robust pronunciation annotation has been increasing. For
example, voice search applications have attracted attention
because of an increased demand for mobile device inter-
faces. A variety of words, such as proper nouns and brand-
new words, must be dealt with in these applications. It is
important to update the language model and pronunciation
dictionary to accommodate these terms. We can collect sen-
tences from Web text resources to train the LM, but the pro-
nunciation of some of those words may be unknown. There-
fore, grapheme-to-phoneme (g2p) conversion must be used
to estimate the pronunciations of out-of-vocabulary (OOV)
words in speech recognition systems [1] or text-to-speech
systems [2].

The training procedure for g2p conversion has an align-
ment step and a parameter estimation step. The alignment
step performs segmentation and maps between graphemes
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and phonemes on the training data. One-to-one [3] and
many-to-many [4]–[7] alignment methods have been pro-
posed. The parameter estimation step learns the parameters
used for g2p conversion from training data segmented and
mapped by the alignment step. Rule-based approaches [8]
and statistical approaches based on methods such as neu-
ral networks [9], decision trees [10], and maximum en-
tropy [11] have been proposed.

There are two major statistical approaches for pa-
rameter estimation of g2p conversion: the joint sequence
model [12], [13] and structured learning based on the Mar-
gin Infused Relaxed Algorithm (MIRA) [14]. The joint
sequence model is a generative model employing joint n-
grams for graphemes and phonemes. This approch per-
forms the alignment step and the parameter estimation step
at the same time. MIRA is an online discriminative train-
ing method for models of multiclass classification that learns
parameters that correctly classify the current instance with
a sufficient margin. MIRA has also been expanded to struc-
tured learning problems for which there are an extremely
large number of candidate answers, such as g2p conver-
sion, and employed to the parameter estimation step of g2p
conversion [15], [16]. Previous reports on MIRA-based g2p
note that it outperforms the joint sequence model in terms of
word error rate on g2p tasks. However, MIRA is also prone
to overfitting, as it updates parameters to correctly classify
the current example, even if the current example is an outlier
or noisy.

Recently, methods have been proposed that employ
pronunciations from the collective knowledge on the World
Wide Web as training data for g2p models without a cross-
check of language experts [17]. In this case, the training data
is expected to include a lot of noisy data, and empirically, in
[17], this degrades the performance of the speech recogni-
tion system in exchange for improvements of cost and time
required for dictionary construction. When this sort of noisy
data is used to train a g2p system, it is extremely important
to have an approach that is highly accurate and robust to
overfitting.

Adaptive Regularization of Weight Vectors (AROW)
[18] is another online discriminative training method for bi-
nary classification that has been proposed as an approach
to resolve overfitting. This is achieved by gradually learn-
ing parameters to correctly classify the training data, with-
out guaranteeing that the current example is correctly classi-
fied. In addition, AROW’s update rule is simpler than that of
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Fig. 1 Image of a maximum margin method for multiclass classification. In the context of g2p con-
version, xi and yi denote a word and the correct pronunciation in i-th data respectively. Also ŷ1 and ŷ2

denote inferable other pronunciations (wrong pronunciations) in the word xi.

MIRA, allowing for more efficient training. In multiple bi-
nary classification tasks, AROW has been shown to outper-
form the Passive-Aggressive (PA) algorithm [19] which can
be regarded as the binary classification equivalent of MIRA.

In this paper, we first apply AROW to the g2p con-
version task which is a structured learning problem. We
evaluate the proposed approach on various g2p tasks includ-
ing collective knowledge data such as wiktionary which is
a collaboratively constructed dictionary on the World Wide
Web, comparing with the joint sequence model and struc-
tured learning based on MIRA. Note that this is an exten-
sion of our previous work [20], with a fuller and more clear
exposition, and greatly expanded experiments including real
noisy data from the web, and data from multiple languages.

The rest of this paper is organized as follows. In
Sect. 2, we describe g2p conversion based on linear clas-
sifiers, which are employed in the existing method based
on MIRA and our proposed approach based on AROW. The
existing structured learning approach based on MIRA is de-
scribed in Sect. 3. In Sect. 4, we describe AROW and Con-
fidence Weighted Algorithm (CW) [21], [22] which is a pre-
decessor approach of AROW, as binary classification meth-
ods. Structured AROW which is our proposed approach and
extends AROW to structured learning for g2p conversion is
described in Sect. 5. In Sect. 6, we report on an evaluation
experiment for our proposed approach on various g2p tasks.
Finally, Sect. 7 states our conclusion.

