
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014
1535

PAPER

A Correctness Assurance Approach to Automatic Synthesis of
Composite Web Services∗

Dajuan FAN†a), Zhiqiu HUANG†, Nonmembers, and Lei TANG††, Member

SUMMARY One of the most important problems in web services appli-
cation is the integration of different existing services into a new composite
service. Existing work has the following disadvantages: (i) developers are
often required to provide a composite service model first and perform for-
mal verifications to check whether the model is correct. This makes the
synthesis process of composite services semi-automatic, complex and inef-
ficient; (ii) there is no assurance that composite services synthesized by us-
ing the fully-automatic approaches are correct; (iii) some approaches only
handle simple composition problems where existing services are atomic.
To address these problems, we propose a correct assurance approach for au-
tomatically synthesizing composite services based on finite state machine
model. The syntax and semantics of the requirement model specifying
composition requirements is also proposed. Given a set of abstract BPEL
descriptions of existing services, and a composition requirement, our ap-
proach automatically generate the BPEL implementation of the composite
service. Compared with existing approaches, the composite service gen-
erated by utilizing our proposed approach is guaranteed to be correct and
does not require any formal verification. The correctness of our approach is
proved. Moreover, the case analysis indicates that our approach is feasible
and effective.
key words: web services, composite service, FSM model, automatic syn-
thesis, composition requirement

1. Introduction

As one of the important technologies for realizing services
oriented architecture (SOA), web services has proved effec-
tive for the application-integration problem in distributed,
dynamic and heterogeneous environments. Due to limited
functionalities provided by single web services, they are of-
ten composed to form a value-added composite service. As
the manual development of the new composite service is
regarded as a difficult and error-prone task, the automatic
synthesis of a composite service, i.e., how to automatically
compose existing services to form a correct composite ser-
vice, has become an important issue in the field of web ser-
vices. As the basic failure of a system, deadlocks can oc-

Manuscript received March 6, 2013.
Manuscript revised December 30, 2013.
†The authors are with the College of Computer Science and

Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, 210016, P.R. China.
††The author is with the College of Electronics and Information

Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing, 210016, P.R. China.

∗This work in this paper is supported by the National Nature
Science Foundation of China (No. 61272083, No. 61100034 and
No. 61170043), the National High-Tech Research and Develop-
ment Plan of China (No. 2009AA010307), and China Postdoctor
Research Foundation (20110491411).

a) E-mail: fanbingjie523@126.com (Corresponding author)
DOI: 10.1587/transinf.E97.D.1535

cur under many situations, e.g, when a component service
and its composite service are waiting to receive some mes-
sage from the other at the same time, and when a message
in a component service do not have the correspondence in
its composite service. Thus, deadlocks should be avoided
when synthesizing a composite service. In other words,
the composite service to be synthesized need guarantee a
deadlock-free interaction with existing services. Besides,
the synthesized composite service should also satisfy com-
position requirements the users specify, via interactions with
these existing services. Hence, the correctness of a com-
posite service includes two aspects: deadlock-freeness and
requirement satisfaction [1], [2].

There have been many efforts to synthesize composite
services [3]–[8]. However, all of them require developers to
provide a composite service model first. In order to ensure
the correctness of the composite service, developers need
to perform formal verifications such as model checking to
verify whether the provided composite service model satis-
fies the correctness constraints. If it is incorrect, developers
must re-design the model and perform verifications again.
The process of design, verification, and re-design makes the
synthesis of composite services semi-automatic, often time
consuming and costly.

Recently, adaptor-based service composition ap-
proaches have received significant attention [9]–[12]. Ap-
proaches belonging to this kind aim at automatic synthe-
sis of a composite service called “adaptor” to ensure the
deadlock-free interactions with existing services. However,
they do not take into account composition requirements. A
composite service synthesized by this kind of approaches
may not satisfy the given requirements and hence is not en-
sured to be correct.

In addition, several work has been proposed to sup-
port automatic synthesis of composite services which can be
adopted exclusively for modeling simple composition prob-
lems, where existing services are atomic, see, e.g, [13]–[15].
They do not take behavioral descriptions of web services
into account, like abstract BPEL processes. In other work
from [16], there is no special solution to deal with deadlock,
and hence, in order to ensure the deadlock-freeness aspect,
the designers need to specify the deadlocking interactions.
However, since the deadlocking interactions (i.e., the inter-
actions which cause deadlocks) can occur under many situa-
tions during the interactions among a composite service and
its environment, i.e., existing services to be composed, they
are usually hard to be predicted and specified, especially for

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

1536
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014

large-scale web services applications.
In this paper, we present a correctness assurance ap-

proach for automatically synthesizing a composite service
with services exposing interaction protocols, and with com-
position requirements expressing temporal constraints on
the service interactions. Given a set of abstract BPEL pro-
cesses describing interaction protocols of existing services,
and a composition requirement expressing temporal con-
straints on their interactions, our approach automatically
generates the BPEL implementation of the composite ser-
vice by using the finite state machine (FSM) model as an
intermediate formal language. Composition requirements
are also formalized using our proposed FSM-based model
with a clear syntax and semantics. The basic idea of our au-
tomatic synthesis approach is first to obtain an initial model
of the composite service that reflects all the interactions be-
tween existing services. We then operate on the initial model
to derive the deadlock-free model of the composite service
which ensures the deadlock-freeness aspect of being a cor-
rect composite service, and finally we derive the final model
of the composite service by filtering these interactions vio-
lating the given composition requirements to satisfy the re-
quirements of correctness.

The composite service automatically synthesized by
utilizing our proposed approach is ensured to be correct.
Unlike existing approaches, where the process of design,
verification, and re-design makes the synthesis of composite
services semi-automatic and time consuming, it does not re-
quire developers to provide a prior composite service model.
The correctness of our proposed approach is proved. In ad-
dition, the feasibility of our approach is validated by means
of an explanatory example throughout the paper.

The rest of the paper is organized as follows. Section 2
first introduces the formal models for specifying existing
services, the composite service and the interactions between
a set of existing services and their composite service respec-
tively. Further, it illustrates the problem of synthesizing the
correct composite service through an explanatory example
which will be used all along the paper. Section 3 proposes a
requirement model with a clear syntax and semantics for ex-
pressing temporal properties given by composition require-
ments. Section 4 shows our synthesis process for the correct
composite service and validates our approach based on the
explanatory example. Section 5 gives a comparison with
related work and finally, Sect. 6 ends the paper with some
concluding remarks.

2. Problem Description

2.1 Preliminaries

In the paper, existing services which are composed to form
a composite service are also called component services.
To support automatic synthesis of a correct composite ser-
vice for a set of component services and a given composi-
tion requirement, the formal modeling and analysis methods
should be utilized. We choose FSM model as the adopted

formalism in this paper. The reason for using FSM model is
that this formalism is intuitive and simple, and fairly easy to
understand for users. Besides, FSM model is sufficient for
characterizing the interactions aspect of services which we
focus on in this paper.

