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Utilizing Global Syntactic Tree Features for Phrase Reordering

Yeon-Soo LEE†, Hyoung-Gyu LEE†, Nonmembers, Hae-Chang RIM†a), Member,
and Young-Sook HWANG††b), Nonmember

SUMMARY In phrase-based statistical machine translation, long dis-
tance reordering problem is one of the most challenging issues when trans-
lating syntactically distant language pairs. In this paper, we propose a novel
reordering model to solve this problem. In our model, reordering is affected
by the overall structures of sentences such as listings, reduplications, and
modifications as well as the relationships of adjacent phrases. To this end,
we reflect global syntactic contexts including the parts that are not yet trans-
lated during the decoding process.
key words: phrase reordering model, global syntactic tree features,
phrase-based statistical machine translation

1. Introduction

Since phrase-based statistical machine translation (PBSMT)
is relatively simple, it can be easily applied to many lan-
guage pairs. Also, its lexical translation coverage is very
high because the translation unit can be any length of
“phrase.” However, in recent years, PBSMT has been also
applied to grammatically distant language pairs such as
English-Korean, English-Japanese, or English-Turkish, thus
making its reordering problem more prominent. Original
PBSMT reordering model is based on the distribution of
distance from a previously aligned phrase. However, the
distance-based model has limits in terms of accurate re-
ordering discrimination. Many studies have been conducted
to improve the distance-based model; however, long sen-
tences such as newspaper articles are still often not properly
translated, mainly due to reordering failures. The phrases
in long sentences should be reordered as complex types or
long distance movements. If long distance reordering fails,
translation performance barely changes even if several local
reorderings succeed.

Long distance movement is caused by the differences
between languages in the way they syntactically organize
sentences such as subject-object-verb (SOV)/subject-verb-
object (SVO), head-initial/head-final, and special grammat-
ical conditions. Therefore, recent studies attempt to reflect
syntax information in PBSMT reordering. First, there are
preprocessing methods that change source words into a tar-
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get word order prior to the decoding step [1], [2]. For this
purpose, manually or automatically established grammar
conversion rules are used. The issues in these methods are
related to automatic acquisition, coverage, and ambiguity
of rules. Second, post-processing methods are presented in
[3], [4]. These methods re-rank the n-best translation results
by using syntactic features, or they re-organize the phrases
of the result sentence. Third, there are soft-constraint meth-
ods that engage in reordering of decoding step [5]–[8]. It is
difficult to integrate syntactic model into the PBSMT frame-
work, since the syntactic boundary and phrase boundary
of the PBSMT do not match. However, the methods have
more potential to improve due to its ability to control the
decoding process. The “Lexicalized reordering model” the
most widely used method exploit lexical features between
two phrases [5], [6]. In [7], they takes advantage of syntac-
tic cohesion characteristics. In recent years, reordering may
be regarded as a classification problem and implemented as
a discriminative model. In the [8]’s research, the source’s
syntactic tree information is reflected in the word lattice in
order to decide the visiting order of words. However, they
still considered the reordering problem as a distance based
movement of word and used the tree features insufficiently
to resolve the long distance reordering problem. Never-
theless, since grammatical differences better explain the re-
ordering phenomena, the performance was improved to a
certain extent. Our method belongs to these soft-constraint
approaches.

Util now, little attention has been given to questions
such as “What range of syntactic context should be consid-
ered?” or “How is syntax and long distance reordering re-
lated?” If there is ambiguity in discriminating between local
reordering and long distance reordering, then incorrect hy-
potheses remain in the hypothesis space even though syntac-
tic information is used. If the incorrect hypothesis has a high
language model score, finally translation errors are gener-
ated. It is worthwhile to exam the reordering problem more
closely. In this paper, we focus on long distance reorder-
ing as well as local reordering. We refer to the ambiguity of
using syntactic information, investigate global syntactic fea-
tures, and propose a new reordering model to support these
features.
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Fig. 1 Long distance reordering and global syntactic context.