2. G2p Conversion Based on Linear Classifiers

We define g2p conversion as a process of converting a
grapheme sequence x into a phoneme sequence y. To obtain
a correct phoneme sequence y from a grapheme sequence x,
we employ a linear classifier defined as

ŷ = arg max
y

w · Φ(x,y) (1)

where w indicates the classifier’s weight vector and Φ(x,y)
indicates a feature vector which consists of arbitrary values
such as frequencies of joint n-gram features [16] on x and
y. In Eq. (1), ŷ can be efficiently obtained using dynamic
programming. Structured learning can be employed to ob-
tain a w that allows for accurate prediction of the correct
phoneme sequence in this framework.

3. Structured Learning Using MIRA

MIRA is a kind of a maximum margin method for multiclass
classification as shown in Fig. 1. Given data xi belonging
to class yi, MIRA assigns a vector in feature space to each
inferable class including both correct classes and incorrect
classes, where the correct class corresponds to the label in
the manually annotated data, and the incorrect class means
the rest of the inferable labels for the data. In the context
of g2p conversion, these are the correct pronunciation and
wrong pronunciations respectively. MIRA maps the feature
vector in each inferable class to score space by a mapping
function. Then, MIRA estimates parameters in the mapping
function so that the correct class scores higher than the in-
correct class with a sufficient margin.

Structured learning based on MIRA for g2p has been
proposed in [15]. When the i-th example (xi,yi) and n-best
hypotheses ŷ1, . . . , ŷN produced by wt−1 ·Φ(xi, ŷ) are given,
it updates the current weight vector wt−1 by solving the con-
strained optimization problem defined as

min
Δw

1
2
‖Δw‖2

s.t. ∀n (2)

(wt−1 + Δw) · uin ≥ d(yi, ŷn)

where Δw indicates the update vector for weights. The up-
dated weight vector wt defined as

wt = wt−1 + Δw (3)

and uin is defined as Φ(xi,yi) − Φ(xi, ŷn) which is the dif-
ference vector between the feature vector of a correct tar-
get sequence yi and a feature vector of the hypothesis ŷn.
The d(yi, ŷn) indicates the loss incurred by incorrectly clas-
sifying yi as ŷn. In g2p conversion, the source sequence
xi and the target sequence yi are a grapheme sequence
and a phoneme sequence respectively, and the phoneme
error rate of prediction is used as the loss d(yi, ŷn). As
in Eq. (2), structured learning based on MIRA employs n-
best hypotheses ŷ1, . . . , ŷN in training and finds the updated
weight vector wt that correctly classifies the current exam-
ple (xi,yi) with a sufficient margin proportional to the loss
of each hypothesis ŷ1, . . . , ŷN .
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Algorithm 1 Structured learning based on MIRA
Input:Training dataset D = {(x1,y1), . . . , (x|D |,y|D |)}
Output:w
w = 0
repeat

for i = 1 to |D| do
Predict n-best hypotheses ŷ1, . . . , ŷN by w · Φ(xi, ŷ)
Update w by solving the constrained optimization problem of
Eq. (2)

end for
until Stop condition is met

When the constrained optimization problem in Eq. (2)
is solved using Lagrange multipliers, the dual problem can
be obtained as follows:

max
α1,...,αN

1
2

∑

n

∑

m

αnαmuin · uim

+
∑

n

αn(d(yi, ŷn) −wt−1 · uin) (4)

where α1, . . . , αN indicates optimized Lagrange multipliers
and Δw is expressed with α1, . . . , αN defined as

Δw =
∑

n

αnuin. (5)

Equation (4) is a quadratic programming problem having
parameters α1, . . . , αN . When the parameters are optimized
by numerical computation [23], the updated weight vector
wt can be obtained from Eq. (3) and Eq. (5). If there are
many parameters to be optimized, the quadratic program-
ming problem is difficult to solve in terms of computation
cost. For a method based on MIRA, the number of param-
eters to be optimized is equal to the number of hypotheses
employed in update. Therefore, to decrease the computa-
tional cost, MIRA is generally used in the context of online,
instead of batch, learning.

