
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014
1735

PAPER

A Privacy Protected k-NN Query Processing Algorithm Based on
Network Voronoi Diagram in Spatial Networks

Jung-Ho UM†, Miyoung JANG††, Nonmembers, and Jae-Woo CHANG††a), Member

SUMMARY With the advances in wireless Internet and mobile posi-
tioning technology, location-based services (LBSs) have become popular.
In LBSs, users must send their exact locations in order to use the services,
but they may be subject to several privacy threats. To solve this problem,
query processing algorithms based on a cloaking method have been pro-
posed. The algorithms use spatial cloaking methods to blur the user’s exact
location in a region satisfying the required privacy threshold (k). With the
cloaked region, an LBS server can execute a spatial query processing al-
gorithm preserving their privacy. However, the existing algorithms cannot
provide good query processing performance. To resolve this problem, we,
in this paper, propose a k-NN query processing algorithm based on network
Voronoi diagram for spatial networks. Therefore, our algorithm can reduce
network expansion overhead and share the information of the expanded
road network. In order to demonstrate the efficiency of our algorithms,
we have conducted extensive performance evaluations. The results show
that our algorithm achieves better performance on retrieval time than the
existing algorithms, such as PSNN and kRNN. This is because our k-NN
query processing algorithm can greatly reduce a network expansion cost
for retrieving k POIs.
key words: location based services (LBS), cloaking region based query
processing algorithm, k-NN query processing algorithm, Network Voronoi
diagram

1. Introduction

Recently, location-based services (LBSs) have been popu-
lar due to their importance in our daily lives, services like
Telematics, Intelligent Transport Systems and kiosks. LBSs
provide location information that a user wants based on
his/her current position. Examples of location information
are gas stations or restaurants, which are commonly known
as Points of Interest (POIs). The user gains such informa-
tion by forwarding a query to an LBS server along with his
exact location. The LBS server sends some POI information
to answer the user’s request. However, the user’s exact loca-
tion can be overheard by adversaries and the user’s private
information related to his behavior can be revealed [4], [5].
Using the location information, an adversary can track the
user’s personal habits, and places where he/she visits regu-
larly. Therefore, the user’s location must be protected while
using LBS applications.

To resolve this problem, many researchers have pro-
posed spatial cloaking algorithms to protect a user’s pri-

Manuscript received November 2, 2012.
Manuscript revised July 12, 2013.
†The author is with Korea Institute of Science and Technology

Information, Daejeon, 305–806, South Korea.
††The authors are with the Dept. of Computer Eng., Chonbuk

National Univ., Jeonju, 561–756, South Korea.
a) E-mail: jwchang@jbnu.ac.kr (Corresponding author)

DOI: 10.1587/transinf.E97.D.1735

vacy [2], [3], [5], [6], [8]. We define spatial cloaking as for
a given user’s request, the LBS system generates as small
a query region to satisfy k-anonymity as possible. The k-
anonymity means that the generated region contains a query
issuer along with k-1 other individuals so that the query is-
suer is indistinct. Thus, to perform privacy preserving query
processing, the LBS system should search k nearest POIs
for a query region, rather than a query point.

Meanwhile, some recent studies have been done on
searching k-nearest POIs for the cloaking region to pre-
serve a user’s location privacy [5]–[7]. However, because
they only consider Euclidean space for k-nearest POIs re-
trieval, it is not appropriate when applying them to road
network based LBSs. Furthermore, most existing query
processing algorithms that consider spatial networks can-
not protect users’ locations because they answer a user’s
query for only a query point rather than a cloaking region.
To overcome this problem, W. Ku et al. [8] proposed k-NN
query processing algorithms for a cloaking region on spatial
networks, i.e., a privacy protected spatial network nearest
neighbor (PSNN) query. Their k-NN query processing al-
gorithm finds k POIs for a cloaking region by expanding the
network from intersection points between the cloaking re-
gion and road segments. However, the PSNN algorithm has
two main disadvantages. First, the time complexity of the
PSNN algorithm is increased as the number of road seg-
ments increases. Second, the algorithm is inefficient be-
cause the same road segments might be expanded repeatedly
while expanding the network from all intersection points.

To resolve these problems, we propose a novel privacy-
protected k-NN query processing algorithm using a Voronoi
diagram on spatial networks. First, our algorithm reduces
the network expansion cost for retrieving k-NN POIs be-
cause it finds neighboring POIs efficiently by using a net-
work Voronoi diagram. Second, our algorithm avoids the
repeated expansion of the same road segment because our
algorithm can share all the intersection points created by a
cloaking region while expanding the network.

The rest of the paper is organized as follows. In Sect. 2,
we present related work. In Sect. 3, we describe a new k-NN
query processing algorithm using a network Voronoi dia-
gram and we provide the analytic model of our k-NN query
processing algorithm. In Sect. 4, we show the performance
analysis of our query processing algorithm. Finally, we con-
clude our work with future research directions in Sect. 5.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

1736
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

2. Related Work

For LBSs, k-NN query processing on road networks has
been widely studied [10]–[15]. However, the traditional ap-
proach has mainly focused on query processing for a query
point, not for a query region. Some recent studies dealt
with k-NN query processing based on a cloaking region in
road networks. In the studies, the exact location of a kNN
query issuer was blurred into a spatial region for preserv-
ing privacy. These previous studies can be categorized into
three groups; i) expansion-based query processing, ii) local
pre-computation based query processing methods, and iii)
global pre-computation based query processing.