Definition 1 (FSM). A FSM model is a quintuple M =
(S , L,T, I, F),where S is a set of states, L is a set of transition
labels, T ⊆ S × L × S is a set of transitions, I ∈ S is the
initial state and F ⊆ S is a set of final states. The transition
t = (s, μ, s′) is denoted as t = s

μ−−→ s′.
The labels in the FSM model can be an action which

represents a component service sends or receives a message,
labeled message or labeled message expression which rep-
resents message exchange between component services.

Definition 2 (Trace). Let M = (S , L,T, I, F) be a FSM
model, a trace of M is a μ ∈ L∗ defined in such a way that

μ = μ1μ2 . . . μn∧s0
μ1−−→ . . . μn−−→ sn where s0, . . . , sn ∈ S , s0 =

I, sn = F, μ1, . . . , μn ∈ L. The set of traces of M is denoted
as Trace(M).

Definition 3 (Deadlock State and Deadlock Trace).
Let M = (S , L,T, I, F) be a FSM model, a state s ∈ S is a
deadlock state for M if and only if s � F ∧ ¬∃a ∈ L, s′ ∈
S : (s, a, s′) ∈ T . If there exists a deadlock state in M, we
denote it as Deadlock(M)= True. Otherwise, we denote it
as Deadlock(M)= False. The set of deadlock states in M
is denoted as S dead(M). A μ ∈ L∗ is a deadlock trace of M

if and only if μ = μ1μ2 . . . μn ∧ s0
μ1−−→ . . .

μn−−→ sn where
s0, . . . , sn ∈ S , s0 = I, sn = S dead(M), μ1, . . . , μn ∈ L.

2.2 Component Service Model

As mentioned in Sect. 1, a correct composite service to
be synthesized needs to have appropriate interactions (i.e.,
deadlock-free and requirement-satisfying interactions) with
component services. Abstract BPEL processes are often
used to describe interaction protocols (also called behaviors)
of component services. Due to the lack of precise semantics,
abstract BPEL processes need to be translated into the corre-
sponding FSM-based models, which are called SM models
in this paper.

Definition 4 (Component Service Model, SM for
short). A component service can be described by a spe-
cial FSM model SM = (S , A,T, I, F),where S is a set of
service states; I ∈ S is the initial state; F ⊆ S is the set
of final states; A ⊆ {!, ?} × ∑M is a set of service actions;
T ⊆ S × A × S is a set of transitions.

A message m ∈ ∑M corresponds to an operation in
WSDL specifications of component services, where the
symbol

∑
M represents the set of messages. The symbols

”!m” and ”?m” denote the send action and receive action
of message m respectively. We define complementarity as
?m =!m and !m =?m.

Abstract BPEL processes, which abstract from the
service internal activities, only include basic communi-
cation activities (<invoke> activity, <reply> activity and
<receive> activity) and structured activities (<flow> activ-

FAN et al.: A CORRECTNESS ASSURANCE APPROACH TO AUTOMATIC SYNTHESIS OF COMPOSITE WEB SERVICES
1537

ity, <sequence> activity, <switch> activity, and so on). Ac-
cording to the mapping relations between these activities in
abstract BPEL processes and the elements of FSM models
in [17], the SM model representation of a component service
can be easily derived from its abstract BPEL specification.

Example 1 Our explanatory example consists in pro-
viding a composite service for file download and query, say
the FileTQ service, which satisfies the given composition
requirement, by composing three independently designed,
existing component services: DLfile service, RfileInfo ser-
vice and FileServer service.DLfile service is the client-side
service requesting for file download.RfileInfo service is the
client-side service querying for file information. FileServer
service is the server-side service providing download and
information query for a given file. Hereafter we present a
simplification of the abstract BPEL processes for the three
component services. Note that, in order to express the mes-
sage exchanges focused in the paper, we simply use service
names instead of partnerLinks and portTypes.
<process name=”RfileInfo”>
<sequence>
<while>
<invoke operation =”R FN” of FileServer inputVariable=”filename”
outputVariable=”fileinfo”/>

</while>
<invoke operation =”R DC” of FileServer Variable=”disconnect”/>

</sequence>
</process>

<process name=”DLfile”>
<switch>
<while>
<sequence>
<invoke operation =”LI” of FileServer Variable=”login”/>
<invoke operation =”LO” of FileServer Variable=”logout”/>

</sequence>
</while>
<while>
<sequence>
<invoke operation=”DL” of FileServer Variable =” download”/>
<invoke operation=”D FN” of FileServer Variable =” filename”/>
<switch>
<invoke operation =”TX” of FileServer inputVariable=”textformat”
outputVariable =”text” />
<invoke operation =”VD” of FileServer inputVariable=”videoformat”
outputVariable =”video” />

</switch>
</sequence>

</while>
<invoke operation =”D DC” of FileServer Variable=”disconnect”/>

</switch>
</process>

<process name=”FileServer”>
<while>
<pick>
<onMessage operation =”LI” from DLfile Variable=”login”>
<receive operation =”LO” from DLfile Variable=”logout”/>

</onMessage>
<onMessage operation=”DL” from DLfile Variable =”download”>
<sequence>
<receive operation=”D FN” from DLfile Variable =” filename”/>
<switch>
<sequence>
<receive operation =”TX” from DLfile Variable=”textformat”/>
<reply operation =”TX” of DLfile Variable =”text” />

</sequence>
<sequence>
<receive operation =”VD” from DLfile Variable=”videoformat” />
<reply operation =”VD” of DLfile Variable=”video” />
</sequence>

</switch>
<sequence>

</onMessage>
<onMessage operation =”R FN” from RfileInfo Variable=”filename”>

<reply operation =”R FN” of RfileInfo Variable=”fileinfo”/>
</onMessage>
<onMessage operation =”D DC” from DLfile Variable=”disconnect”>
<terminate>

</onMessage>
<onMessage operation =”R DC” from RfileInfo Variable=”disconnect”>
<terminate>
</onMessage>

</pick>
</while>

</process>

The abstract BPEL descriptions of the three component
services are translated into corresponding SM models de-
picted in Fig. 1. According to SM models of the three com-
ponent services, they are described as follows:

-DLfile service first sends download request (!down-
load), and then sends the filename of the requested file (!file-
name) and download format (!textformat or !videoformat)
to FileServer service, finally it receives the downloaded file
from FileServer service (?text or ?video). When starting or
ending a download process, it can login or logout (!login or
!logout), or disconnect itself with FileServer service (!dis-
connect).

-RfileInfo service first sends the filename (!filename) of
the queried file and then receives the file information (?file-
info).When starting or ending a query process, it can dis-
connect itself with FileServer service (!disconnect).

-FileServer service first receives a request for provid-
ing file information (?filename) from RfileInfo service or a
request for providing file download (?download) from DL-
file service. In the first case, it sends the corresponding file
information (!fileinfo) to DLfile service. In the second case,
it continues to receive the filename (?filename) and down-
load format of the file (?textformat or ?videoformat) to be

Fig. 1 SM models for the DLfile serice, RfileInfo service and FileServer
service.