The procedure of structured learning based on MIRA
is shown in Algorithm 1. In [15], n-best hypotheses ŷ1, . . . ,
ŷN are approximately predicted by beam-search pruning
based on a monotone phrasal decoder [24].

One known weakness of MIRA is that it is prone to
overfitting. Even if the current example is an outlier or
noisy, MIRA must classify the current example correctly,
and will move the weights as much as is necessary to do
so. This can degrade system performance by causing over-
fitting. To resolve this problem, we propose Structured
AROW, which is more robust in the face of overfitting com-
pared with MIRA.

4. AROW and CW for Binary Classification

CW and AROW are online discriminative training methods
and a kind of a maximum margin method for binary clas-
sification. Both methods assume that the weight vector w
follows a multi-dimensional Gaussian distribution N(µ,Σ)
with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, where
d is the number of features in the model. During predic-
tion, CW and AROW employ the expectation of the weight

vector E[w] = µ instead of the weight vector w. By con-
sidering the variance and covariance, CW and AROW indi-
vidually control the amount of each feature weight updated
after each example. Because the current weight of the fea-
tures that have frequently occurred and been updated in the
past has high confidence, they are not moved excessively
on any update. In contrast, because the current weight of
the features that have rarely been updated in the past does
not have high confidence, they are widely moved on update.
This property, which MIRA does not have, prevents the im-
portant weights that have high confidence from widely mov-
ing in directions that degrade the system performance in the
presence of outliers. On the other hand, it widely moves
rare features in contrast to batch learning with a regulariza-
tion. In multiple binary classification tasks for natural lan-
guage processing (NLP), it has been shown that because rare
features are often very informative in NLP, online learning
algorithms that have that property have been shown to out-
perform batch learning of maximum entropy classifiers and
support vector machines [22]. Also, because online learning
generally runs faster and uses less memory than batch learn-
ing, we focus on online learning rather than batch learning
in this paper. In the rest of this section, we describe differ-
ences between CW and AROW.

4.1 CW

When the i-th example (xi, yi) is given, CW obtains an up-
dated distributionN(µt,Σt) for the weight vector by solving
the constrained optimization problem defined as

(µt,Σt) = min
µt ,Σt

DKL(N(µt,Σt)||N(µt−1,Σt−1))

s.t. Prw∼N(µt ,Σt)[yi(w · xi) ≥ 0] ≥ η (6)

where N(µt−1,Σt−1) is the current distribution for the
weight vector, DKL(N(µt,Σt)||N(µt−1,Σt−1)) indicates the
Kullback-Leibler (KL) divergence between the updated dis-
tribution and the current distribution, and η ∈ (0.5, 1] is a
hyperparameter controlling the margin. Note that xi and
yi ∈ {−1,+1} here indicate the i-th input vector and the i-th
correct label (−1 or 1) respectively, whereas in our descrip-
tion for structured learning based on MIRA and AROW we
assume xi and yi to be the source sequence and the target
sequence respectively. As in Eq. (6), CW finds the updated
distribution that is closest to the previous distribution while
satisfying the constraint that the current example (xi, yi) is
correctly classified with at least probability η ∈ (0.5, 1]. The
learning of CW converges quickly, as the constraint of CW
forces CW to find the distribution that correctly classifies the
current example (xi, yi) with at least probability η ∈ (0.5, 1].
However, like MIRA, this aggressive learning causes over-
fitting, since CW has the possibility to widely move even a
reliable weight to satisfy this constraint.

4.2 AROW

To avoid this problem of MIRA and CW, AROW recasts
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terms for the constraint of CW as regularizers. The distri-
bution found by AROW does not guarantee that the current
example (xi, yi) is correctly classified. However, the training
data comes closer to being correctly classified each time the
distribution is updated, and even when an outlier appears,
AROW does not widely move the reliable weights in a di-
rection that degrades the system performance.