For the expansion-based k-NN query processing, W.
Ku and Y. Chen first proposed a k-NN query processing al-
gorithm for a cloaking region on spatial networks, namely,
the privacy protected spatial network nearest neighbor query
(PSNN) [10]. If the PSNN algorithm computes a cloaking
region including at least k POIs, it stores these POIs into a
candidate set and computes upper bounds as distances be-
tween the k-th POI and the intersection points in the re-
gion. After setting the upper bounds, the PSNN algorithm
expands the network from the intersection points within the
upper bounds to finds POIs. If a cloaking region contains
less than k POIs, the PSNN algorithm expands the network
to find more POIs until k POIs are satisfied. However, the
PSNN algorithm has two main disadvantages: i) the time
complexity of the PSNN algorithm increases as new road
segments are found in the network expansion phase for re-
trieving k-NN POIs. Because the PSNN was proposed by
extending the incremental network expansion algorithm, the
PSNN algorithm is considered to use Dijkstra’s algorithm
for network distance calculation. Thus the time complex-
ity of the PSNN is O(nlogn + c), where n is the number of
vertexes. ii) While expanding the network from all inter-
section points, the same road segment might be expanded
repeatedly to find k POIs. As a result, the time complexity
of the PSNN algorithm is proportional to O(nlogn). Next, K.
Mouratidis and M.L. Yiu proposed an anonymization tech-
nique as well as a k-NN query processing algorithm [12].
But their k-NN query processing algorithm stores the previ-
ously visited nodes to reduce the POI retrieval cost.

Second, the local pre-computation based query pro-
cessing algorithm utilizes pre-computed distances among
adjacent POIs. M. Kolahdouzan and C. Shahabi proposed
a Voronoi-based network nearest neighbor algorithm (VN3)
to process a k-NN query on spatial networks [13]. The VN3
algorithm generates a network Voronoi diagram for a given
a set of POIs on the road network and pre-computes net-
work distances between borders within each Voronoi poly-
gon. The VN3 algorithm finds a Voronoi polygon includ-
ing the given query region and retrieves its adjacent Voronoi
polygons. Then, it creates an auxiliary network that consists
of the border points of Voronoi polygons and POIs. By us-
ing a shortest path search algorithm, it can find the second
nearest neighbor. The algorithm extends Voronoi polygons

Table 1 Classification of the existing work.

from the second nearest neighbor to find k-NN POIs. Next,
X. Huang et al. proposed an S-GRID (Scalable Grid) that
makes the updates of POIs more efficient by using a node
pre-computation technique [14]. The S-GRID pre-computes
the network distances between nodes and POIs within a grid
cell by representing a spatial network in two-dimensional
grids. For each grid cell, the algorithm computes the dis-
tances between a node and an edge within the cell, those
between cell border points, and those between a node and a
border point. The k-NN query processing algorithm of the
S-GRID consists of two steps: the expansion of a grid cell
containing a query point and the expansion of its adjacent
cells.

Third, the query processing algorithm based on global
pre-computation pre-computes all the network distances.
X. Huang et al. proposed the Islands approach which pre-
computes the respective “islands” of all the nodes [15]. The
POIs located within a given radius from a node make an is-
land of the POIs and the distances of all POIs from the node
are recorded. At the query processing phase, the algorithm
performs network expansion from the query point by using
the pre-computed islands to reduce the network expansion
cost. The island-based k-NN query algorithm performs as
follows. Once a query is sent, the algorithm stores the ver-
tices that are included in the query region into a heap in the
ascending order of the distance to the query point. Then,
from the nearest vertex to the query point, it expands the
query region. When a new vertex is retrieved, the algorithm
searches the POIs located within its island and this step iter-
ates until the expansion distance is greater than the distance
between a k-NN POI and the query point. Next, J. Bio et al.
proposed a k-range nearest neighbor query processing al-
gorithm (kRNN). The main idea of kRNN algorithm is to
share the search execution for each boundary point of the
query. The shared execution paradigm requires the short-
est network distance from each boundary point to a certain
set of objects to answer the query. The algorithm intro-
duces a new tuning parameter to control the amount of space
for storing the pre-computed network distance to achieve a
tradeoff between the query processing performance and the
storage overhead.

Table 1 shows the classification of the existing work
based on the three approaches.

3. System Architecture

Before we describe the system architecture for our query
processing algorithm, we give the motivation behind our in-
vestigation. The dominant work for the expansion-based k-

UM et al.: A PRIVACY PROTECTED K-NN QUERY PROCESSING ALGORITHM
1737

NN query processing algorithm is the PSNN algorithm. It
suffers from two main disadvantages. First, the time com-
plexity of the PSNN algorithm increases as the number of
road segments in the queue increases. Because the PSNN
was proposed by extending the incremental network expan-
sion algorithm, the PSNN algorithm is considered to use
Dijkstra’s algorithm for network distance calculation. So,
the time complexity of the PSNN is O(nlogn + c), where n
is the number of vertexes. Second, while expanding the net-
work from all intersection points, the same road segments
might be expanded repeatedly to find k POIs for all query
points. As a result, the time complexity of the PSNN algo-
rithm is proportional to O(nlogn).