2. Syntactically Featured Phrase Reordering Model

2.1 Long Distance Reordering & Syntax

First, we introduce an English-Korean translation example
with complex reordering in Fig. 1. S 1 and S 2 are two of the
several hypotheses in the decoding process. The decoder
segments the source sentence f into phrases f1, f2, f3 . . . ,
and reorders them. Hypothesis S 1 is correct but S 2 is not.
S 2 seems to be correct in terms of lexical translation; how-
ever, the meaning is completely different from the original
meaning because it is translated in the wrong order, It is
translated as, “The government approves it after the UA of-
ficially sign the national assembly next month.” Most of the
previous studies analyzed a junction point in the parse tree
between a previous phrase and a current phrase. For ex-
ample, when S 1 translates f5 after f1, the junction point on
the parse tree is circle 1 the treelet (S1, NP1, VP1). Fur-
thermore, at selection (hereafter referred to as “state”) 3 of
S 1, f7 meets f5 at circle 3. NP3 precedes VP3 under S2 at
the target sentence. At state 3 of S 2, f3 meets f2 at circle
2. Under VP2, NP2 is translated before the phrase that in-
cludes VB. If the SOV characteristic of the target language
is considered, all the above interpretations are correct. In
other words, during the first three states, if we consider the
local space (the junction points) on the parse tree, we cannot
distinguish correct long distance movement from incorrect
local reordering. Syntactic knowledge states, “The modifi-
cation clause should be translated before the main verb and
the subject is the first in that clause according to the target
syntax.” If this is reflected, S 2 receives a very low score and
disappears early from the hypothesis stack. However, this
information is scattered on the parts that are not yet trans-

lated but related to the current phrase and is based on the
structural complexity of the sentence. To eliminate the S 2

in a limited search space, the information should be detected
and reflected early.

2.2 Discriminative Phrase Precedence Model

Before we use the parse tree context, we first define a
discriminative reordering model that estimates the prece-
dence of phrases. The source sentence f consists of N
phrases 〈 f1, f2, . . . , fN〉 and the reordered sequence at target
is O = 〈o1, o2, . . . , oN〉. Then fo j represents the jth trans-
lated source phrase. The source phrases can be divided into
three groups when fo j is selected at the jth state. - Pj is a set
of previously translated phrases, C j is a current phrase, and
Lj is a set of phrases that have not yet been translated. For
example, in Fig. 1, when f7 is translated after f1 and f5, Pj

is { f1, f5}, C j is { f7} and Lj is { f2, f3, f4, f6}. Our model esti-
mates the probability of the precedence relationship at state
j, given the source tree T f .

p(C j, Lj|T f , Pj),

Pj =
{
fo1 , fo2 . . . , fo j−1

}
,C j =

{
fo j

}
, Lj =

{
fom | j < m ≤ N

}

(1)

The sentence level reordering probability is represented by
Eq. (2) and it can be rewritten as Eq. (3) in maximum en-
tropy style.

max
N∏

j=1

p(C j, Lj|T f , Pj) (2)

= max
N∏

j=1

1
Z(T f , Pj)

exp
(∑

k

λkφk(Pj,C j, Lj,T f )
)

(3)
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Table 1 Feature category.

local Tpc-the relationship between the previously translated
part and the current part

uncovered
Tcl-the relationship between the current translated
part and the part that will be translated in the future
Tpl-the relationship between the previously translated
part and the part that will be translated in the future

global
Tlong - The longest path in the parse tree
Twide - The widest siblings
Tredup - The nested sentence structure

Here, φk is the binary valued feature function, λk is the
weight of the φk, and Z(T f , Pj) represents the normalization
factor.

2.3 Syntactic Mapping

In order to analyze the phrase precedence relationship in
terms of syntax, the relationship is mapped to the source
parse tree. We can attach one of the following three tags to
each node in the tree: p, c, or l.

p: all the words dominated by the node are translated
c: one of the words dominated by the node belongs to C j

l: one of the words dominated by the node belongs to Lj

The tag indicates whether each node is associated with any
of the three sets that were mentioned above: Pj, C j, and
Lj. Figure 1 shows an example of the state 3 of S 1. For
example, tag p is attached to NP1 by which all the domi-
nated nodes are translated and all the ancestors of the cur-
rent phrase “the month” have tag c. Also, tag l is attached
to all the ancestors of phrases that are not translated. We ex-
tract the sub-trees that represent the global context, and they
are classified in Table 1. In Fig. 1, when f7 is selected and
translated, B, C and D represent the sub-tree features Tpc,
Tcl, and Tpl, respectively. Also shown in Fig. 1, the global
sub-tree features Tlong, Twide and Tredup are represented by E,
F, and G respectively. Tlong features indicate which part of
the longest path in the parse tree is currently translated. For
the Tlong and Twide features, if a parent node has any child
node attached to tag p or c, the parent node is also attached
to tag p or c respectively. To extract Twide, we flatten the
source parse tree; in other words, we integrate the parent
and grand-parent that have the same head word. On the flat-
tened tree, the parent-child treelet with the most siblings is
Twide. The Tredup features indicate the nested structure and
the current part in the structure.

