
1652
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014

LETTER

Enriching Contextual Information for Fault Localization

Zhuo ZHANG†a), Xiaoguang MAO†b), Nonmembers, Yan LEI†, Student Member, and Peng ZHANG†, Nonmember

SUMMARY Existing fault localization approaches usually do not pro-
vide a context for developers to understand the problem. Thus, this paper
proposes a novel approach using the dynamic backward slicing technique
to enrich contexts for existing approaches. Our empirical results show that
our approach significantly outperforms five state-of-the-art fault localiza-
tion techniques.
key words: fault localization, dynamic slice, program spectrum, contextual
information

1. Introduction

Since debugging is generally recognized as an expensive
and time-consuming process, researchers have proposed
many useful techniques to provide assistance in finding the
faults that cause programs to produce incorrect outputs.
However, they just focus on statement selection and ranking,
and ignore the contextual information of the relationship and
the propagation among suspicious statements [1]. Hence, it
is necessary to construct the contextual information that can
be helpful in improving the activity of debugging.

Recently, spectrum-based fault localization (SFL) [2]
is a popular topic of study and used in the fault localiza-
tion community. However, SFL just outputs a ranked list of
isolated entities and fails to provide the contextual informa-
tion for discovering and understanding how suspicious state-
ments act on each other to trigger failure. Moreover, SFL
uses code coverage that cannot distinguish whether the ex-
ecution of a statement affected the output [4]. However, the
execution of faulty statements should generally trigger and
affect the faulty output of a program when a failure occurs.
Due to the use of coverage information, SFL may include
additional statements unrelated to a failure. For example,
SFL will assign high values of suspicion to those statements
that are frequently executed by failed test cases even if those
statements do not affect the faulty outputs of the program.
To address these issues, we propose an approach that lever-
ages program slicing to enrich the contextual information
and reduce the searching scope of suspicious statements for
SFL.

Program slicing techniques utilize data and control de-
pendencies to identify a set of statements that may affect the

Manuscript received January 10, 2014.
Manuscript revised March 1, 2014.
†The authors are with College of Computer, National Univer-

sity of Defense Technology, 410073 Changsha, China.
a) E-mail: zhuozhangnudt@gmail.com
b) E-mail: xgmao@nudt.edu.cn

DOI: 10.1587/transinf.E97.D.1652

value at a specific statement of a program [4], [6]. The set of
statements is denoted as a program slice. A program slice
is essentially a context illustrating a causal chain of how
data and control propagate in a program. Experiments have
shown that a slice is useful for understanding and discov-
ering faults [10]. Nevertheless, program slicing techniques
cannot distinguish which statement in a slice is more sus-
picious and thus should be examined and so developers are
frustrated and tired as slice size is usually large to match
the increasing levels of complexity of today’s software [1].
It is necessary to give some examining guidance for further
reducing the heavy burdens placed on the developers.

Thus, this paper proposes an effective approach to en-
rich contexts for a promising fault localization technique
(this is SFL) and provide examining guidance for develop-
ers. Our approach uses dynamic slicing techniques to slice
the faulty output of a failed test case to construct a dynamic
slice. Since the dynamic slice shows that how the faulty out-
put is produced, our approach identifies this dynamic slice
as a suspicious context. Then, our approach adopts SFL to
quantify the suspiciousness of the statements in the context
being faulty to recommend examining guidance for devel-
opers. Consequently, our approach provides useful contexts
and recommends examining guidance of their elements in
terms of suspiciousness, that is, our approach enriches the
contexts for fault localization techniques. We conduct an
empirical study on 6 representative programs in fault local-
ization with 61 faulty versions. The results show that our
approach can reduce almost 16.56% up to 67.05% of the
average cost of examined code over five maximal SFL for-
mulas, namely ER1’,ER5, GP02,GP03 and GP19.

2. Our Approach

2.1 Overview

Program slicing as a debugging aid was introduced by Mark
Weiser [8]. Later Korel and Laski proposed dynamic slicing
to focus on an execution in a specific input [9]. Compared to
the static slicing technology which analyzes programs with-
out running them, the dynamic slicing technology gathers
run-time information along the execution path and notice-
ably cuts down the size of the slice in comparison with static
slicing. The basic idea of our approach is to use dynamic
backward slicing to slice the failed output to construct a sus-
picious slice as a suspicious context, and then adopt SFL to
quantify the suspiciousness of the statements in the suspi-

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



LETTER
1653

Fig. 1 The coverage of M executions.

cious context, and finally present the suspicious context and
its statements with different suspiciousness for developers.
Since a dynamic slice can show useful data/control depen-
dencies of how statements act on each other, the suspicious
context defined in our approach can show more useful infor-
mation for developers to understand and discover the fault.
In addition, our approach assigns different suspiciousness of
a statement being faulty and therefore it is practical for de-
velopers to quickly distinguish which statements are more
suspicious and should be firstly checked.