To resolve the problems, it is necessary to adopt a
pre-computation technique to k-NN query processing algo-
rithms on spatial networks, such as VN3 [12], Island [13]
and S-Grid [14]. First, The Island algorithm shows better
performance on query processing time than VN3. However,
as the radius increases, the Island algorithm suffers from
storage overhead for storing pre-computed distances and re-
sults in a higher POI update cost. Meanwhile, the S-Grid
algorithm is generally worse on query processing time than
VN3 because the expansion of a grid cell depends on the
number of POIs stored in the grid cell. Finally, the VN3
utilizes the Voronoi diagram to reduce the number of ex-
pansions, but the query processing performance declines if
the POI density is high. Therefore, the existing algorithms
cannot provide good query processing performance because
they suffer from high network expansion costs.

To solve the problems of the existing approaches, we
propose a k-NN query processing algorithm based on a net-
work Voronoi diagram on spatial networks. The proposed
algorithm pre-computes the distance between POIs to re-
duce the network expansion costs. This is because our al-
gorithm always returns genuine k-NN POIs for a query re-
gion regardless of the actual user location within the query
region.

Figure 1 depicts the system architecture for our
privacy-protected query processing model. There are two
main components in this system: a user and an LBS
provider. The user can be an individual who uses the LBS
system for searching desired POI information such as near-
est gas stations, restaurants or even other users. We assume
that a user generates a cloaking region either by peer-to-peer
communication or by using a trusted client with a location
cloaker to blur his exact location before sending a query to
the server. Then, the LBS provider performs a query and
returns a candidate result set to the user. Similar to the ex-
isting privacy-aware system architecture, our query process-
ing server is embedded inside the LBS system to deal with
a cloaked query region rather than the exact user’s location.
Therefore, the k-NN query result is given as a candidate set
of POIs. After receiving the candidate set, the user evaluates
his exact query result from the received candidate POI set.

Our k-NN query processing flow is explained as fol-
lows. In the pre-processing phase, an LBS provider gener-
ates a network Voronoi index on a spatial network by cal-

Fig. 1 System architecture.

culating all the distances between POIs and the network.
The LBS provider first runs a network Voronoi generator
to partition the network space into Voronoi polygons. Then,
the LBS provider constructs a spatial index by computing
the distances between POIs and network border points that
are the intersections between the network edge and Voronoi
polygons. At query time, a query issuer generates a cloak-
ing region using a cloaking region creation method to hide
his/her exact location. Then, the user sends a k-NN query
with the cloaking region to the server. The LBS server re-
trieves the network Voronoi based spatial index in order to
search candidate k-NN POIs, instead of the direct expansion
of the network edges intersecting the query region. After
this step, the server returns the candidate query result set to
the user. Finally, the user selects a real query result for a
query point from those of the query region.

4. Network Voronoi Diagram for k-NN Query Process-
ing

A network Voronoi diagram is a specialization of Voronoi
diagrams where the locations of POIs are restricted to the
links, and a distance between POIs is defined as the length
of the shortest distance on the road network. Assuming
that a weighted graph G(N,L) consists of a set of nodes
N = {n1, n2, . . . , no} and a set of links L = {l1, l2, . . . , lk},
we can generate a network Voronoi diagram for a set of
POIs P = {p1, p2, . . . , pn}. For any POI pi ∈ P, every node
within the Voronoi polygon of pi always has a shorter dis-
tance from pi than other POIs because a Voronoi polygon
contains only one POI. Therefore, for a point p on a link
in L and pi in N, we define dn(p, pi) as the shortest network
distance from p to pi. For all j ∈ In|{i}, we define Dom(pi, pj)
as follows. Dom(pi, pj) denotes a set of links that are located
in the Voronoi polygon of pi where pj can be any POI except
pi and lo represents the set of links.

Dom(pi, p j)

=

⎧⎪⎪⎨⎪⎪⎩p|p ∈
k⋃

o=1

lo, dn(p, pi) ≤ dn(p, p j)

⎫⎪⎪⎬⎪⎪⎭ j ∈ In\{i} (1)

When B(pi) is the set of border points of the Voronoi poly-
gon of POI pi, any border point b in B(pi) satisfies the fol-
lowing condition.

1738
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Fig. 2 Network Voronoi diagram.

B(pi) =

⎧⎪⎪⎨⎪⎪⎩b|b
k⋃

o=1

lo, dn(p, pi) = dn(p, p j)

⎫⎪⎪⎬⎪⎪⎭ (2)

Therefore, we define the network Voronoi diagram as fol-
lows.

Definition 1. Voronoi polygon: For any POI in a set of
POIs P = {p1, p2, . . . , pn}, the Voronoi polygon is the mini-
mum network distance between p and pi and can be defined
as follows.

Vlink(Pi) =
⋂

j∈In\{i}
Dom(pi, p j)

Definition 2. Network Voronoi diagram: If Vlink(pi) is
the Voronoi polygon of POI pi, the network Voronoi diagram
for a set of POIs P, i.e., NVD(P), is defined as follows.

NVD(P) = {Vlink(P1),Vlink(P2), . . . ,Vlink(Pn)}
As shown in Fig. 2, b1 becomes a border point for the

Voronoi polygons p1 and p2 because b1 is the bisector of
point p1 and p2 when network distance is considered. In the
same manner, we can generate a network Voronoi diagram
by computing border points for all POIs.

For k-NN query processing, we define a query point set
of the Voronoi cell where the query is issued and define the
candidates of the nearest neighbor POI.

First, the definition of a query point set is given in
Definition 3. A query point set can be extracted from an
anonymized query region which is generated by applying a
cloaking algorithm to an original query point.

Definition 3. Query point set Q:
Case 1. The cloaking region is given as a rectangle:

If the edges of the cloaking region (L1, L2, L3 and L4)
intersect with z number of road networks, the intersection
points on the road network, i.e., q1, q2, . . . , qz are included
in the query point set Q.