AROW obtains the updated distribution for the weight
vector by solving the unconstrained optimization problem
defined as

(µt,Σt) = min
µt ,Σt

DKL(N(µt,Σt)||N(µt−1,Σt−1))

+
1
2r
�h2 (xi, yi,µt) +

1
2r

xT
i Σtxi (7)

where r is a hyperparameter that has the constraint r >
0, and controls the update amount for µ and Σ. Also,
�h2 (xi, yi,µt) is the loss function defined as

�h2 (xi, yi,µt) = (max{0, 1 − yi(µt · xi)})2. (8)

Solving Eq. (7) is equivalent to finding the distribution that
decreases the loss function value and variances of each fea-
ture that occurred, while avoiding changing the previous dis-
tribution as much as possible. In multiple binary classifica-
tion tasks for NLP, AROW has been shown to outperform
CW and PA [18].

5. Structured AROW

We propose Structured AROW to extend AROW to struc-
tured learning. Structured AROW is also a kind of a max-
imum margin method such as shown in Fig. 1. In contrast
to MIRA, Structured AROW gradually learns parameters to
correctly classify the current data with a sufficient margin.

In order to extend binary classification to structured
learning, we consider differences between the two settings.
The first difference is how to judge whether a prediction is
true or not. In binary classification, because the two classes
are represented by positive and negative for w · xi, the pre-
diction is judged to be true when yi(w · xi) is positive,
where yi indicates the correct class with 1 (positive) or −1
(negative). In structured learning, because it can not rep-
resent all classes only with positive and negative, the judg-
ment is relaxed to whether a correct class yi scores higher
than a certain hypothesis ŷn or not. It is formalized as
w · uin = w · Φ(xi,yi) − w · Φ(xi, ŷn). When w · uin is
positive, the prediction is judged to be true over a hypoth-
esis ŷn. Note that the relaxed judgment does not guarantee
that the prediction selects a correct class correctly from all
classes. The second difference is that structured learning
handles countless classes. Thus, it is difficult to learn to
reduce output values of loss functions of a current correct
class over classes in all inferable hypotheses. So, to extend
AROW to Structured AROW, we replace yi(w ·xi) to w ·uin

and limit our updates to classes in n-best hypotheses.
Given the i-th data (xi,yi) and the n-best hypothe-

ses ŷ1, . . . , ŷN , Structured AROW updates an distribution

N(µ,Σ) for ŷn; n = 1, . . . ,N sequentially, to minimize the
objective function defined as

L(µt,Σt) = DKL(N(µt,Σt)||N(µt−1,Σt−1))

+
1
2r
�h2 (xi,yi, ŷn,µt) +

1
2r

uT
inΣtuin (9)

where r is a hyperparameter that has the constraint r > 0 as
before. And �h2 (xi,yi, ŷn,µt) is the loss function defined as

�h2 (xi,yi, ŷn,µt) = (max{0, d(yi, ŷn) − µt · uin})2. (10)

By partially differentiating Eq. (9) with µt and setting this
derivative to 0 so that we minimize Eq. (9), the update for-
mula for µt of structured learning based on AROW is as
follows:

µt = µt−1 +
max{0, d(yi, ŷn) − µt−1 · uin}

uT
inΣt−1uin + r

Σt−1uin. (11)

As the full covariance matrix can not be handled as the num-
ber of features in g2p conversion is enormous, we assume Σt

to be a diagonal matrix, as is standard for traditional CW or
AROW. We partially differentiate the objective function of
Eq. (9) with the p-th diagonal element (Σt)p,p of Σt to obtain
the update formula for Σt, and then we set the equation to be
0 as follows:

∂

∂(Σt)p,p
L(µt,Σt) =

1
2

⎛⎜⎜⎜⎜⎜⎝
1

(Σt−1)p,p
− 1

(Σt)p,p
+

(uin)2
p

r

⎞⎟⎟⎟⎟⎟⎠ = 0 (12)

where (uin)p indicates the p-th feature value of the uin. We
arrange the above equation to solve (Σt)p,p as follows:

(Σt)p,p =
r(Σt−1)p,p

r + (uin)2
p(Σt−1)p,p

. (13)

Each diagonal element (Σt)p,p for p = 1, . . . , d is updated by
Eq. (13). Also when �h2 (xi,yi, ŷn,µt−1) is equal to 0, µt−1

and Σt−1 are not updated.
The procedure of Structured AROW is shown in Algo-

rithm 2. µ and Σ are initialized with the zero vector and
identity matrix respectively. From (Σ0)p,p = 1, r > 0 and
Eq. (13), (Σt−1)p,p ≥ (Σt)p,p for all t holds. When (Σt)p,p = 0,