1538
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014

downloaded, and then sends the file in the corresponding
format(!text or !video). When starting or ending a down-
load process with DLfile service, it can receive the login
or logout request (?login or ?logout), or the disconnect re-
quest (?disconnect). When starting or ending a query pro-
cess with FileServer service, it can receive the disconnect
request (?disconnect).

The composition requirement gives temporal properties
as follows: “file download in video format is performed be-
tween FileServer service and DLfile Service under the login
mode. Moreover, file download in text format is performed
between FileServer service and DLfile Service under the lo-
gout mode”.

Indeed, component services which are developed by
different third-parties, may have different operation defini-
tions i.e., there may not be a direct syntactical correspon-
dence between messages in different component services.
Since in this work we are focusing on automatically synthe-
sizing a correct composite service at the level of the service
interactions, we consider this problem out of the scope of
this paper. Hereafter, we will assume that messages between
component services already match since users already pro-
vide correspondences between messages of different com-
ponent services in advance.

2.3 Composite Service Model and Interaction Model

A composite service interacts with a set of component ser-
vices to achieve a specific business function. We assume
that a composite service interacts with component services
via synchronous communication. This is not a limitation be-
cause we can always simulate an asynchronous service com-
position [18] by a synchronous one with the introduction of
a buffer component service.

In order to describe interactions between a composite
service and a set of component services, we need to relate
actions of a composite service to concrete component ser-
vices by using a labeling function.

Definition 5 (Labeling Function fi). Let SM =

(S , A,T, I, F) be the model of a component service, fi is a
labeling function, i ∈ {1, · · · ,N}, the following formulas
holds: fi(A) = {a(i) | a ∈ A}, fi(A) = {a(i) | a ∈ A}.

The labeled actions ?m(i) and !m(i) represent that the
composite service receives the message m from the ith com-
ponent service and sends the message m to the ith compo-
nent service respectively, i ∈ {1, · · · ,N}.

Definition 6 (Composite Service Model, CM for
short). Let SMi = (S i, Ai,Ti, Ii, Fi) be the models of N
component services, i ∈ {1, · · · ,N}, where N stands for
the number of component services to be composed. Their
composite service can be described by a special FSM model
CM = (S , A,T, I, F),where:
−S ⊆ S 1×· · ·×S N , I = (I1, · · · , IN), F ⊆ F1×· · ·×FN ;
−A ⊆ ⋃N

i=1 fi(Ai), T ⊆ S × A × S .
The states in the CM model correspond to combina-

tions of states of N SM models. For example, the composite
service is in its state (s1, · · · , sN) if and only if each compo-

nent service i is in its state si. The formula A ⊆ ⋃N
i=1 fi(Ai)

means that every action in CM model has the correspond-
ing complement action in SMi model. Specially, for each
action ?m(i) in the CM model, there exists the send action
!m in the SMi model which represents the ith component
service sends the message m, and for each action !m(j) in
the CM model, there exists the receive action ?m in the SM j

model which represents the jth component service receives
the message m, i, j ∈ {1, · · · ,N}.

A correct composite service needs to have deadlock-
free and requirement-satisfying interactions with compo-
nent services. So in the following we will give the inter-
action model between a composite service and a set of com-
ponent services.

Definition 7 (Interaction Model between a Com-
posite service and Component Services). Let SMi =

(S i, Ai,Ti, Ii, Fi) be models of N component services, i ∈
{1, · · · ,N} and CM=(S C , LC ,TC , IC , FC) be the model of a
composite service, the interaction model between a compos-
ite service and N component services is the SM1| · · · |SMN

CM=(S , LM,T, I, F), where:
−S ⊆ S 1×· · ·×S N , I = (I1, · · · , IN), F ⊆ F1×· · ·×FN ;
−LM ⊆ ∑M ×{1, · · · ,N}×{1, · · · ,N} is a set of labeled

messages,
∑

M ⊆ ⋃N
i=1
∑i

M , where the symbol
∑i

M denotes
the set of messages of the ith component service;
−(s1, · · · , sN), m(i, j), (s′1, · · · , s′N) ∈ T⇔∀(s1, · · · , sN)

∈ S , ∃i, j ∈ {1, · · · ,N}, (si, !m, s′i) ∈ Ti ∧ (s j, ?m, s′j) ∈
T j∧ ((s1, · · · , sN), ?m(i), s∗), (s∗, !m(j), (s′1, · · · , s′N)) ∈ TA∧
∀k ∈ {1, · · · ,N} : (k � i, j ⇒ s′k = sk) ∧ s∗ =
(s1, · · · , s′i , · · · , s j, · · · , sN).

States in the interaction model correspond to states in
the CM model, i.e., the combinations of states of N SM
models. The computation of the transitions expresses that,
given some state s in the interaction model, there is some

transition t : s
m(i, j)−−−−→ s′ outgoing from this source state if

and only if there are two component services, i and j, that
perform !m and ?m from states si and s j in their SM mod-
els respectively, while the composite service performs the
receive action ?m(i) from the source state s and reaches the
state s∗ in which the composite service continues to perform
the send action ?m(j) and comes to the target state s′, where
i � j.The labeled message m(i, j) in the interaction model
denotes that the message m exchange between two compo-
nent services, i and j, via their composite service.

3. Requirement Model

Our aim is to automatically synthesize a correct composite
service that interacts with component services seamlessly
and satisfies the given composition requirements. In this
paper, we focus on the important kind of composition re-
quirements which express the desired temporal properties
with regard to the services interaction. So in this section,
we will introduce a formal model that can specify temporal
properties given by composition requirements.

In terms of model checking, temporal properties are

FAN et al.: A CORRECTNESS ASSURANCE APPROACH TO AUTOMATIC SYNTHESIS OF COMPOSITE WEB SERVICES
1539

usually expressed in temporal logic formulae, e.g., Linear-
Time Temporal Logic (LTL) by making use of temporal op-
erators. However, as discussed in [19], expressing temporal
properties in those logics-based languages is a difficult task
due to the inherent complexity of these languages. Apart
from the advantages of FSM model discussed in Sect. 2.1,
we present a FSM-based requirement model (RM model
for short) for the reason of unified formal modeling. Be-
sides, It is well-known that all Linear temporal logic formu-
lae can be automatically translated into equivalent Buchi au-
tomata [20], [21], which are FSMs on infinite words [22]. In
particular, the translation from the temporal operators such
as “G”, “F”, “U”, to FSMs is discussed in [20]. There-
fore, the FSM-based requirement model proposed in our
approach, is sufficient to specify temporal constraints ex-
pressed by temporal operators such as “G”, “F”, “U”.

In our approach, temporal properties given by compo-
sition requirements are represented as the set of traces of the
corresponding FSM-based requirement model, where traces
describe the permitted temporal constraints on message ex-
changes between component services. As introduced in
Definition 7, the labeled message m(i, j) describes the mes-
sage m exchange between the ith component service and the
jth component service via their composite service. In or-
der to facilitate expressions of some complex composition
requirements, we introduce the concept of labeled message
expression.