Case 2. The cloaking region is given as a set of road net-
works:

Assuming that a given set of anonymized road seg-
ments is represented as CR = {(s1, e1), (s2, e2), . . . , (sz, ez)},
where si and ei are the starting and ending nodes of a road
segment, respectively. A query point set Q is defined as the

inclusion of an edge (si, ei) such that si � s j and si � e j or
ei � s j and ei � e j where s j, e j ∈ CR, j ∈ In{i}.

Second, our algorithm finds the NN POIs of query
points by searching Voronoi cells that contain a given query
point set. Therefore, the NN POI can be defined as follows.

Definition 4. Candidates of the NN POI: for a given
query edge set Q, the candidates of the NN POI, i.e.,
Cand(Q), can be defined as follows. Here, Contain is a sim-
ple function to acquire POIs in the given query edge qi, pi is
POIs included in qi, and m is the number of NN POI candi-
dates.

Cand(Q)

= {Contain(q1),Contain(q2), . . . ,Contain(qz)}
= {p1, p2, . . . , pm}, m ≥ 1

Third, if two different query edges qi and qj include the
same NN POI, it has a high probability that we will extend
the Voronoi cell of the same NN POI in the next step to find
k-NN POIs. Therefore, it is necessary to group query edges
that share the same Voronoi cell in order to reduce network
expansion cost. We can group the query edges sharing the
Voronoi cell of the same POI. To expand Voronoi cells for k-
NN POIs, we construct Voronoi cells that include candidate
POIs for NN.

The proposed query processing algorithm uses an aux-
iliary network (AN), which is a set of border points and
query points. By using AN, we can retrieve k-NN POIs by
expanding the points in the AN. The AN can be defined as
follows.

Definition 5. An auxiliary network (AN): An auxiliary
network can be defined as a graph G(Nan,Lan) where Nan

represents border points or query points, i.e., Nan = {bi|b ∈
B or b ∈ Q} where B is the border point set, and Lan repre-
sents the link between two border points or between a bor-
der point and a query point. Thus, the distance of Lan can be
defined as:

Lan = {d|d = dn(bi, b j) where bi, b j ∈ Nan}.
The border points of the query region can be divided

into two types: intermediate border point (IB) and end bor-
der point (EB). The intermediate border point resides on a
border between Voronoi polygons of query points while the
end border point includes the ones that are not intermediate
points. In Fig. 3, when a query point set Q is {q1, q2} and a
candidate POI set Cand is {p1, p2}, b1 and b2 are intermedi-
ate border points and b3, b4 and b5 are end border points.
Because b1 and b2 become the border points of both p1 and
p2 at the same time, both b1 and b2 are included in Cand.
Definitions 6 and 7 define the intermediate border point and
the end border point, respectively.

Definition 6. Intermediate border point (IB): A border
point b is an intermediate border point if it is constructed
for two POIs, i.e., pi and pj, and both pi and pj belong to the
same candidate set of POIs, i.e., Cand(Q).

UM et al.: A PRIVACY PROTECTED K-NN QUERY PROCESSING ALGORITHM
1739

Fig. 3 Intermediate borders.

Definition 7. End border point (EB): A border point b
can be defined as an end border point if it is constructed
for two POIs, i.e., pi and pj, and either pi or pj belongs to a
candidate set of POIs, i.e., Cand(Q).

Definition 8. Adjacent end border point (AdjB): A bor-
der point bi belonging to Q is an adjacent end border point
if the border point has at least one of the adjacent vertices
of an AN, such that, AdjB is a set of adjacent vertices, i.e.,
AdjB = {ab1, ab2, . . . , abi}.

A query point has the same distance to all the border
points, except adjacent end border points. For example, as
shown in Fig. 3, a cloaking region is located on the both
polygons of p1 and p2. There are two query points p1 and
p2. First of all, our algorithm adds p1 and p2 to candidate
set. If k is not satisfied, our algorithm expands a border
point between q2 and b4 because b4 has the shortest distance
to q2 among border points, as shown in Fig. 3. Thus, P3

is added to the candidate set. Nevertheless, if k is still not
satisfied, the algorithm should expand the border point of
b4, thus reaching border points b6 and b7. Moreover, q1 and
q2 can share the distance between b4 and b6 and the distance
between b4 and b7 as shown in Fig. 3.

Therefore, our algorithm computes the shortest dis-
tance for each query point by sharing border points. That
is to say, it computes the shortest distance for the adjacent
end border points by subtracting the distances between the
first query point and the adjacent end borders from the short-
est distance to the query point. Next, it gets the distance
between the next query point and the adjacent end border
points. The computed shortest distance for a query point
can be used for computing another query point of the query
set Q. Equation (3) shows the newly computed shortest dis-
tance for a new query point, where ani is a vertex of an AN,
ebi is the adjacent end border point, qprev is the previously
computed query point and qnew is the current query point,
respectively.

d = dn(qprev, ani) − dn(qprev, ebi) + dn(qnew, ebi) (3)

5. Privacy Protected k-NN Query Processing Algo-
rithm

5.1 Query Processing Algorithm

Our k-NN query processing algorithm consists of four steps:
initialization of a query point set Q (step 1), initialization of
both the auxiliary network (AN) and expansion queue (EQ)
by finding NN POI (step 2), and selection of border points
for k-NN POIs (step 3) and expansion of AN (step 4). Our
algorithm repeats steps 3 and step 4 until it finds k number
of POIs from all query points.