Step 1: Construct suspicious context and their ele-
ments with dynamic slicing techniques. In this step, we
compute the dynamic slices [9] of the incorrect output of a
failed test case because this dynamic slice can show how
data/control flow propagates and finally results in the fail-
ure of the failed test case. We identify this dynamic slice as
a suspicious context that contains a set of suspicious state-
ments and demonstrates how each statement acts on each
other to cause a failure.

Step 2: Compute the suspiciousness of each state-
ment in the context. In this step, we adopt SFL [2] to
compute the suspiciousness of each statement in the con-
text. SFL utilizes the statement coverage data which is col-
lected indicating that whether the statements are executed
or not during execution of test cases to calculate the suspi-
ciousness of a statement. Given a program P, it consists of
N executable statements and is executed by M test cases T
that contains at least one failed test case (see Fig. 1). xi j = 1
represents that statement j is executed under test case i and
xi j = 0 otherwise. The error vector e means the test results.
The element ei is equal to 1 if test case i failed, and 0 oth-
erwise. Based on the matrix M × (N + 1), four parameters
anp, an f , aep, ae f are defined for each statement showing
the number of passed/failed test cases in which the state-
ment was/wasn’t executed. The first part of the subscript
indicates whether the statement was executed (e) or not (n)
while the second suggests whether the test case passed (p)
or failed ( f ), four parameters anp, an f , aep, ae f are defined
for each statement showing the number of passed/failed test
cases in which the statement was/wasn’t executed. The first
part of the subscript indicates whether the statement was ex-
ecuted (e) or not (n) while the second suggests whether the
test passed (p) or failed ( f ).

Based on the above definitions, we can use the formu-
las listed in Table 1 to calculate the suspiciousness of each
statement in a suspicious context. Xie et al. [2], [7] have
conducted a theoretical analysis of 60 risk evaluation for-
mulas and found 9 the most efficient formulas (referred to
as the maximal formulas). In light of equivalence, these for-

Table 1 Formulas of SFL.

Fig. 2 Example illustrating the context-enriching approach.

mulas form five groups, namely ER1’, ER5, GP02, GP03
and GP19 (See Table 1). After suspiciousness calculation,
a ranking list of all statements in the context is produced in
descending order of their suspiciousness.

2.2 An Illustrative Example

Figure 2 illustrates a faulty program P that contains a faulty
statement s3 to show just how our approach is to be applied.
This example chooses one type of SFL, GP02, to compute
the suspiciousness of each statement. The cells below each
statement indicate whether the statement is covered by the
execution of a test case or not (1 for executed and 0 for non-
executed) and the rightmost cells represent whether the ex-
ecution of a test case is failed or not (0 for pass and 1 for
fail). Based on the statement coverage information and test
results of six test cases, GP02 outputs a ranking list of all
statements in descending order of suspiciousness: {s7, s8,
s9, s12, s14, s10, s11, s2, s3, s1, s13, s4, s6, s5, s15, s16}, but
this set includes all statements and cannot distinguish which
statement affects the output. For example, s8 and the faulty
statement s3 are executed by all failed test cases. However,
s8 is less frequently to be executed by passed test cases com-
pared with s3. In this case, s8 has a higher suspicious value
than s3 even if s8 does not affect the faulty outputs. It reveals
the reason that the faulty statement s3 is ranked 9th while



1654
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.6 JUNE 2014

some statements unrelated to failures are ranked higher than
s3.

To address this issue, our approach selects a failed test
case t1 and constructs a dynamic slice of the failed output of
t1 by using a slicing criterion (t1, s14, d1). This dynamic slice
{s1, s3, s7, s14} constructs a suspicious context that contains
statements are responsible for the failed output of t1. With
the dynamic slice, GP02 generates a new ranking list: {s7,
s14, s3, s1}, s3 is ranked 3rd. {s2, s4, s5, s6, s8, s9, s10, s11,
s12, s13, s15, s16} are not included in the context because they
do not affect the failed output of t1. Therefore, our approach
obtains a better localization result than original GP02.

3. An Experimental Study

3.1 Experiment Setup

The experiment selects six Java programs. Table 2 lists the
name of these programs, function description, the number
of faulty versions, the lines of code, the executable lines of
code and the number of test cases. The all six subject pro-
grams are Java version of Siemens programs that are widely
used in the fault localization community.

Since the research [2] has theoretically proven that 9
out of 60 SFL suspiciousness evaluation formulas are the
most efficient formulas (referred to as the maximal formu-
las), we choose these formulas in our study. We evaluate
SFL by only using Nash 1 out of the three equivalent for-
mulas in ER1’, Binary out of the three equivalent maximal
formulas in ER5 and the other three formulas GP02, GP03
and GP19. In light of the equivalence in each group, the fol-
lowing section uses ER1’ and ER5 to represent Naish1 and
Binary respectively [2].