Labeled message expressions are generated according
to the following syntax:

LMEx ::= m(i, j)|exc(m(i, j))|{m1(i1, j1), · · · ,mk(ik, jk)}
|exc{m1(i1, j1), · · · ,mk(ik, jk)}

The symbol Ex(LM) is used to denote a set of labeled
messages expressions generated by a set LM of labeled mes-
sages according to the aforementioned syntax.

The semantics of labeled message expressions are
given by the following semantic equivalence formulas,
where the binary relation �Ex represents two labeled mes-
sage expressions are semantically equal:

(1) m1(i1, j1) �Ex m(i, j)⇔ m = m1 ∧ i = i1 ∧ j = j1;
(2) exc(m1(i1, j1)) �Ex m(i, j)⇔ m � m1 ∨ i � i1 ∨ j �

j1;
(3) {m1(i1, j1), · · · ,mk(ik, jk)} �Ex m(i, j) ⇔ ∃l ∈

{1, · · · , k} : m(i, j) �Ex ml(il, jl);
(4) exc{m1(i1, j1), · · · ,mk(ik, jk)} �Ex m(i, j) ⇔ �l ∈

{1, · · · , k} : m(i, j) �Ex ml(il, jl);
According to the above semantic equivalence formulas,

the labeled message expression {m1(i1, j1), · · · ,mk(ik, jk)}
represents any labeled message in the set {m1(i1, j1), · · · ,
mk(ik, jk)}, the labeled message expression exc(m1(i1, j1))
represents any labeled message in LM except the la-
bel message m1(i1, j1), and the labeled message expres-
sion exc{m1(i1, j1), · · · ,mk(ik, jk)} represents any labeled
message in LM except the label messages m1(i1, j1),· · · ,
mk(ik, jk).

Definition 8 (Requirement Model, RM for short).
A composition requirement expressing temporal prop-
erties can be described by a special FSM model

Fig. 2 RM model describing the composition requirement for the com-
posite service FileTQ.

RM=(S , LM, LE,T, I, F),where:
-S is a set of abstract states;
-LM ⊆ ∑M ×{1, · · · ,N} × {1, · · · ,N} is a set of labeled

messages,
∑

M ⊆ ⋃N
i=1
∑i

M , where the symbol
∑i

M denotes
the set of messages of the ith component service;

-LE ⊆ Ex(LM) is a set of labeled message expressions;
-T ∈ S × LE × S is a set of transitions;
-I ∈ S is the initial abstract state;
-F ⊆ S is a set of final abstract states;
Each of the abstract state in a RM model corre-

sponds to one or more actual states in the correspond-
ing interaction model. RM model is always in abstract
forms and hence the labels of loop transitions in a RM
model may be in the form of {m1(i1, j1), · · · ,mk(ik, jk)}
or exc{m1(i1, j1), · · · ,mk(ik, jk)}, which indicates that these
labeled messages happen without temporal constraints.
Therefore, users often do not need to have a prior under-
standing of all SM models details, when giving the RM
model.

Example 2. The RM model describing the composition
requirement in example 1 is shown in Fig. 2. Numbers 1,2,3
in the labeled messages depicted in Fig. 2 correspond to the
DLfile service, RfileInfo service and FileServer service re-
spectively. According to the RM model in Fig. 2, the labeled
messages videoformat(1,3) and video(1,3) happen after the
labeled message login(1,3), which means that “file down-
load in video format is performed between FileServer ser-
vice and DLfile Service under the login mode”. The labeled
messages textformat(1,3), text(1,3) happen before the la-
beled message login(1,3) (or happen after the labeled mes-
sage logout(1,3)), which means that “file download in text
format is performed between FileServer service and DLfile
Service under the logout model”. So the RM model depicted
in Fig. 2 can express the composition requirement in exam-
ple 1.

4. The Automatic Synthesis Approach

4.1 The Problem of Synthesizing Composite Services

Based on the discussion in the previous sections, we for-
mally define the automatic synthesis problem of a correct
composite service as follows: given N SM models specify-

1540
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014

ing interaction protocols of component services and the RM
model expressing temporal constraints on the services inter-
actions given by composition requirements, the CM model
of a composite service is automatically constructed, satisfy-
ing the following formulas:

Deadlock(SM1 | · · · |SMN |CMF) = False. (4.1)
(SM1| . . . |SMN |CMF) |= RM. (4.2)

where the formula C |= P represents that the model C satis-
fies the requirement P.

Formula (4.1) indicates that the synthesized composite
service interacts with component services seamlessly, i.e.,
the interactions between component services and their com-
posite service are deadlock-free, and Formula (4.2) states
that the synthesized composite service obeys the temporal
constraints given by composition requirements via the inter-
actions with component services. Therefore, the compos-
ite service implemented according to the constructed CM
model satisfying the two formulas is guaranteed to be a cor-
rect composite service.

The basic idea of our correctness assurance approach
for automatically synthesizing a composite service is to ob-
tain firstly an initial model of the composite service that re-
flects all possible interactions between component services.
However, the interactions between component services via
their composite service which is generated according to the
initial model of it may contain the interactions leading to
deadlocks. So then, by operating on the obtained initial
model, the deadlock analysis is performed and subsequently
the deadlock-free model of the composite service is derived,
which ensures the deadlock-freeness aspect of being a cor-
rect composite service. To ensure the requirement satisfac-
tion aspect of correctness, by operating on the deadlock-free

Fig. 3 The automatic synthesis procedure for correct composite services.

model, the final model of the composite service is produced,
which satisfies the given composition requirement.

Therefore, our correctness assurance approach to auto-
matic synthesis of composite services follows these steps
described in Fig. 3. Firstly, the initial model of a com-
posite service denoted as CMI is generated. Secondly,
the deadlock-free model denoted as CMD is gained by
eliminating deadlock traces of the CMI model to ensure
deadlock-free interactions between component services and
their composite service. Then, the final model of the com-
posite service called CMF model is derived from the CMD

model by filtering the interactions which violate the given
composition requirement expressed by the RM model. Fi-
nally, the concrete BPEL implementation of the composite
service, which can be executed on standard business pro-
cesses execution engines, is automatically generated accord-
ing to the CMF model.

In the following subsections we will describe these
steps in our synthesis approach separately.

4.2 Synthesis of Composite Service Models

For a set of component services, the CMI model of their
composite service reflects all the possible interactions be-
tween component services. Once a component service sends
a message and another component service is ready to re-
ceive the message, the composite service specified by the
CMI model will first receive the message, and then forward
it to another component service, strictly following its for-
mer message reception. Therefore, when eliminating inter-
actions which lead to deadlocks and filtering interactions
which do not obey the given composition requirement, it
is only required to operate on the CMI model of composite
service.