STEP 1: Initialization of a query point set
Since the existing cloaking algorithms only generate a re-
gion for protecting a user’s location, they need to find in-
tersection points between the cloaking region and road seg-
ments. Because a cloaking algorithm generates anonymized
road segments by expanding a spatial network [15], [16], we
can find query points based on the cloaking algorithm. Once
the cloaking region is given, we map the cloaking region
to the road network and retrieve the intersection points be-
tween the cloaking region and road network. These inter-
section points will be the query point set for k-NN POI re-
trieval.

STEP 2: Initialization of AN and EQ by finding NN POI
Our algorithm finds NN POI by searching Voronoi cells that
are located in the given query point set Q. Because Voronoi
polygons can be indexed by R-tree, we can efficiently search
the Voronoi cells including query points. AN can be con-
structed by retrieving the NN POI and its Voronoi cell. Once
AN is initialized, intermediate border points are included in
AN. If an end point bi of POI pi is included in Cand, the
distance between bi and a query point of a Voronoi cell of
pi can be directly calculated using the pre-computation of
Voronoi diagrams [12]. The distances between bi and the
other query points are computed by using the shortest dis-
tance algorithm [18]. For example, to calculate the distance
between q2 and b3 in Fig. 4, our algorithm computes the
shortest distance between q2 and b3 via b1 and the shortest
distance between q2 and b3 via b2. The initialized AN cal-
culates the distances between the end border points and the
query points. In Fig. 5, the gray-colored rows are selected
as the shortest distance while AN is initialized.

Our algorithm also calculates the shortest distance be-
tween the NN POI and the query point. For this, our al-
gorithm creates an expansion queue, which stores the dis-
tance between a query point and the corresponding end bor-
der point. The data structure of the expansion queue (EQ) is
{curQi, disti, curBi, curPi} for 1 < i < n, where curQi is the
current query point, curBi is an end border point and curPi

is a POI containing curBi.

STEP 3: Selection of border points
From the set of expansion queues, our algorithm selects a
border point that has the shortest distance from the query

1740
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Fig. 4 Example of AN Expansion.

Fig. 5 Example of AN initialization.

point (Eq. (4)). If more than one border points have the same
shortest distance, we select the border point that shares the
most query points (Eq. (5)). Here, NUM(Group) means the
number of query points in a Voronoi cell and u is the number
of border points that have the same distance. The border
point selection continues until the set of expansion queues
is empty or k-anonymity is satisfied.

bexpand

= MIN(EQ(q1).dist1, EQ(q2).dist2, . . . , EQ(qz).distz)

(4)

bexpand

= MAX(NUM(Group(EQ(qi).curP1,

NUM(Group(EQ(qi+1).curP1, . . . ,

NUM(Group(EQ(q1+u).curP1) (5)

STEP 4: Expansion of AN
When a border point is selected, our algorithm performs the
expansion of AN by searching a Voronoi cell vi which con-
tains the selected border point, but is not expanded yet. Our
algorithm inserts the border points for vi, its POI and the
distances between the border points and the POI into AN.
Next, it computes the distances between each vertex and
query points using the shortest distance algorithm. When
our algorithm computes maxDist, which is the minimum
expansion distance, it checks if the distance between each
query point and its k-NN POI is smaller than maxDist. If so,
we update the results. To share the expanded network, our
algorithm stores the border points being connected directly
to a query point and their distances from a query point into

a main memory.

Algorithm 1 describes our k-NN query processing al-
gorithm. Step 1 can be performed before searching the k-
NN POIs according to the size or the shape of the cloaking
region. First, our algorithm finds NN POI candidates for
all the query points and inserts them into Cand (Lines 1–3).
Second, if k = 1, our algorithm determines which group a
query point belongs to based on the types of border points
and retrieves the intermediate border (Lines 6–8). Third,
our algorithm initializes both AN and the expansion queue
(Lines 9–17). To insert a POI pi into AN, our algorithm
determines the type of border point of pi. If it is an interme-
diate border point, algorithm inserts the distances between
the intermediate border point and the end border points into
the AN (Lines 10–13). Otherwise, the algorithm inserts the
distance between the end border point and a query point into
both the AN and the expansion queue (EQ) (Lines 14–16).
Fourth, our algorithm initializes the distance between the
current k-th POI candidate and a query point, i.e., maxDist.
Then it selects a border point bi from EQ for the expansion
of AN and compares maxDist with the distance between bi

and a query point. If the distance is less than maxDist, our
algorithm expands the network by acquiring a non-expanded
POI pj containing bi and then inserts into AN both the pj and

UM et al.: A PRIVACY PROTECTED K-NN QUERY PROCESSING ALGORITHM
1741

its border points for computing the new shortest distance
(Lines 22–25). Fifth, if POIs’ distances from the query point
to their border points are changed due to the insertion of pj,
our algorithm updates the distances stored in both EQ and
Cand (Line 26). Finally, if the expansion stops for all the
query points, our algorithm returns Cand for k-NN POIs to
a user (or anonymizer).

5.2 Query Execution Cost

In this section, we analyze the query processing costs of ex-
isting PSNN, kRNN algorithms and our algorithm. Table 2
shows the parameters used for our analysis.

We analyze the cost of the PSNN query processing al-
gorithm. There are three steps in the PSNN query process-
ing algorithm. They are: i) finding POIs (#R1) that are lo-
cated in the cloaking region, ii) searching links that contain
the given query points, and iii) expanding the spatial net-
work based on the shortest distance for searching the num-
ber of k-#R1 POIs. The cost of each step is analyzed as
given below. First, the cost for executing step 1 can be com-
puted by the following equation where the POIs are indexed
by R-tree and m is the number of entries stored at a node of
R-tree.