Algorithm 2 Structured AROW
Input:Training dataset D = {(x1,y1), . . . , (x|D |,y|D |)}
Output:µ as weight vector w
µ = 0,Σ = I
repeat

for i = 1 to |D| do
Predict n-best hypotheses ŷ1, . . . , ŷN by µ · Φ(xi, ŷ)
for n = 1 to N do

if �h2 (xi,yi, ŷn,µ) > 0 then
Update µ and Σ by Eq. (11) and Eq. (13) respectively

end if
end for

end for
until Stop condition is met
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Table 1 Dataset used in the preliminary experiment on the g2p task. g/p
indicates the number of grapheme and phoneme symbols. Noisy indicates
the number of artificial noisy data.

Dataset g/p Vocabulary size
Train (Noisy) Dev Test K-fold

NETtalk 26/50 17595 (0) 1000 1000 10
Noisy NETtalk 26/50 17595 (1760) 1000 1000 10

Table 2 Parameter settings for the preliminary experiment. They were
optimized for each method on the development data, with the parameters
employed at least once in each cross-validation fold in bold.

Joint Sequence MIRA Structured AROW
joint

5, 6, 7, 8, 9, 10
Follow Follow

n-gram Joint Sequence Joint Sequence
context

- 4, 5, 6
Follow

window MIRA
n-best

- 1, 3, 5
Follow

hypotheses MIRA
hyperpara-

- - 500, 1000, 1500
meter r
beam width - 150 150

the p-th feature weight of the µ is fixed. Therefore, the con-
vergence of Algorithm 2 is guaranteed. In Algorithm 2,
n-best hypotheses ŷ1, . . . , ŷN are also predicted by beam-
search pruning based on a monotone phrasal decoder [24],
similarly to [15]. The update process for the µ and the Σ
in Algorithm 2 is similar to sequential update proposed in
Multi-Class CW [25]. The difference is that it solves the
unconstrained optimization problem over each hypothesis,
whereas the sequential update solves the constrained opti-
mization problem. Also, Algorithm 2 is an online learn-
ing algorithm in accordance with MIRA. However, our pro-
posed approach can easily perform batch learning because
it can be solved in closed form according to Eq. (11) and
Eq. (13) instead of numerical computation for the quadratic
programming problem.

6. Experiment and Result

We evaluated Structured AROW, which is our proposed ap-
proach, on various g2p tasks. The test sets in the g2p tasks
include only unknown words because the correct pronunci-
ation of known words can be obtained through dictionary
lookup. First of all, we describe a preliminary experiment
with a small dataset to investigate the characteristics of our
proposed approach and determine various training parame-
ters. Then, we describe the experiment to evaluate our pro-
posed approach with various g2p tasks.

6.1 Preliminary Experiment

Table 1 shows datasets employed in the preliminary experi-
ment; dataset name (Dataset), the number of grapheme and
phoneme symbols (g/p), vocabulary sizes of training data
(Train), development data (Dev), and test data (Test) and
the number of trials of cross-validation (K-fold). Training,
development, and test datasets are mutually exclusive. The

development data is employed to determine various train-
ing parameters. In this experiment, we employ the NETtalk
dataset, which is a small English dictionary obtained from
the Pascal Letter-to-Phoneme Conversion Challenge†. We
attempted to faithfully follow the convention in terms of data
exclusion and data split in [13], except extracting develop-
ment data from training data. To confirm that Structured
AROW is robust to overfitting, we also create a separate
Noisy NETtalk dataset, for which about 10% of the train-
ing data is artificial noisy data that has been given a wrong
pronunciation randomly chosen from all pronunciations in
NETtalk. That is, Noisy NETtalk includes 1760 noisy data
of the total vocabulary size 17595. In Noisy NETtalk, the
prediction performance of an approach that is not robust
to overfitting can be expected to degrade by overfitting the
noisy data.