Algorithm 1 The CMI model synthesis algorithm
Input: N SM models of component services.
Output: the CMI model.
(1) Set the action set A = ∅, the transition set T = ∅,

the initial state I = (I1, . . . , IN), the state set S={I};
(2) Call function CreateCS (I);
Function CreateCS(s[]){

visited[s]=True;
For i=1 to N

For j =1 to N
If (vi= =s[i] ∧ v j= =s[j] ∧ (vi, !m, vi′) ∈ Ti ∧

(v j, ?m, v j
′) ∈ T j) Then{

A = A ∪ {?m(i), !m(j)};
For k=1 to N

If k = i Then s′[k] = vi′;s′′[k] = vi′;}
ElseIf k = j Then {
s′[k] = s[k];s′′[k] = v j

′;}
Else {s′[k] = s[k];s′′[k] = s[k];}

T = T ∪ {(s, ?m(i), s′), (s′, !m(j), s′′)};
S = S ∪ {s′, s′′};
If (s′′ � Final∧visited[s′′]==False) Then
CreateCS(s′′);
}

FAN et al.: A CORRECTNESS ASSURANCE APPROACH TO AUTOMATIC SYNTHESIS OF COMPOSITE WEB SERVICES
1541

}
Initially, Algorithm 1 creates the CMI model with one

state I (corresponding to the combination of the respective
initial states of each component service) and no transitions.
Then it calls the recursive function CreateCS with the cur-
rent state I of CMI model as the parameter value. The
function CreateCS finds pairs of complementary transitions
(vi, !m, vi′) ∈ Ti and (v j, ?m, v j

′) ∈ T j among N component
services from their respective current states s[i] and s[j],
and adds the corresponding labeled actions ?m(i) and !m(j)
to the set A, one receive action followed by the other send
action. Then, the two successors s′ and s′′ of the state s that
the CMI model successively reaches after performing the la-
beled action ?m(i) and the labeled action !m(j) from the state
s are computed and added to the set S . The set T is also up-
dated by adding the two new transitions t = (s, ?m(i), s′) and
t′ = (s′, !m(j), s′′). Then the function CreateCS recursively
calls itself with the current state s′′of CMI model. The pro-
cedure lasts until the state s′′ reaches the final states (cor-
responding to the combination of the respective final states
of each component service). Supposing that the maximum
number of transitions among N SM models is |T |, we can
conclude that the maximum number of transitions of CMI

model is N|T | according to the CMI model generation pro-
cess in Algorithm 1, and hence the time complexity of Al-
gorithm 1 is deduced to be O(N2|T |2) in the worst case.

The CMI model generated by Algorithm 1 may not
be deadlock-free. Deadlock traces of a CMI model repre-
sent the interactions leading to deadlocks between a com-
posite service and component services. In order to ensure
the deadlock-free interactions, we should restrict the set
of all possible interactions to deadlock-free interactions by
eliminating deadlock traces of the CMI model and gain the
deadlock-free model denoted as CMD.

The CMD model may include interactions which vio-
late the given composition requirement, so we will intro-
duce the synchronous product of RM model and CM model
to filter these interactions and gain the final model denoted
as CMF. Therefore, the composite service implemented
according to the CMF model is guaranteed to be correct
because it can not only interacts with component services
seamlessly but also satisfies the given composition require-
ment by interactions with them.

According to Definition 7, the two successive labeled
actions ?m(i) and !m(j) in CM models mean that a com-
posite service receives the message m from the ith com-
ponent service and sends it to the jth component service.
The labeled message m(i, j) represents the message ex-
change between component service i and j via the com-
posite service. Hence, the two successive labeled actions
?m(i) and !m(j) correspond to these labeled message expres-
sions which are semantically equivalent to the labeled mes-
sage m(i, j). Based on the above discussion, we will give
the trace equivalence relation between CM model and RM
model, and their synchronous product in the following.

Definition 9 (Trace Equivalence Relation between
RM Model and CM Model). Two traces μC = μ

C
1
μC

2
. . . μC

n

and μR = μ
R
1
μR

2
. . . μR

l are the traces of CM model and RM
model respectively, we say that the two traces are equiv-
alent, denoted as μC ≈ μR, if and only if n=2l and ∀k ∈
{1, 2, . . . , l} : μA

2k−1
=?m(i) ∧ μA

2k
=!m(j) ∧ m(i, j) �Ex μ

R
k
.

Definition 10 (The Synchronous Product of RM
model and CM Model). Let CM=(S C , LC ,TC , IC , FC) be
a CM model and RM=(S R,LMR,LER,TR, IR, FR) be a RM
model, their synchronous product is SP(CM,RM)=(S ,A,T ,I,
F), where:

-S ⊆ S C × S R,I = (IC , IR),F ⊆ FC × FR,
-((s, r), ?m(i), (s′, r)), ((s′, r), !m(j), (s′′, r′)) ∈ T ⇔
∃(s, ?m(i), s′), (s′, !m(j), s′′) ∈ TC : ∃(r, l, r′) ∈ TR

: m(i, j) �Ex l.
According to Definition 9-10, SP(CM,RM) only in-

cludes these traces of the CM model which have equiva-
lent traces in the RM model. Since traces of the RM model
give the temporal constraints on message exchanges be-
tween component services, SP(CM,RM) filters the interac-
tions which do not obey these temporal constraints specified
by the RM model.

Based on the above discussion in this section, we sum-
marize the steps of our entire synthesis approach used to
automatically build the final model CMF of the correct com-
posite service by performing the following Algorithm 2.

Algorithm 2 The CMF model synthesis algorithm
Input: N SM models and an requirement model RM.
Output: the CMF model.
(1) derive CMI model according to Algorithm 1;
(2) If ((Deadlock(CMI)==True)

Then Eliminate all the deadlock traces of CMI

model and derive CMD model;
Else CMD= CMI;

(3) If (CMD is empty) Then exit;
(4)

(4.1) CMF=SP(CMD,RM);
(4.2) If (CMF is empty) Then {output “No correct

composite service exists”; exit;}
(5) output CMF;
Firstly, the CMI model is generated according to Algo-

rithm 1. Then, if the generated CMI model contains dead-
lock states (i.e., the formula Deadlock(CMI)==True holds)
according to Definition 3, all the deadlock traces of the CMI

model are eliminated to derive the CMD model. The dead-
lock state containment check and the deadlock traces elim-
ination for CMI model in Step 2 are realized by means of a
classical depth-first visit. In particular, the procedure for re-
alizing Step 2 begins with the initial state of the CMI model
and set it as the current state. If a deadlock state has been
found, the deadlock state and all its incoming transitions are
removed. Otherwise, the procedure is recursively performed
on the non-visited successors of the current state. The pro-
cedure ends when all the states of the CMI model have been
visited. According to the above procedure, if the generated
CMI model contains deadlock states, all the deadlock traces
of the generated CMI model can be removed in order to au-
tomatically derive the CMD model.

1542
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014

Fig. 4 CMI model for the composite service FileTQ.