PSNNCOST1 = O(m × logm+1(#P + 1)) (6)

Second, when the links of the spatial network are in-
dexed by R-tree, the cost for executing step 2 can be com-
puted by using the following equation.

PSNNCOST2 = O(m × logm+1(#L + 1)) (7)

Third, the cost for executing step 3 is the same as the
execution cost of the Dijstra’s algorithm, which computes
the shortest distance of vertexes on spatial networks. In ad-
dition, the cost is proportional to the number of query points.
Below Eq. (8) presents the cost of step 3 where c is a con-
stant value.

PSNNCOST3 = O(#Q#N × log(#N) + c) (8)

Therefore, the cost of the PSNN query processing algo-
rithm can be computed by combining the cost of the above
three steps. Equation (9) presents the total cost of the PSNN
query processing algorithm. The query processing cost of
the PSNN algorithm is increased by #N ∗ log(#N) times

Table 2 Parameters used for analysis.

with an increase of the number in query points #Q where
the number of entries is m, the number of vertexes is #N,
and the number of links is #L.

PSNNCOS T = O(m × (logm+1(#P + 1) × (#L + 1))

+ #Q × #N × log(#N) + c) (9)

Next, we analyze the cost of the kRNN query process-
ing algorithm. The kRNN has three main steps for a query
processing. The first two steps are same as those of the
PSNN algorithm. In the step 3, because the kRNN uses
pre-computed network distances for network distance com-
putations, the cost of the step 3 is O(Cdist). Therefore, the
query processing cost of the kRNN algorithm is increased
by #N ∗ log(#N) times with the increase of pre-computed
network index retrieval time.

kRNNCOS T = O(m × (logF #P × (#L + 1))

+ (Cdist × #N × log(#N))) (10)

Finally, we analyze the cost of our k-NN query process-
ing algorithm based on network Voronoi diagrams, called
VDNN, which consists of three steps as follows: i) search-
ing Voronoi cells containing the given cloaking region, ii)
initialization of AN, and iii) expanding AN for searching
the number of k POIs. When Voronoi cells are indexed by
R-tree, the cost for executing step 1 is computed by the fol-
lowing equation.

VDNNCOST1 = O(m × logm+1(#P + 1)) (11)

In step 2, our algorithm computes the shortest distances
from all query points to end border points for initialization
of AN. For reducing the network expansion cost, our algo-
rithm shares the shortest distances, which was already com-
puted when it computed the shortest distance between other
query points to end border points. Then the cost for initial-
ization of AN can be computed by the following equation.

VDNNCOST2 = O((#IB + #EB − #EBpi)

× log(#IB + #EB − #EBpi) + #Q

× (#IB + #EB − #EBpi) + c) (12)

The cost of expansion of AN is similar to the cost of
step 2 because only the number of border points (#B) is dif-
ferent in this step. Equation (12) represents the cost of this
step 3.

VDNNCOST3 = O((log(#B) × #Q × #B) + c) (13)

Since #IB and #EB are less than #B, the cost of step 2
can be included into the cost of step 3. As a result, the total
cost of our k-NN query processing algorithm can be given
by the following equation.

VDNNCOST = O(m × (logm+1(#P + 1) + #B × log(#B)

+ #Q × #B + c) (14)

The cost of our k-NN query processing algorithm is
lower than the cost of the PSNN query processing algorithm

1742
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

for the following reasons. First, the number of vertexes for
expansion is reduced by using a Voronoi diagram in our
algorithm. That is, the cost of our algorithm is reduced
by 1/#n as compared to the PSNN algorithm because the
number of border points #B for expansion is approximately
#B = #N/#n where #n is the average number of vertexes
being included in one Voronoi cell. Second, as the value of
#Q increases, the cost of our k-NN query processing algo-
rithm is increased by #B times while the cost of the PSNN
algorithm is increased by #N × log(#N) times. That means
that the cost of our algorithm is decreased to 1/n × log(#N),
as compared to the PSNN algorithm.

6. Performance Analysis

In this section, we compare the performance of our k-NN
query processing algorithm with the PSNN algorithm and
kRNN algorithm under different settings. We implement
the algorithms using a Windows 2003 operating system
with Microsoft Visual Studio 6.0 running on an Intel Xeon
3.0GHz with 2GB of RAM. For spatial network data, we use
a San Francisco Bay map consisting of 220,000 edges and
170,000 nodes. We generate four sets of POIs with differ-
ent densities using the Brinkhoff algorithm [18], i.e., 2,200
POIs (density = 0.01%), 4,400 POIs (density = 0.02%),
11,000 POIs (density = 0.05%), and 22,000 POIs (density
= 0.1%). The density of POIs is computed as the percent-
age of the number of POIs over the number of links (= net-
work edges). For the edge set of query points, we use the
XStar algorithm [15], which generates an anonymized edge
list. We evaluate the k-NN query processing time for vary-
ing l-diversity, the value of k and query window size (i.e.,
the percentage of the whole data area). Table 3 shows the
parameters used for performance analysis.