Approaches evaluated in this experiment are the joint
sequence model (Joint Sequence) which is the genera-
tive model employing joint n-grams for graphemes and
phonemes, structured learning based on MIRA (MIRA), and
Structured AROW which is our proposed approach. We em-
ployed Sequitur†† as g2p conversion tool implementing the
Joint Sequence and DirecTL+††† as g2p conversion tool im-
plementing the MIRA. MIRA and our proposed approach
employed context features, chain features, and joint n-gram
features in accordance with [16]. The transition feature in-
troduced in [16] was not used, as it was found to decrease
performance in the NETtalk task. For alignment using in
MIRA and our proposed approach, we used the uncon-
strained many-to-many alignment method of [7] as imple-
mented in mpaligner††††. All discriminative methods em-
ploy phoneme error rate as their loss function. The context
window size, joint n-gram size, hyperparameter r, n-best hy-
potheses for training, beam width for beam-search pruning,
and training iterations were determined by phoneme error
rate (PER) on the development data. Table 2 shows their de-
tails. The evaluation measures are PER, which indicates the
rate of prediction errors on the phoneme level, and word er-
ror rate (WER), which indicates the rate of words for which
the estimated pronunciation includes at least one phoneme
error. Performances in speech recognition systems and text-
to-speech systems depend on the WER. Also, the accuracy
of a learning phoneme-level acoustic models when pronun-
ciations are not given in a transcription depends on the PER.
Also this experiment was performed on cluster machines
equipped with Intel Xeon E5649 2.53GHz.

Table 3 shows the evaluation result on NETtalk and
Noisy NETtalk. From the result of NETtalk in Table 3, it can
be seen that the proposed approach and MIRA significantly
outperformed Joint Sequence in terms of PER and WER.
Compared with DirectTL+, our proposed approach has no
significant difference in PER and WER. On the other hand,

†http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/
Datasets
††http://sequitur.info/
†††http://code.google.com/p/directl-p/
††††http://sourceforge.jp/projects/mpaligner/
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Table 3 Evaluation result in NETtalk and Noisy NETtalk. Values in this table are obtained by aver-
aging results on each cross-validation. The best performance and performances that have no significant
difference according to Paired Bootstrap Resampling [26] at a level of 0.05 over the best performance
are written in bold.

Dataset Approach PER (%) WER (%) Learning Time (hr.)
NETtalk Joint Sequence 7.63 31.54 1.1

MIRA 6.75 28.15 8.6
Structured AROW 6.75 28.56 4.7

Noisy NETtalk Joint Sequence 9.78 34.01 3.3
MIRA 10.33 33.52 100.5
Structured AROW 9.79 33.02 78.1

from the point of view of learning time, the learning speed
of our proposed approach was faster than MIRA. Since our
proposed approach calculates the closed forms only once for
each hypothesis included in the n-best, the learning speed
of our proposed approach is faster than structured learning
based on MIRA, which has to iteratively seek the w that sat-
isfies the constraints in Eq. (2) by a quadratic programming
solver.

From the result of Noisy NETtalk in Table 3, the per-
formance degradation of our proposed approach on noisy
data is less than that of MIRA. The difference between our
proposed approach and MIRA with regards to PER and
WER is significant according to Paired Bootstrap Resam-
pling [26] at a level of 0.05. As an example which show
the significance of Structured AROW, the g2p conversions
in a word “muffin” (pronunciation: mf̂xn) included in Noisy
NETtalk are mentioned. Whereas Structured AROW cor-
rectly predicted it as “mf̂xn”, MIRA incorrectly predicted it
as “poltRgAstxn”. The wrong pronunciation was estimated
as “m”→“po”, “u”→“l”, “f”→“t”, “f”→“RgAst”, “i”→“x”,
and “n”→“n”, where “m”→“po”, “u”→“l”, “f”→“t”, and
“f”→“RgAst” which can not found in NETtalk are wrong
mappings between graphemes and phonemes generated by
noisy data included in Noisy NETtalk. Although Structured
AROW also deals with these wrong mappings, Structured
AROW regarded them as the inappropriate prediction in a
word “muffin”. This result indicates that Structured AROW
resolves MIRA’s overfitting problems over noisy data, as it
does for binary classification. On the other hand, although
the fact that joint sequence model is also robust to overfit-
ting in PER compared with MIRA was revealed, the PER
is nearly the same as that of our proposed approach and the
WER is signficantly higher than that of our proposed ap-
proach.