In the next step, the empty determination of CMD

model is done. If it is not empty, the synchronous prod-
uct of CMD model and RM model, i.e., SP(CMD,RM) is
computed. The computation of SP(CMD,RM) is formal-
ized through Definition 10. Specially, the procedure for
computing SP(CMD,RM) first builds the set of states of
SP(CMD,RM) by performing the Cartesian product of the
set of states of CMD model and RM model. Then, the set
of transitions of SP(CMD,RM) is generated according to the
definition of transitions in Definition 10. Finally, the algo-
rithm discards the states that can not be reached from the
initial state (see the definition of the initial state in Defini-
tion 10). According to the above procedure which comes
directly from Definition 10, SP(CMD,RM) is computed and
thus the CMF model is derived. If the derived CMF model
is empty, it means that there exists no correct composite ser-
vice for theseN component services. Otherwise, the CMF

model is output as the final model of the correct compos-
ite service. The time complexity of deadlock elimination is
O(N|T |+M) where M is the number of states of CMI model,
and the time complexity of synchronous product computa-
tion is O(N|T |) according to Definition 10. So we can con-
clude the time complexity of Algorithm 2 is O(N2|T |2) due
to the fact that M is typically fewer than N2|T |2.

Example 3. Fig. 4 gives the CMI model for the com-
posite service FileTQ generated by Algorithm 1. The trace

s1
?download(1)−−−−−−−−−−−−−→ s2

!download(3)−−−−−−−−−−−−−→ s3
?filename(2)−−−−−−−−−−−−→

s5
?filename(3)−−−−−−−−−−−−→ s7 in the CMI model is a deadlock trace.

This trace reflects the interaction leading to deadlock be-
tween the three component services and their composite
service and should be eliminated. So the two transitions

s3
?filename(2)−−−−−−−−−−−−→ s5 and s5

?filename(3)−−−−−−−−−−−−→ s7 in the CMI

model are eliminated and CMD model is obtained (the fig-
ure describing the CMD model is omitted due to space lim-
itations).

Fig. 5 CMF model for the composite service FileTQ.

According to the RM model depicted in Fig. 2, the syn-
chronous product of RM model and CMD Model is computed
and the final model CMF for composite service FileTQ is
derived, as shown in Fig. 5. Note that, numbers 1,2,3 in the
labeled actions correspond to the DLfile service, RfileInfo
service and FileServer service depicted in Fig. 4 and Fig. 5
respectively. For all the traces of the CMF model, the tran-

sition sequence s20
?videofomat(1)−−−−−−−−−−−−−−−→ s21

!videoformat(3)−−−−−−−−−−−−−−−→
s22

?video(3)−−−−−−−−−→ s23
?text(1)−−−−−−−→ s1 appears after the transition

sequence s1
?login(1)−−−−−−−−−→ s14

!login(3)−−−−−−−−→ s16, which means that
the composite service satisfies the temporal constraint “file
download in video format is performed between FileServer
service and DLfile Service under the login mode”, and the

transition sequence s5
?textfomat(1)−−−−−−−−−−−−−→ s6

!textformat(3)−−−−−−−−−−−−−→
s7

?text(3)−−−−−−−→ s8
?text(1)−−−−−−−→ s1 appears before the transition

sequence s1
?login(1)−−−−−−−−−→ ws14

!login(3)−−−−−−−−→ s16 or after the

transition sequence s16
?loginout(1)−−−−−−−−−−−−→ s15

!loginout(3)−−−−−−−−−−−−→ s1,
which means that the composite service satisfies the tem-
poral constraint “file download in text format is performed
between FileServer service and DLfile Service under the lo-
gout model”. Therefore, the composite service FileTQ im-
plemented according to the CMF model in Fig. 5 is correct
because it can not only interact with the three component
services without deadlock but also satisfy temporal proper-
ties specified by the composition requirement via interac-
tions with these component services.

4.3 Implementation of Composite Services

The main part of the transformation is concerned with the
encoding of the state and transition structure of the CMF

model. Additionally, BPEL implementations include the
following aspects: WSDL interfaces partnership definition,

FAN et al.: A CORRECTNESS ASSURANCE APPROACH TO AUTOMATIC SYNTHESIS OF COMPOSITE WEB SERVICES
1543

basic activities (e.g., <receive>, <reply>, <invoke> activ-
ities), or structured activities (e.g., <sequence>, <flow>,
<switch>, <pick> activities). The transform process is
specifically as follows:

(1) A partner link is created for each component ser-
vice, and variables are created for each received/emitted
message.

(2) The <Process> activity and </Process> activity are
generated, which logically mark the initiation of the BPEL
process, as well as their termination, respectively.

(3) The transition in the form of (u, ?m(i), u′) is en-
coded as a <receive> activity or a <onMessage> event, and
the transition in the form of (v, !m(j), v′) is encoded as a
<invoke> activity. Specifically, if the number of transitions
outgoing from the state s is greater than or equal to 2 and
they are all receive transitions, then each receive transition
is encoded as a <onMessage> event, otherwise each of them
is encoded as a <receive> activity.

(4) According to the structural position where a tran-
sition is in the CMF model, its basic activity is placed in
the corresponding structured activity such as <sequence>,
<flow>, <switch>, <pick> activities and all the activities
including basic activities and structured activities are placed
between <Process> activity and </Process> activity.

According to the above procedure, the CMF model for
the synthesized composite service FileTQ in Fig. 5, leads to
the following BPEL process:

<process name=” FileTQ”>
<while>
<pick>
<onMessage operation=”DL” from DLfile Variable =” download”>
<invoke operation =”DL” of FileServer Variable=”download”/>
<receive operation=”D FN” from DLfile Variable =” filename”/>
<invoke operation=”D FN” of FileServer Variable =” filename”/>
<receive operation =”TX” from DLfile Variable=”textformat”/>
<invoke operation =”TX”of FileServer Variable=”textformat”/>
<receive operation =”TX” from DLfile Variable=”text”/>
<invoke operation =”TX”of FileServer Variable=”text”/>

</onMessage>
<onMessage operation =”R FN” from RfileInfo Variable=”filename”>
<invoke operation =”R FN” of FileServer Variable=”filename”/>
<receive operation=”D FN” from RfileInfo Variable =” fileinfo”/>
<invoke operation=”D FN” of FileServer Variable =” fileinfo”/>

</onMessage>
<onMessage operation =”D DC” from DLfile Variable=”disconnect”>
<invoke operation =”D DC” of FileServer Variable=”disconnect”/>
<terminate>

</onMessage>
<onMessage operation =”R DC” from RfileInfo Variable=”disconnect”>
<invoke operation =”R DC” of FileServer Variable=”disconnect”/>
<terminate>

</onMessage>
<onMessage operation =”LI” from DLfile Variable=”login”>
<invoke operation =”LI” of FileServer Variable=”login”/>
<assgin><copy> <from> ”True” </from> <to variable=”login ”/>