6.1 K-NN Query Processing Time

Figure 6 presents the k-NN query processing time of our
algorithm (VDNN), PSNN and kRNN according to the l-
diversity. As l-diversity increases, the query processing time
also increases. When l-diversity is 12 and POI density is
0.1%, the query processing time for our algorithm is 0.42
sec, whereas the PSNN and kRNN required 0.64 and 1.37
seconds, respectively. The results confirm that our algorithm
acquires about 2 times and 3 times performance gains on re-
trieval time, compared to the PSNN and kRNN, respectively.
The reason is that our algorithm needs less network expan-
sion overhead than the existing methods because it uses a
network Voronoi diagram and shares the shortest distances
between query points and POIs.

Figure 7 illustrates the experimental results on the k-
NN query processing time when k ranges from 10 to 50.
When k is 5 and POI density is 0.1%, the query process-
ing time for our algorithm is 0.07 sec, whereas the PSNN
and kRNN required 0.11 and 0.25 sec, respectively. Overall,
we observe from the performance results that our algorithm
is almost 1.5 times faster than the PSNN algorithm and al-

Table 3 Experiment parameter.

Fig. 6 k-NN query processing time with varying l-diversity.

most 2 times faster than the kRNN algorithm. The reason is
that our algorithm can greatly reduce the network expansion
overhead and we can share the shortest distances between
query points and POIs. Thus, we prove that our algorithm
guarantees a consistent query processing performance even
although k and POI density increase.

Figure 8 illustrates the impact of POI density on a k-
NN retrieval time. The x axis shows the density of POI and
y axis shows the time required for retrieving k-NN POIs per-
formance when the number of retrieving nearest neighbor
(k) is 30. To enhance the readability, the query processing
time is depicted as a logarithm of values. As shown in the
figure, both PSNN and kRNN shows better performance as
the POI density is increased. This is because for more dense
area, less network expansion is required for retrieving kth

nearest POI of each query point. On the other hand, our
algorithm provides almost constant query processing per-
formance with varying POI density. When expanding the
network for k-NN POI retrieval, the existing methods cal-
culate and compare the distances among network nodes and
POIs on the fly, whereas the proposed method only retrieves
the pre-computed Voronoi diagram index. This makes big

UM et al.: A PRIVACY PROTECTED K-NN QUERY PROCESSING ALGORITHM
1743

Fig. 7 k-NN query processing time with varying k.

Fig. 8 k-NN query processing time with varying POI density (k = 30).

difference in overall query processing performance between
the existing algorithms and the proposed algorithm. There-
fore, POI density has less influence on the query perfor-
mance compared to the number of k.

6.2 Updates and Storage Overhead

Because our k-NN query processing algorithm uses a net-
work Voronoi diagram (NVD), we compare our NVD with
the index structures of the PSNN and kRNN, in terms of
storage overhead and insertion/deletion performances. Fig-
ures 9 and 10 show the insertion and deletion performances
of our NVD, respectively. Our network Voronoi diagram
requires more time for the insertion and deletion of POIs
because it updates pre-computation distances whenever an
insertion (or deletion) occurs.

Fig. 9 POI insertion time.

Fig. 10 POI deletion time.

Table 4 Storage overhead.

Table 4 shows the storage overhead of our NVD. Our
NVD requires 2–4 times more storage than the index struc-
ture of the PSNN, whereas it requires almost 800 times
less storage than that of the kRNN. This is because our
NVD maintains the pre-computation information for each
Voronoi cell, whereas the PSNN and kRNN do not store pre-
computation information by performing network expansion
at a query processing time.

6.3 Analysis

In this section, we compare the theoretical and experimental
results in terms of the k-NN query processing time. For this,
we set the parameters of our theoretical analysis as shown in
Table 5. Here, #N is the average number of expansion nodes
when performing each k-NN algorithm. In the case of the
PSNN, #N is set to 6, 5, 4 and 4 because 3, 6, 9, and 12 are
used as L-diversity in our experiments. The reason is that
as the number of L-diversity increases, the cloaking region
includes more network nodes and requires less number of
network expansions. For the kRNN, #N is constant to 6 be-
cause the kRNN uses pre-computation technique. #L means

1744
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Table 5 Parameter setting.

Table 6 Theoretical model and experimental results.

the total number of road network and is set to 220,000 be-
cause the PSNN and the kRNN algorithms traverse all links
of the R-tree index in the worst case. #P is set to 10,000 be-
cause our experiments are evaluated by using POI data with
0.05 density. #Q means the average number of query points
and are set to about 20∼70 for different query window size.
#B meaning the average expansion number of Voronoi cell
is set to 30. The parameter m is set to the default number of
entries in R-tree, i.e., 50. Cdist varies from 13 to 52 because
the L-diversity is ranged from 3 to 12.

Because we assume that disk access time is 0.2ms,
the error rate is calculated based on the following equation.
Here, Cexp deontes the experimental results and Ctheroy indi-
cates the estimated query processing cost based on our the-
oretical model.

|Cexp −Ctheory|
Cexp

× 100

Table 6 provides both the theoretical and experimental
results of our k-NN query processing algorithm based on
network Voronoi diagrams (VDNN). In addition, we show
a set of relative errors between them when the l-diversity is
3, 6, 9 and 12, respectively. We can see that the error rates
between the experimental and analytic results on retrieval
time are 5.26% for the best case and 23.07% for the worst
case. The results show that the analytic and experimental
results agree very well.

7. Conclusion

In this paper, we proposed a novel k-NN processing algo-
rithm for a cloaking region in order to protect users’ loca-
tion privacy in spatial networks. To reduce the number of
network expansions, we used a network Voronoi diagram

that stores the shortest network distance among POIs, and
we changed a cloaking region into a query point set. To
process queries efficiently, our algorithm shared the shortest
distances from each query point to relevant POIs. Through
our extensive performance analysis, we have shown that our
algorithm outperforms the existing PSNN and kRNN algo-
rithms in terms of query processing time.