In Table 3, it can be noted that training time is signif-
icantly higher on Noisy NETtalk. This is because artificial
noisy data included in Noisy NETtalk generates new and
wrong mappings between graphemes and phonemes in the
alignment step due to wrong pronunciations. The mappings
increase the inferable pronunciation hypotheses ŷ, and se-
riously affect time for predicting n-best hypotheses for dis-
criminative training based on MIRA and Structured AROW.
It also affects time for calculation of back-off smoothing on
joint sequence model. However it is not a serious prob-
lem compared to that of the discriminative training methods.
The problem on discriminative training can be controled by

beam width in the beam-search pruning or solved using dis-
tributed training as proposed in [22].

6.2 Experiment with Various g2p Tasks

So far, we described two characteristics of Structured
AROW through the preliminary experiment: the robust
learning against overfitting, and the short learning time com-
pared with that of MIRA. In the rest of this section, we de-
scribe an evaluation experiment for Structured AROW on
various g2p tasks based on parameter settings of the prelim-
inary experiment in order to explore the characteristics of
the proposed algorithm in more detail.

Table 4 shows datasets employed in the experiment.
Training, development, and test datasets are mutually exclu-
sive. In this experiment, the development data is employed
only to determine joint n-gram size, hyperparameter r, and
the optimal number of training iterations. For datasets in
Table 4, Brulex (French) and Beep (English) were obtained
from the Pascal Letter-to-Phoneme Conversion Challenge as
with NETtalk. CMUdict (English) and CELEX (English)
were also obtained from their corresponding Web pages†,††.
Wiktionary is a collaboratively constructed dictionary on the
World Wide Web and is provided with archive data†††. We
extracted words and pronunciations of American English
written in International Phonetic Alphabet (IPA) from the
provided archive data. Beep is also a collaboratively created
dictionary derived from many sources and many people.
The data preparation for the datasets followed [13] as with
the preliminary experiment. For Wiktionary, the dataset ex-
tracted from the provided archive data included over two
hundred phoneme symbols. We excluded data including
minor phoneme symbols that appears less than 100 times.
However it is still difficult task because there are still many
phoneme symbols even after data cleaning is performed.

Table 5 shows parameter settings based on the pre-
liminary experiment. On the preliminary experiment, the
optimal value of joint n-gram was 5 or 7. For it, we at-
tempted 5 and 7 in Joint Sequence, and 5 in MIRA and
Structured AROW. The reason to only use joint 5-gram,
which is shorter than joint 7-gram, in MIRA and Struc-
tured AROW is because they use many features not used

†http://www.speech.cs.cmu.edu/cgi-bin/cmudict
††http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC96L14
†††http://dumps.wikimedia.org/enwiktionary/
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Table 6 Evaluation result in various g2p tasks. Values on Brulex and CMUdict in this table are
obtained by averaging results on each cross-validation. The best performance and performances that
has no significant difference according to Paired Bootstrap Resampling [26] at a level of 0.05 over the
best performance are written in bold.

Dataset Approach PER (%) WER (%) Learning Time (hr.)
Brulex Joint Sequence 1.27 6.61 3.8

MIRA 1.03 5.29 3.3
Structured AROW 1.08 5.59 2.4

CELEX Joint Sequence 2.62 12.15 4.1
English MIRA 2.39 11.07 29.4

Structured AROW 2.51 11.81 15.1
CMUdict Joint Sequence 6.77 28.55 17.5

MIRA 6.19 26.38 55.4
Structured AROW 6.15 26.48 28.5

Beep Joint Sequence 2.26 12.24 32.0
MIRA 2.35 12.60 238.9
Structured AROW 2.19 11.73 255.2

Wiktionary Joint Sequence 21.61 60.91 9.3
MIRA 22.55 62.13 164.2
Structured AROW 21.23 60.19 88.7

Table 4 Datasets used in the experiment on the g2p task.

Dataset g/p Vocabulary size
Train Dev Test K-fold

Brulex 40/39 23353 1373 2747 5
CELEX

26/53 39995 15000 5000 1
English
CMUdict 27/39 100886 5941 12000 2
Beep 26/44 169823 8938 19862 1
Wiktionary 26/87 63049 3709 7418 1

Table 5 Parameter settings for the experiment. They were determined
by the results of the preliminary experiment, except joint n-gram size, beam
width, and hyperparameter r.