</copy>
</assign>
<while login==True>
<pick>
<onMessage operation=”DL” from DLfile Variable =” download”>
<invoke operation =”DL” of FileServer Variable=”download”/>
<receive operation=”D FN” from DLfile Variable =” filename”/>
<invoke operation=”D FN” of FileServer Variable =” filename”/>
<receive operation =”VD” from DLfile Variable=”videoformat”/>
<invoke operation =”VD”of FileServer Variable=”videoformat”/>
<receive operation =”VD” from DLfile Variable=”video”/>
<invoke operation =”VD”of FileServer Variable=”video”/>

</onMessage>
<onMessage operation =”R FN” from RfileInfo Variable=”filename”>
<invoke operation =”R FN” of FileServer Variable=”filename”/>
<receive operation=”D FN” from RfileInfo Variable =” fileinfo”/>

<invoke operation=”D FN” of FileServer Variable =” fileinfo”/>
</onMessage>
<onMessage operation =”D DC” from DLfile Variable=”disconnect”>
<invoke operation =”D DC” of FileServer Variable=”disconnect”/>
<terminate>
</onMessage>
<onMessage operation =”R DC” from RfileInfo Variable=”disconnect”>
<invoke operation =”R DC” of FileServer Variable=”disconnect”/>
<terminate>
</onMessage>
<onMessage operation =”LO” from DLfile Variable=”loginout”>
<invoke operation =”LO” of FileServer Variable=”loginout”/>
<assgin><copy> <from> ”False” </from> <to variable=”login

”/></copy>
</assign>
</onMessage>

</pick>
</while>

</onMessage>
</pick>

</while>
</process>

4.4 Correctness of Our Approach

In order to prove the correctness of our proposed synthesis
approach, we need to prove the aforementioned Formulas
(4.1) and (4.2) hold.

Theorem 1 The CMF model synthesized by our pro-
posed approach satisfies the formula Deadlock(SM1| · · ·
|SMN |CMF) = False.

Proof) By contradiction, let us assume that the interac-
tion model SM1 |· · · |SMN |CMF is not deadlock-free and
hence it has a deadlock state s′. It means that there ex-
ists a deadlock trace μ in the interaction model such that

μ = μ1μ2 . . . μn ∧ μn = m(i, j) ∧ s
m(i, j)−−−−→ s′. According to

Definition 7, in the CMF model, there must exist a deadlock
trace μA such that μA = μA

1
μA

2
. . . μA

2n
∧ μA

2n−1
=?m(i) ∧ μA

2n
=

!m(j) ∧ s
?m(i)−−−→ s∗

!m(j)−−−→ s′.
According to Algorithm 2, the CMD model is

deadlock-free because the deadlock traces of it are elimi-
nated by using Step 2 in Algorithm 2 and we can easily
conclude that CMF model is also deadlock-free due to the
computation formula CMF=SP(CMD,RM) in Step 4.1 in Al-
gorithm 2 .

This contradicts the hypothesis that the CMF model has
a deadlock trace μA, and hence the proof is given.

Theorem 2 The CMF model synthesized by our pro-
posed approach satisfies the formula (SM1| . . . |SMN |CMF)
|= RM.

Proof) Also by contradiction, we suppose that
(SM1 |. . . |SMN |CMF) |= RM does not hold, so there
must exist a trace μC in the interaction model SM1

|· · · |SMN |CMF such that μC = m1(i1, j1), . . .mr(ir, jr) ∧
s0

m1(i1, j1)−−−−−−→ s1 . . . , sr−1
mr(ir , jr)−−−−−−→ sr, which has no equivalent

trace in RM model.
According to Definition 7, there must exist a

deadlock trace μA in CMF model such that μA =

?m1(i1), !m1(j1), . . . , ?mr(ir), !mr(jr) ∧ s0
?m1(i1)−−−−−→ s∗0

!m1(j1)−−−−−→
s1, , sr−1

?mr(ir)−−−−−→ s∗r−1

!mr(jr)−−−−−→ sr. Since CMF model is
produced by the formula CMF=SP(CMD,RM) specified by

1544
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014

Step 4.1 of Algorithm 2, we can conclude that there exists a
trace μRM in RM model which is trace equivalent to the trace
μA, i.e., the formula μA ≈ μRM holds.

Since two successive labeled actions ?m(i) and !m(j) in
CMF model correspond to the labeled message m(i, j) in the
interaction model SM1 |· · · |SMN |CMF according to Defi-
nition 7, we can conclude the trace μC is trace equivalent to
the trace μA. Due to the above conclusion μA ≈ μRM , we
can conclude that the trace μC has the equivalent trace μRM

in RM model.
This contradicts the hypothesis that the trace μC has no

the equivalent trace in RM model and, hence, the proof is
given.

To sum up, the correctness of our synthesis approach
is proved according to Theorem 1 and Theorem 2. This
means that the composite service automatically synthesiz-
ing by our proposed approach is guaranteed to satisfy the
correctness constraints of being a correct composite service,
i.e., deadlock-freeness and requirement satisfaction.

5. Related Work

A large number of research work has been developed for
synthesis of composite services to address service composi-
tion issue by using formal methods such as process algebras
(see, e.g, [3], [4]), automata (see, e.g, [5], [6]) or Petri Net
(see, e.g, [7], [8]). For example, in [3], the authors present
a BP-calculus, a π-like calculus and define specific equiva-
lence relations. Based on the theoretical basis, BPEL imple-
mentation of a composite service is verified through formal
specification expressed in this calculus to ensure its correct-
ness. In [5], the authors discuss synchronizability and re-
alizability analysis to check whether it is possible to auto-
matically verify correctness of composite services in asyn-
chronous messages based on guarded automata model. In
[8], the authors present a class of Petri nets called workflow
nets. For this class of Petri nets, a verification tool named
Wolfan has been developed. This tool can verify the proper-
ties of composite services described by BPEL processes.

However, the problem faced by all these approaches
is requiring developers to provide a detailed composite ser-
vice model in advance. This makes the synthesis process
of composite services semi-automatic, complex and inef-
ficient. In our approach, developers need not provide any
prior model of a composite service. BPEL implementation
of the composite service can be automatically derived from
a set of component services exposing interaction protocols,
and a given composition requirement expressing temporal
constraints on the service interactions.

[11] proposes a methodology for automatic generation
of an adaptor to ensure that interactions between two com-
ponent services via the adaptor is deadlock-free, by using an
intermediate workflow language YAWL. In [12], the authors
present a runtime adaptation approach to ensure deadlock-
freeness of the adapted service composition in their execu-
tion process. It relies on an event-based technology which
triggers a specific adaptation action when catching some

event leading to a deadlock. These Approaches focus on
automatic synthesis of a composite service called “adaptor”
to ensure the deadlock-free interactions with component ser-
vices [8], [9]. However, they do not take into account com-
position requirements and hence the composite service syn-
thesized by this kind of approaches is not ensured to be cor-
rect, while our approach goes beyond ensuring deadlock-
freeness by also considering the aspect of requirement sat-
isfaction and the composite service synthesized by our ap-
proach is guaranteed to be correct.