As a future study, we plan to investigate how to reduce
the update cost of the shortest distance stored in the auxiliary
network. We also plan to extend our algorithm to process
continuous k-NN queries.

Acknowledgments

This research is partly supported by the IT R&D program of
MSIP/KEIT [2014044034002, High performance database
solution development for Integrated big data monitoring and
Analysis] and this work was supported by Basic Science Re-
search program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Sci-
ence and Technology (grant number 2013010099).

References

[1] D. Mohapatra and S.B. Suma, “Survey of location based wire-
less services,” Proc. International Conference on Personal Wireless
Communications, 2005, pp.358–362, 2005.

[2] A. Khoshgozaran and C. Shahabi, “Blind evaluation of nearest
neighbor queries using space transformation to preserve location
privacy,” Proc. International Symposium on Spatial and Temporal
Databases, 2007.

[3] B. Gedik and L. Liu, “Location privacy in mobile systems: A per-
sonalized anonymization model,” Proc. IEEE International Confer-
ence on Distributed Computing Systems, 2005, pp.620–629, 2005.

[4] J.H. Um, H.I. Kim, Y.H. Choi, and J.W. Chang, “A new grid-based
cloaking algorithm for privacy protection in location-based ser-
vices,” Proc. IEEE International Conference on High Performance
Computing and Communications, 2009.

[5] G. Ghinita, P. Kalnis, and S. Skiadopoulos, “MobiHide: A mo-
bilea peer-to-peer system for anonymous location-based queries,”
Proc. International Symposium on Spatial and Temporal Databases,
vol.4605, 2007.

[6] M.F. Mokbel, C. Chow, and W. Aref, “The new casper: Query pro-
cessing for location services without compromising privacy,” Proc.
Very Large Data Base, 2006.

[7] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” Proc. 1st Interna-
tional Conference on Mobile Systems, Applications and Services,
2003.

[8] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Prevent-
ing location-based identity inference in anonymous spatial queries,”
IEEE Trans. Knowl. Data Eng., vol.19, pp.1719–1733, 2007.

[9] M. Gruteser and D. Grunwald, “Voronoi-based K nearest neighbor
search for spatial network,” Proc. 13th International Conference on
Very Large Data Bases, vol.30, 2004.

[10] W.S. Ku, Y. Chen, and R. Zimmermann, “Privacy protected spatial
query processing for advanced location based services,” Proc. Wire-
less Pers Commun, 2008.

[11] J. Bao, C.Y. Chow, M.F. Mokbel, and Wei-Shinn Ku, “Efficient eval-
uation of k-range nearest neighbor queries in road networks,” Proc.
Mobile Data Management, 2010.

[12] K. Mouratidis and M.L. Yiu, “Anonymous query processing in road
networks,” IEEE Trans. Knowl. Data Eng., vol.22, pp.2–15, 2010.

UM et al.: A PRIVACY PROTECTED K-NN QUERY PROCESSING ALGORITHM
1745

[13] M. Kolahdouzan and C. Shahabi, “Voronoi-based K nearest neigh-
bor search for spatial network databases,” Proc. Very Large
Database, 2004, pp.840–851, 2004.

[14] X. Huang, C.S. Jensen, H. Lu, and S. Saltenis, “S-GRID: A ver-
satile approach to efficient query processing in spatial networks,”
Proc. Symp. Spatial and Temporal Databases, LNCS 4605, pp.93–
111, 2007.

[15] X. Huang, C.S. Jensen, and S. Saltenis, “The islands approach to
nearest neighbor querying in spatial networks,” Proc. Symp. Spatial
and Temporal Databases, 2005, pp.73–90, 2005.

[16] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query process-
ing in spatial network databases,” Proc. Very Large Database, 2003,
pp.802–813, 2003.

[17] E.W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik, vol.1, pp.269–271, 1959.

[18] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessel-
lations, Concepts and Applications of Voronoi Diagrams, 2nd ed.,
John Wiley & Sons, 2000.

[19] T. Wang and L. Liu, “Privacy-aware mobile services over road net-
works,” Proc. Very Large Database, 2009.

[20] http://www.fh-oow.de/institute/iapg/personen/

Jung-Ho Um is a researcher at the Korea In-
stitute of Science and Technology Information.
He received the BS, MS, and PhD degrees from
Chonbuk National University in 2004, 2006 and
2010 respectively. His research interests in-
clude security and privacy of databases, spatial
databases, and GIS.

Miyoung Jang is a PhD candidate in Chon-
buk National University since 2011. She re-
ceived the BS and MS degrees at Chonbuk Na-
tional University in 2009 and 2011, respectively.
Her research interests include security and pri-
vacy of databases.

Jae-Woo Chang is a professor in the Depart-
ment of IT Information and Technology, Chon-
buk National University, Korea since 1991. He
received the BS degrees in Computer Engineer-
ing from Seoul National University in 1984. He
received the MS and PhD degrees in Computer
Engineering from Korea Advanced Institute of
Science and Technology (KAIST) in 1986 and
1991, respectively. During 1996–1997, he was
at the University of Minnesota as a visiting
scholar. During 2003–2004, he worked for Penn

State University (PSU) as a visiting professor. His research interests in-
clude spatial network database, context awareness and storage system.