Joint Sequence MIRA Structured AROW
joint

5, 7 5 5
n-gram
context

- 6 6
window
n-best

- 5 5
hypotheses
hyperpara-

- - 500, 1000, 1500
meter r
beam width - 50 50

in Joint Sequence and thus can exceed its performance even
with shorter n-grams. This improves efficiency in learning
time and memory consumption. For Joint Sequence, joint
7-gram, which had the lowest PER in the development data
of all datasets in Table 4, was finally selected as the joint n-
gram size. Also we employed 50 beam width to decrease the
computation cost because in NETtalk the g2p performance
of 50 beam width was almost the same as that of 150 beam
width. For hyperparameter r, the optimal value was different
in each cross-validation fold on the preliminary experiment.
Therefore we employ 500, 1000 and 1500 for it as with the
preliminary experiment. This experiment was performed on
same cluster machines as the preliminary experiment.

Table 6 shows the evaluation result on various g2p
tasks. From Table 6, on Brulex and CELEX, MIRA signif-
icantly improved PER and WER compared with Structured

AROW and Joint Sequence. On the other hand, on Beep and
Wiktionary, Structured AROW improved PER and WER
compared with MIRA with significant difference. Also,
the PER of Structured AROW for these datasets was lower
than that of Joint Sequence with significant difference. On
CMUdict, the differences between Structured AROW and
DirectTL+ for PER and WER are not significant.

We believe that the reason that MIRA has best perfor-
mances on Brulex and CELEX is consistent rules for pro-
nunciation annotation in these datasets. Because of this con-
sistent annotation, the gap between the training data and the
test data is small, then MIRA’s overfitting problem did not
surface. On the other hand, Structured AROW performed
too much generalization over these datasets.

In contrast, it can be assumed that Beep and Wiktionary
have various and inconsistent rules for pronunciation anno-
tation because they created using the collective knowledge
derived from many sources and many people. The rule from
noisy data is also included therein. In this case, the gap be-
tween the training data and the test data is large, therefore
Structured AROW obtained the best performance on these
datasets by avoiding overfitting.

This result reveals that Structured AROW is suitable
for learning from a dataset without a cross-check of lan-
guage experts and can be applied to a difficult task having
inconsistent rules. In contrast, MIRA is suitable for learn-
ing from a cross-checked clean dataset and applying to a
easy task having consistent rules.

The learning time of Structured AROW was shorter
than that of MIRA in almost datasets from Table 6, except
Beep. This result is about the same as the preliminary ex-
periment. However, in Beep, Structured AROW took more
time for learning compared with MIRA. The reason is be-
cause in many cases, the �h2 (xi,yi, ŷn,µ) = 0 was not sat-
isfied and thus many updates were performed. Such cases
are caused by datasets including a large amount of data that
many promising hypotheses (competitive candidates) can be
estimated from. As a result, AROW saves learning time
in many datasets compared with MIRA, although there are
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some exceptions.
For hyperparameter r, the high value 1500 was chosen

on large datasets: CMUdict, Beep and Wiktionary. Also
it tended to choose the low value 500 on small datasets:
Brulex and CELEX. The optimal hyperparameter r is un-
known and needs to be empirically chosen. As another so-
lution, there are new adaptive algorithms [27] which allow
AROW to adjust the hyperparameter r in each update. It can
be considered as future work.

7. Conclusion

We proposed Structured AROW extending AROW to struc-
tured learning and evaluated it on various g2p tasks. In an
evaluation experiment on dictionaries created using collec-
tive knowledge such as Beep and Wiktionary, our proposed
approach significantly improved phoneme and word error
rate compared with MIRA, by avoiding overfitting. Our pro-
posed approach achieves a 6.8% error reduction rate com-
pared to MIRA in terms of phoneme error rate on Beep.
The result revealed that our proposed approach is more suit-
able than MIRA for datasets without a cross-check of lan-
guage experts and for application to difficult tasks having
inconsistent rules for pronunciation annotation. In addition,
the learning speed of our proposed approach was faster than
MIRA on the majority of datasets.

As future work, to further improve our proposed ap-
proach, we will consider an approach that approximately
handles the covariance between two features in Σ within the
limits of memory, or automatically adjusts r.
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