In [13], the authors use AI planning techniques to
address the problem of automatic service discovery and
synthesis of composite services in semantic web services.
While in our approach we assume that component services
are already discovered and thus we do not address the prob-
lem of service discovery. Besides, we tackle automatic syn-
thesis of composite services that is more complex than the
one considered in [13]. Indeed, [13] does not take into ac-
count stateful web service, like our approach does with ab-
stract BPEL processes. This is the case in [14], [15], which
support simple service compositions starting from WSDL-
like specifications of web services.

In [16], each component service is formally specified
as a transition system and the composition requirement can
be viewed as a target service, also described itself as a tran-
sition system. The approach is to synthesize a composite
service realizing the target service. In contrast to our ap-
proach, there is one main assumption to deal with dead-
locks: in order to automatically synthesize a composite ser-
vice which also ensures the deadlock-freeness aspect, they
need to consider a specification of the deadlocking interac-
tion that causes deadlocks. This is a problem because the de-
velopers might not know the deadlocking interactions since
they might be unpredictable.

6. Conclusions

In this paper, we have presented a correctness assurance
approach for automatically synthesizing a composite ser-
vice with services exposing interaction protocols, and with
composition requirements expressing temporal constraints
on the service interactions. Our approach is based on the
modeling that is able to capture the interaction protocols of
services. For what concerns the specification of composi-
tion requirements, the approach also provides formal mod-
els for specifying temporal constraints on the service inter-
actions. Given a set of abstract BPEL processes describing
interaction protocols of existing services and a composition
requirement expressing temporal constraints on their inter-
actions, our approach can automatically generate the BPEL
implementation of the composite service.

The composite service generated by utilizing our pro-
posed approach is guaranteed to be correct and unlike ex-
isting approaches, it does not require developers to provide
a prior composite service model and perform formal veri-
fications on it. The correctness of our approach is proved,
and moreover, the feasibility of it is validated through a case

FAN et al.: A CORRECTNESS ASSURANCE APPROACH TO AUTOMATIC SYNTHESIS OF COMPOSITE WEB SERVICES
1545

analysis throughout the paper.
In our approach, we focused mainly on the level of

service interactions. In future work, we plan to extend
our work to incorporate it with exchange data flows, i.e.,
with services exposing interaction protocols and exchanging
data, and with composition requirements expressing com-
plex constraints not only on the service interactions but also
on the exchanged data.

References

[1] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility veri-
fication for Web service choreography,” Proc. ICWS, 2004, pp.738–
741, 2004.

[2] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “LTSA-WS: A tool
for model-based verification of web service compositions and chore-
ography,” Proc. ICSE, 2006, pp.771–774, 2006.

[3] F. Abouzaid and J. Mullins, “Model-checking Web services orches-
trations using BP-calculus,” Electronic Notes in Theoretical Com-
puter Science, vol.255, pp.3–21, 2009.

[4] G. Tremblay and J. Chae, “Towards specifying contracts and proto-
cols for web services,” Proc. MCETECH, 2005, pp.73–85, 2005.

[5] T. Bultan, J. Su, and X. Fu, “Analyzing conversations of Web ser-
vices,” IEEE Internet Computing, vol.10, no.1, pp.18–25, 2006.

[6] M. Emilia Cambronero, G. Dı́az, V. Valero, and E. Martı́nez, “Val-
idation and verification of Web services choreographies by using
timed automata,” J. Logic and Algebraic Programming, vol.80, no.1,
pp.25–49, 2011.

[7] P. Sun, C.J. Jiang, and M.C. Zhou, “Interactive Web service com-
position based on Petri net,” Trans. Institute of Measurement and
Control, vol.33, no.1, pp.116–132, 2011.

[8] H.M.W. Verbeek and W.M.P. van der Aalst, “Analyzing BPEL pro-
cesses using Petri nets,” Proc. PNCWB, 2005, pp.59–78, 2005.

[9] M. Dumas, B. Benatallah, and H.R. Motahari Nezhad, “Web ser-
vice protocols: Compatibility and adaptation,” IEEE Data Eng. Bull,
vol.31, no.3, pp.40–44, 2008.

[10] W.M.P. Van der Aalst, A.J. Mooij, and S. Christian, “Service in-
teraction: Patterns, formalization, and analysis,” Proc. SFM, 2009,
pp.42–88, 2009.

[11] B. Benatallah, F. Casati, and D, Grigori, “Developing adapters for
Web services integration,” Proc. CAiSE, 2005, pp.415–429, 2005.

[12] Y. Taher, A. Ait-Bachir, and M.C. Fauvet, “Diagnosing incom-
patibilities in Web service interactions for automatic generation of
adapters,” Proc. AINA, 2009, pp.652–659, 2009.

[13] S. McIlraith and S. Son, “Adapting golog for composition of seman-
tic Web services,” Proc. KR, 2002, pp.482–496, 2002.

[14] D. Skogan, R. Gronmo, and I. Solheim, “Web service compositionin
UML,” Proc. EDOC, 2004, pp.47–57, 2004.

[15] K. Pu, V. Hristidis, and N. Koudas, “Syntactic rule based approach
to Web service composition,” Proc. ICDE, 2006, pp.31–40, 2006.

[16] D. Calvanese, G.D. Giacomo, and M. Lenzerini, “Automatic ser-
vice composition and synthesis: The roman model,” IEEE Data Eng.
Bull., vol.31, no.3, pp.18–22, 2008.

[17] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi, “Automated syn-
thesis of composite BPEL4WS web services,” Proc. ICWS, 2005,
pp.293–301, 2005.

[18] R. Kazhamiakin, M. Pistore, and L. Santuari, “Asynchronous timed
Web service-aware choreography analysis,” Proc. CAiSE, 2009,
pp.364–378, 2009.

[19] M. Autili, P. Pelliccione, and P. Inverardi, “Graphical scenarios for
specifying temporal properties,” J. Automated Software Engineer-
ing, vol.14, no.3, pp.293–340, 2007.

[20] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,”
Proc. CAV, 2001, pp.53–65, 2001.

[21] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking,

Massachusetts Institute of Technology, The MIT Press, Cambridge,
1999.

[22] B. Alpern and F.B. Schneider, “Verifying temporal properties with-
out temporal logic,” ACM Trans. Programming Languages and Sys-
tems, vol.11, no.1, pp.147–167, 1989.

Dajuan Fan is currently a Ph.D. candi-
date in the College of Computer Science and
Technology at Nanjing University of Aeronau-
tics and Astronautics. Her main research inter-
ests include software engineering, formal meth-
ods, and service-oriented computing.

Zhiqiu Huang is currently a Ph.D. profes-
sor, Ph.D. supervisor and the head of the Col-
lege of Computer Science and Technology at
Nanjing University of Aeronautics and Astro-
nautics. He is a senior member of IEEE. His
main research interests include software engi-
neering, formal methods, service-oriented com-
puting and knowledge engineering.

Lei Tang is currently a Ph.D. candidate in
the College of Electronics and Information En-
gineering, at Nanjing University of Aeronautics
and Astronautics. Her main research interests
include software engineering and concurrency
theory.