In order to use the sub-trees as the maximum entropy
features, the trees are divided into parent-child treelets. Also
we assume independence between the treelets. The above
sub-tree features can be represented as a set of treelet t:

Tu, j=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
t | t= (u, pr, c1, c2, tagc1 , tagc2 , w)

}

if u∈{pc, cl, pl}{
t | t= (u, n1, n2, . . . tagn1 , tagn2 , . . .)

}

if u∈{long, wide, redup}
where u is one of the sub-tree types. pr, c1, and c2 are par-

Table 2 The representation of sub-tree features.

S 1 (Correct) S 2 (Incorrect)
Tpc (S,NP,VP,P,C,15) (S,NP,VP,P,C,15)

(S,NP,VP,P,C,7) (VP,MD,VP,C,P,12)
(VP,ADVP,VP,C,P,1)

Tcl (VP,MD,VP,L,C,13) (VP,VB,SBAR,C,L,9)
(VP,ADVP,VP,L,C,1)
(VP,VB,SBAR,L,C,9)

. . .
(VP,NP,NP,L,C,3)

Tpl (S,NP,VP,P,L,15) (VP,NP,SBAR,P,L,10)
Tlong (S,VP,VP,SBAR,S,VP,NP, (S,VP,VP,SBAR,S,VP,NP,

L,L,L,C,C,C) C,P,L,L,L,L)
Twide (VP,ADVP,VB,NP,SBAR, (VP,ADVP,VB,NP,SBAR,

L,L,L,L,C) C,C,C,P,L)
Tredup (NP,VP,S,P,L,C) (NP,VP,S,P,C,L)

ent, left child, and right child, respectively. The tag repre-
sents one of the following tags (described above): p, c, and
l. The number of words dominated by the parent is repre-
sented by w. We differentiate the impact on the reordering
according to the number of dominating words, even if the
sub-tree shape is the same. n is a node in the parse tree.
In practice, to reduce the number of features and to avoid
over-fitting, similar kinds of phrase tags are grouped and the
weight is divided into three types: heavy, middle, and light.
As a result, Eq. (3) is rewritten as follows:

max
n∏

j=1

1
Z(T f , Pj)

exp
(∑

u

∑

t∈Tu, j

λtφt(Pj,C j, Lj,T f )
)

Table 2 shows the sub-tree features in the t format. The “cor-
rect” column shows the extracted features at the state 3 of
S 1, and the “incorrect” column shows the extracted features
at the state 3 of S 2. In the incorrect case, we know through
the trees Tcl and Tpl that the modified clause “will officially
sign the UA” is translated before the modifying clause “after
. . .”; however, this order is wrong. Moreover, long distance
reordering is needed because there are a large number of
words in the modifying clause.

To train the above model, we must construct the cor-
rect positive and negative examples for the phrase reorder-
ing. Since this requires large costs, we construct a pseudo-
answer set in the following way: First, we run the word
alignment using GIZA++. From the word aligned paral-
lel sentence, the phrases which are consecutively aligned
words, can be C j. With C j as the midpoint, Pj is the part that
is aligned forward than C j and Lj is the part that is aligned
backward. The negative example is generated by exchang-
ing the Pj and the Lj for the same C j. This method may not
be accurate, but it has the advantage of generating a large
amount of the training set. In this way, the positive set and
the negative set each have an amount of 100,000 examples†.

†To measure the accuracy of the pseudo-answer set, we sam-
pled 100 examples from the training set (which contained 100,000
examples). For each reordering example, the correctness was eval-
uated manually. As a result, the accuracy of the positive set is 82%
and the accuracy of the negative set is 87%.
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3. Experiments

We tested our method on three different language
pairs: English-to-Korean(E2K), Chinese-to-Korean(C2K),
and English-to-Chinese(E2C). The first two language pairs
are SVO-SOV pairs which require a great deal of long dis-
tance movements. The last pair is an SVO-SVO pair with
the same word order; however, it also requires long distance
reorderings. The corpus† for training and testing is shown
in Table 3. For a language model, we used the SRI Lan-
guage Modeling Toolkit to train a 5-gram language model
on all the training (target) sentences. For parsing the input
source sentences, we used the Stanford parser for English
and Chinese. We used the SMT system, Moses [9], with de-
fault options for the baseline and implemented the proposed
model by modifying the decoding module. BLEU [10] met-
ric is used to measure the translation performance.