3.2 Data Analysis

We utilize a widely used metric EXAM [2] that is defined as
the percentage of executable statements to be examined be-
fore finding the actual faulty statement. For a more detailed
comparison, we further adopt Imp [3] that is to compare the
total number of statements that need to be examined to find
all faults by our approach versus the number that need to
be examined by using the SFL. As a reminder, our system
uses EMMA [5] to collect code coverage and JSlice [6] to
perform dynamic slicing.

Figure 3 illustrates the EAXM score of our approach
over its corresponding SFL approaches in all faulty versions.
As shown in Fig. 3, we observe that our approach obtains a
significant improvement over ER1’, GP02 and GP13 when
the EXAM begins at 5%. Additionally, our approach gets
an obvious improvement over ER5 and GP19 starting at the
EXAM of 15% and 10% respectively. Therefore, our ap-
proach significantly improves the effectiveness of all five
maximal formulas.

Figure 4 shows the Imp score of our approach over each
SFL formula in each program. With our approach, the state-
ments that need to be examined sharply decrease, ranging

Table 2 The characteristics of subject programs.

Fig. 3 EXAM comparison between SFL and our approach.

Fig. 4 Imp of our approach.

from 32.95% such as GP02 on schedule2 to 83.44% such
as ER1’ on Jtcas. This means that we only need to exam-
ine from 32.95% to 83.44% of executed statements that SFL
needs to examine of. It also represents that our approach ob-
tains the saving from 67.05% (100% − 32.95% = 67.05%)
to 16.56% (100%−83.44% = 16.56%) over SFL in terms of
effort. As shown in Fig. 5, the maximum saving is 67.05%
on GP02 in schedule2 while the minimum saving is 16.56%
on ER1’ in Jtcas, the average saving ranges from 40.00% to
54.25%. In conclusion, our approach is effective to improve
fault localization effectiveness.

3.3 Threats to Validity

First and foremost, chances are that fault statement may not
be included in the slice result such as version 11 of Tot info.
That drawback is caused by characteristic of dynamic slic-
ing technology. Even though, a wide spectrum type of faults
can be included by dynamic slicing technology [10]. An-



LETTER
1655

Fig. 5 Saving of our approach over SFL.

other threat is the subject programs used by our experiment.
The subject programs are all small-sized programs despite
of their widely application in the fault localization commu-
nity. It is worthwhile to conduct more experiments on large-
scale programs.

4. Conclusion

In this paper, we propose an approach using dynamic slicing
to enrich contexts for fault localization and the results show
a preliminary benefit on fault localization. In the future, we
plan to use more large-scale Java programs and conduct user
studies. Moreover, we will consider an extension of our cur-
rent work to multiple-bug cases.

Acknowledgements

This work is partially supported by the National Natural

Science Foundation of China under Grant No.61379054 and
No.91118007, the National High Technology Research and
Development Program of China (863 program) under Grant
No.2012AA011201.

References

[1] C. Parnin and A. Orso, “Are automated debugging techniques actu-
ally helping programmers?,” ISSTA 2011, pp.199–209, 2011.

[2] X. Xie, F.-C. Kuo, T.Y. Chen, S. Yoo, and M. Harman, “Provably
optimal and human-competitive results in SBSE for spectrum based
fault localisation,” SSBSE 2013, pp.224–238, 2013.

[3] V. Debroy, W.E. Wong, X. Xu, and B. Choi, “A grouping-based strat-
egy to improve the effectiveness of fault localization techniques,”
QISC 2010, pp.13–22, 2010.

[4] Y. Lei, X. Mao, Z. Dai, and C. Wang, “Effective statistical fault lo-
calization using program slices,” COMPSAC 2012, pp.1–10, 2012.

[5] EMMA, http://emma.sourceforge.net/
[6] JSlice, http://jslice.sourceforge.net/
[7] X. Xie, T.Y. Chen, F.-C. Kuo, and B. XU, “A theoretical analysis

of the risk evaluation formulas for spectrum-based fault localiza-
tion,” ACM Trans. Software Engineering and Methodology, pp.1–
39, 2013.

[8] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng., vol.10,
pp.352–357, 1984.

[9] B. Korel and J. Laski, “Dynamic program slicing,” Information Pro-
cessing Letters, vol.29, pp.155–163, 1988.

[10] X. Zhang, N. Gupta, and R. Gupta, “A study of effectiveness of dy-
namic slicing in locating real faults,” Empirical Software Engineer-
ing, vol.12, pp.143–160, 2007.