We measured the reordering accuracy using the follow-
ing steps. First, we manually constructed word aligned data
from 400 parallel sentences. Second, we automatically gen-
erated the positive and negative reordering hypothesis from
the data in the same way we constructed the training set.
Then we randomly selected 1,500 examples at three times
from the total of 24,957 examples. We measured the ac-
curacy of the three hypothesis sets by using the previously
trained model and averaged the results. The reordering ac-
curacy was evaluated only in the English-Korean set. Ta-
ble 4 shows the results of distortion distance variation and
the distance represents the minimum word level distance at
target sentence between the previously aligned phrase and
the current phrase. The baseline results “Tpc only” is pro-
duced by using only the precedence relationship with pre-
viously translated phrases. We can see that for long dis-
tance reordering, it is important to consider the uncovered
part in advance. Although Tlong, Twide, and Tredup do not af-
fect the short movement, they contribute to the accuracy of
the long movements. Also, this result shows that consider-
ing only the relationship between the adjacent phrases (e.g.,
“Tpc only”), in the long distortion set, is insufficient.

Next, we evaluate the translation performance. The
“Lexicalized” model uses lexical features. On the other
hand, the “HPMT (Hierarchical reordering model)”, a ba-
sic syntax-based model, is known for its good performance
on syntactically different language pairs. Table 5 shows the
results of the comparative experiment on sentence length
and features in English-Korean translation. These results
show that the proposed features are effective, especially for
the long sentence translation. Since the distribution of the
NIST12 set is uneven, we do not conduct the length vari-
ation experiment; however, we can see that the overall per-
formance is improved by using our proposed global features.
Table 6 shows the performance of translations of language
pairs. In the case of English-Korean and Chinese-Korean

†They are provided by SK Planet Co., Ltd. (http://www.skplanet
.com/) only for research purposes. They are crawled over the vari-
ous Korean on-line news sites and refined semi-automatically.

Table 3 Training and testing corpus (number of sentences).

Training Testing
E2K SKP 491K†, KUNLP 400K [11] SKP 1,000†, NIST12 3,074
C2K SKP 477K† SKP 1,000†
E2C Hong Kong Parallel Text 1.8K,

Chinese English News Maga-
zine Parallel Text 166K

NIST08 1,859

Table 4 Reordering accuracy with distortion distance.

Features � of features
Accuracy

∼ 3 4 ∼ 6 6 ∼ All
Tpc only 6,532 84.24 79.26 73.39 76.68

Tpc+Tcl+Tpl 18,562 85.03 80.36 76.25 78.15
+Tlong 12,258 85.03 80.94 78.10 80.11
+Twide 28,473 85.75 81.17 78.78 81.17
+Tredup 2,965 85.78 81.42 81.99 82.34

Table 5 BLEU score with sentence length.

Feature ∼ 5 6 ∼ 14 15 ∼ All NIST12
Lexicalized 41.85 32.29 24.26 27.51 26.26

Tpc only 42.31 32.51 24.31 27.59 26.61
Tpc+Tcl+Tpl 42.54 33.83 25.69 28.96 27.48

+Tlong +Twide+Tredup 42.95 35.79 27.17 31.87 28.50

Table 6 BLEU score with language variation.

English-Korean English-Chinese Chinese-Korean
Lexicalized 28.29 31.38 40.06
Hierarchical 31.58 32.29 41.53

Proposed 33.94 32.87 41.93

pairs, the proposed method performed better than HPMT. As
for the English-Chinese pair, the performance of our method
is comparable to that of HPMT.

4. Conclusion

We explore more discriminative features by analyzing long
distance reordering in the context of global structures. Also,
we propose a new reordering model and a learning method
to reflect the global structure context. Through this work,
we found that to solve long distance reordering problems in
structurally different language pairs such as English-Korean,
it is necessary to reflect the high level context of syntax.
In our future work, we will use the information of target
sentences and integrate it into our model.
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